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ON THE FACTORIZATION OF X" — BX — A

by P. RIBENBOIM

1. Rabinowitz [Ra] proved that the only integers A, for which
X3 — X — A is a product of an irreducible quadratic and an irreducible cubic
polynomial with coefficients in Z, are A = = 15, + 22440, and + 2759640.
The factorizations are

X5 X+15=(X2+X+3)(X3FTX2-2X+5),
X5 — X + 22440 = (X2 F 12X + 55) (X3 + 12X2 + 89X + 408) ,
X5 — X + 2759640 = (X2 + 12X + 377) (X3 F 12X2 — 233X + 7320) .

Similarly

X3+ X+t1=X2=X+DX3FX?x1]),
X4+ X+26=X’x2X+2)(X*FX?-X=3)

are the only similar decompositions for polynomials X3 + X — A.

This rather interesting result requires, in last analysis, the fact that 1, 144
are the only non-zero Fibonacci numbers which are squares.

We shall extend this result for the polynbmials X" — BX — A, where A is
a given non-zero integer and n > 5, and also for the polynomials of the same
type, where B is a given non-zero integer, and n > 5.

The proof is elementary, except in one of the cases, where Thue’s theorem
(see [Th]) is required. Due to Baker’s work (see [Sh-Ti], page 99), an explicit
bound for the solutions of Thue’s equation is now known, making our result
also effective.

I am grateful to J. Top for discussions about this paper.

The proof is elementary, except for the use of Thue’s theorem and a

‘theorem of Petho, Shorey & Stewart concerning the squares in recurring
sequences.

2. For the convenience of the reader, we recall all needed facts.
Thue’s theorem [Th] states:

" Let G € Z[X] be a polynomial with at least three distinct roots, let g(X, Y)
be the associated homogeneous polynomial.
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For every integer m, there exist at most finitely many pairs of integers (x, y)
such that g(x,y) = m. Due to the work of Baker (see [Sh-Ti], page 99), an
explicit bound for the solutions x,y of Thue’s equation is now known.

We shall encounter also the diophantine equation X 2 _ 5Y4 = 4B This
will lead to the study of X? — 5Y2 = 4B and to the determination of its
solutions (x, y) such that y is a square.

The equation X2 — 5Y? = 4B has been studied by Stolt [St] and we gather
here the results to be needed. ' |

a+bl/s
Let S = a:—z— a,beZ,a2—5b2:4B}.Iqu&@thenBiO,
_a+bys .
and if —2 € S then a = b (mod2). Also b = 0 exactly when B is a

square, and if €S, thena= +a’.

a+b)/5 a +b)s
2 2
We recall that the units of the number field Q(}/5) are + w” (for neZ),

1+/5

; since ® has norm equal to — 1, then the units of norm 1

3+)5
are + (" (for neZ) where { = 0? = 21/.

where @ =

o
We say that a, a’ € S are equivalent when — = £ (" (where neZ). We

o
a+bl/s

say that a = €S is fundamental when 0< b and if o~ a’

- a'+b')YS5 _ .
= ——K . Thus each equivalence class contains one, and

then b < | b’

- at most four fundamental elements.

Now we show that there are only finitely many equivalence classes in S;
" more explicitly, the number of equivalence classes is at most equal to |/ B]|.
a+ b)/s

It suffices to show that if a = —i— is a fundamental element, then
a+b)/5 3+1)5 1(3a+5b 3b+a
b <)IB|. Indeed 21/+ 21/:5( x + > 1/5) and

is funda-

2 2 2

-VS 1 {3a-5b 3b- + b)/5
;a+bﬂ+3 1/__(02 + 2a|/§).Since———a Vs

3b —a
2

3b+a

’ ~ }

-mental, then b < ‘
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3b+a
If 0< then — a < b hence 5b2 + 4B = a2 < b? so b*< — B
— 3b+a
= |B| hence b < )/|B|. If 5 < 0 then 56 < — a and 25b2 < a? = 5b?
B _ .
+ 4B so b < g < )/ B|. The other cases give the same bound for b.

Now, we consider the equivalence class of the fundamental element

a+b)s . _ .
—— . Define the integers x,, y, (for every n e Z) by the relation

a+b)/s (3+1/5)”:xn+y,,1ﬁ.

2 2 2

— bS5 (3-15\" x,—y.l/5 2_5p2  x2—5y?
Since ¢ Vs Vs = w then ¢ a2 B.
2 2 ) 2 4 4
And from what precedes, if x? — 5y? = 4B there exists a fundamental

a+ b5

element —2— and n € Z such that x = = x,,y = + y,.

We may describe the sequences (x,), <z and (,), < z by linear recurrences
of order 2.

Let Uy(3,1) =0, U;(3,1)=1 and for n>2, U,(3,1) =3U,_,(3,1)
- U,_»(3,1), while for n <0, U,(3,1) = — U_,(3,1).

Similarly, let V,(3;1) = 2, V,(3,1) = 3, forn > 2, V,(3, )=3V,_.:(3,1)
= V,-2(@3,1), while for n <0, V,3,1) = V_,(3,1).

" With this notation, we verify by a simple induction, that

{2xn = V,3,)a + 5U,(3,1)b,
2y, = U,3,Da + V,(3,1)b .

We are interested in finding an effective bound for n > 1 such that y, is
a square.

But U,3,1) = C—]_/;’—_ . VB, 1) =g 4
hence 2 —i(cn_g—ﬂ)_}_b n -n
yn—lﬁ € +¢-m

(oo o)
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By the theorem of Petho [Pe] and Shorey & Stewart [Sh-St] (sée also
[Sh-Ti], theorem 9.6) there exists an effective constant C(a,b) > 0 such

. a a .
that if (—— + b) cr — (— — b) -n = 2] (twice a square), then n < C(a, b).

Vs Vs

) a+b
Letting C = max {C(a, b)

is a fundamental element of S}, then if

x2 — 5y = 4B it follows that | y | is effectively bounded, since y = y, = 2[]

a+ b)/s

(for some fundamental element e S).

3. Here is our proposition:

PROPOSITION. Let n = 5.

1) For every non-zero integer A, there exists an effectively determined
integer B > 0, such that if X" — BX — A € Z[X] has a quadratic factor
in Z[X] which is monic, then |B|< B.

2) For every non-zero integer B, there exists an effectively determined
integer o > 0, such thatif X" — BX — A € Z[X] has a quadratic factor
in Z[X] which is monic, then |A|< a.

Proof. Write

X" —BX — A = (Xz"bX‘*a) (Xn—2+cn_3Xn—3+ +C1X+C0) 5

where a, b, c; € Z.

Then

A = acy
B = ac, + bcy

Z—OCZ—‘bC1+C0

=—aC3—bC2+C1

..........

0= —acn_3—‘bcn_4+cn_5
0= —a—bc,,_3+c,7_4
0= _b"r‘Cn_g.

From these relations, we obtain successively

Ch-3=Db

Cha=a + bc,_3=a+ b?
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Ch_s=aCy_3 + bCr_4 = 2ab + b3 .
Ch_¢ = ACp_4 + bc,_s = a? + 3ab? + b*

c, = acy + bc,,
Co = ac, + bcy,
B = ac, + bcy,

A = acy.

In order to determine explicitly c; in terms of a, b, consider the following
linear recurring sequence of polynomials:

FX)=1,F(X)=1,and for every i > 2, F;(X) = F;_(X) + XF;_,(X).

[
By induction, it may be seen that F;(X) has degree j = [—2-] . Moreover,

if 7 is even then

4+ 1 ) 4+ 2 ) i+ k '
F{(X) :XJ—[— J Xf—l + J Xj‘2+ R ‘] Xj__k

and if / is odd then
i+ 1 . i+ 2 ;
FJ(X)I (J ) )XJ+ (J+ )Xj—1+ cee 4 ( J+k Xi-k+1
J J—1 J—k+1

2j
SR X+1.

Note that F;(0) = 1, Fi(1) > 0 for every i > 0. Also, if r € Z and Fi(r)=0
then r = — 1.
. X .
Let fi(X,Y) = Y/F; ; so fi(X,Y) is a homogeneous polynomial of
degree j. As easily seen,

fio1(X, Y) + Xfi_»(X, Y) when / is odd

£, Y) = {
Yfi 1(X,Y) + Xfi_,(X,Y) when i is even .
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Hence

Cn-3=b = bfi(a,b?)

Ch-a=a+ b?>= fi(a,b?)

Chos = b(2a+ b?) = bfs(a,b?)
Ch-¢ = a? + 3ab? + b* = f4(a, b?)

...................

{ Ju-3(a,b?) when n is odd

c1 = acy + be, =

bf,-3(a,b?) when n is even ,
bfu-2(a,b? i

Co = ey + b, = { fn-2(a,b?) when n is odd

Jn_2(a,b?) when n is even ,

af,-3(a,b*) + b*f,_»(a,b*) = f,_.(a,b?) when nis odd

B =ac + bcy = {
abf,-3(a,b?) + bf,_»(a,b?) = bf,_(a,b*) when n is even ,

abf,_,(a,b? when n is odd

A = acy = {
af,_.(a,b?) when nis even .

First let n be even. Given A4, a belongs to the finite set of integers dividing
Aj; thus b belongs to the finite set of integers which are solutions of any one
of the equations af,_,(a, Y?) = A. Therefore B, which is expressed in terms
of a, b, belongs to a finite set.

Given B, b belongs to the finite set of integers dividing B; thus a belongs
to the finite set of integers which are solutions of any one of the equations
bf.-1(X, b?) = B. Therefore A, which is expressed in terms of a, b, belongs
to a finite set.

Now, let n be odd. Given A, both ¢ and b belong to the finite set of divisors
of A. Therefore B, which is expressible in terms of a, b, belongs to a finite
set too.

Finally, we treat the more interesting case, where n is odd, n > 5 and B
- is given. First let n > 7. Now F,_;(X), has degree M = n_;_l > 3.

We consider the following cases.
1) F,_,(X) has an irreducible factor in Z[X1], of degree at least 3.

2) F,_(X) has at least two distinct irreducible factors in Z[X], each of
degree 2.

3) F,_;(X) has an irreducible factor of degree 2 and a linear factor in
Z]X].
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4) F,_,(X) has at least three distinct linear factors in Z[X].

5) F,_,(X) is a power of an irreducible polynomial of degree 2 in Z[X].

6) F,_,(X) has exactly two distinct linear factors in Z[X].

7) F,_1(X) is a power of a linear factor in Z[X].

In cases (1), (2), (3), (4), F,_(X) ﬁas a factor G(X) € Z[X] with at least
three distinct roots. Let g(X, Y) be the homogeneous polynomial associated
to G(X). |

Then a, b belong to the set I of integers such that g(a, b?) is a divisor of
B. By Thue’s theorem (in its effective version), there is an effective bound for

the possible integers a, b, thus a, b belong to a finite set, and therefore A
belongs to finite set too.

n—1
In case (5), F,-1(X) = (X? + rX + s)k. Comparing degrees,

=m

= 2k and comparing the constant terms, 1 = s*, hence s = + 1. Comparing

m+1) (m+1)m mr

the coefficients of X7~!, we have: ( : = kr, hence ——— ,
m o,

: 2 2
sor=m+ 1.

. .. m+ 2 k
Comparing the coefficients of X -2, we have: A = ks + 5 rz,
m oy

hence
(m+2) (m+ Dm(m — 1)
24

= +

ﬂer(m—Z)(m+l)2
2 8

and this gives
m}*—m?—4m+4 =0,
respectively

m3—m?2—4m—-8=0.

The first equation has only solutions m = 1, m = 2 in positive integers
— but this has been excluded.

The second equation has no solution in positive integers. Therefore, the
case (5) cannot happen.

In case (6), F,_i(X)=(X+nN* X+s)" with r,seZ,r +s. Then
m = k + h. Comparing the constant term, we have 1 = rkst, sor,s = + 1,
and therefore say, r =1, s = — 1.
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' m+1
Comparing the coefficients of Xm7-!, = kr + hs, hence
: m—1
m(m + 1 m+ 1)m
(—2—)—=k——h. But k—h<k+h=m<(T), so this case is
impossible.
Finally, in case (7), F,_(X) = (X + r)%, with r € Z. Comparing degrees,
constant terms and coefficients of X7”-!, we have m =k, 1 = r*, so
m+1 (m+ 1)m L .
r= +1, and : = kr, so —2— = =+ m; this gives m = 1, which
m —_—

1s excluded.

It remains to treat the case n =5. Then F,(X)=X?+3X+ 1, so
f1(X,Y) = X2 + 3XY + Y?. Given B, we consider the set £ of all pairs of
integers (a, b) such that f;(a,b?) = B, that is a? + 3ab? + b* = B; this may

3.\ 5
be rewritten as (a + Eb) — sz = B, hence x? — 5y% = 4B, where,
x=2a+ 3b,y = b2.

As it was indicated in § 2, there is an explicitly computable constant C > 0,
such that if (x, y) satisfies the above relations, then y < C, this yields explicit
bounds for b, x and therefore also for a.

This concludes the proof.

Remarks.

1) An effective bound for the size of solutions of Thue’s equation is
indicated, for example, in [Sh-Ti], page 99. It is far too large for any practical
purpose. It should however be noted that what is required is to determine the
solutions in integers x, y of the equations g(X, Y) = m (for every divisor m

of B), such that y is a square.

If n=5 and B = + 1, the calculations lead to = 1 = B = b* + 3ab?

"+ a2 and A = ab(2a + b?), hence ’

3 \2 Sh
a+>-p2| ——==+1,
2 4
SO
2a + 3b2)2 — Sh* = + 4

~ The solutions of X2 — 5Y? = + 4 are known to be x = L,,,y = F,, (for
‘the + sign), x = Ly, .1,y = Fy,,, (for the — sign), for every n > 0; here
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F,, L, (k > 0) are respectively the Fibonacci and the Lucas numbers. So b? is
a Fibonacci number. As it is well known, b?=1=F=F, or
b2 = 144 = F,,, and this leads eventually to the decompositions indicated by
Rabinowitz.

2) Let n>5 and E = {(A,B) e Z X Z| X" — BX — A has a factor of
degree 2 in Z[X]}; for each A,BeZ, let E/ ={BeZ|(A,B)eE}, E}
={AeZ|(A,B)eE}.

It is easy to see that E is an infinite set. Indeed, if a, b € Z, let

X"=qX?*-bX—-a)+BX + A, where

g € Z[X], then X? + bX + a divides X" — BX — A. Since each polynomial
X" — BX — A has at most finitely many factors of second degree, then the
set E is infinite.

The propositions proved in the paper state that each set E,, E; (for
n > 5)is finite, and also its members may be found effectively. However it
is not ruled out that E; or E be empty for values of A or B.

It is feasible to determine congruence conditions on A, resp. B which must
be satisfied if E; # O, respectively Ef # O.

Calculations made at my request by Y. Gérard, indicated that if » = 5
and Ef #+ & then B=0, £ 1 (mod 5). Gérard has also noted that if
B = + 1 (mod 5) and there exists a prime p dividing B and p = + 2 (mod 5)
then Ej = O.

For B = — 11, — 19, — 29, — 31, the following factorizations hold

X+ 1NX+12=X+1D)(X*?+2X+3)(X2-3X+4)
X2+ 19X 4+ 60 =(X2+2X+5) (X?—2X2- X+ 12)
X5+ 29X + 15 = (X2 + 3X + 5) (X? — 3X2 4+ 4X + 3)
X2+ 31X +56=(X2-4X+T) (X?+4X2+9X +8).
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