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ON THE FACTORIZATION OF Xn - BX - A

by P. Ribenboim

L Rabinowitz [Ra] proved that the only integers A, for which
Xs - X — A is a product of an irreducible quadratic and an irreducible cubic

polynomial with coefficients in Z, are A ± 15, ± 22440, and ± 2759640.

The factorizations are

X5 - X ± 15 (X2 ± X + 3) (X3 + X2 - 2X ± 5)

Xs - X ± 22440 (X2 + 12X + 55) (X3 ± 12X2 + 89X ± 408)

X5 - X ± 2759640 (X2 ± 12X + 377) (X3 + 12A2 - 233A ± 7320)

Similarly

X5 + X ± 1 (X2 ±X-h 1) (X3 + X2 ± 1)

X5 + X ± 6 (X2 ± X + 2) (X3 + X2 - X ±3)

are the only similar decompositions for polynomials Xs + X — A.
This rather interesting result requires, in last analysis, the fact that 1, 144

are the only non-zero Fibonacci numbers which are squares.
We shall extend this result for the polynomials Xn - BX - A, where A is

a given non-zero integer and n ^ 5, and also for the polynomials of the same

type, where B is a given non-zero integer, and n > 5.

The proof is elementary, except in one of the cases, where Thue's theorem
(see [Th]) is required. Due to Baker's work (see [Sh-Ti], page 99), an explicit
bound for the solutions of Thue's equation is now known, making our result
also effective.

I am grateful to J. Top for discussions about this paper.
The proof is elementary, except for the use of Thue's theorem and a

theorem of Pethö, Shorey & Stewart concerning the squares in recurring
sequences.

2. For the convenience of the reader, we recall all needed facts.
Thue's theorem [Th] states:

Let G e Z[X] be a polynomial with at least three distinct roots, let g(X, Y)
be the associated homogeneous polynomial.
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For every integer m, there exist at most finitely many pairs of integers (x,y)
such that g(x,y) m. Due to the work of Baker (see [Sh-Ti], page 99), an
explicit bound for the solutions x,y of Thue's equation is now known.

We shall encounter also the diophantine equation X2 - 5 Y4 4B. This
will lead to the study of X2 — 5Y2 4B and to the determination of its
solutions (x,y) such that y is a square.

The equation X2 - 5Y2 4B has been studied by Stolt [St] and we gather
here the results to be needed.

a + b ]/5
Let S I a a,beZ,a2- 5b2 4B v If S ± 0 then B* 0,

a + b ]/5
and if — e S then a b (mod 2). Also b 0 exactly when B is a

a + b]/5 a' + b]/5
square, and if e S, then a ± a'

2 2

We recall that the units of the number field Q(]/5) are ± co" (for n eZ),

l equal tc

3+1/5

1 T }/~5
where co ; since co has norm equal to - 1, then the units of norm 1

are ± (for ne Z) where C, co2

i
a

We say that a, a ' e S are equivalent when — ± (where ne Z). We
a'

a + b\/E
say that a » e S is fundamental when 0 ^ b and if a — a '

2

a' + b' I/5
then h ^ Thus each equivalence class contains one, and

2

at most four fundamental elements.

Now we show that there are only finitely many equivalence classes in S;

more explicitly, the number of equivalence classes is at most equal to ]/\B\.
a + b\/5

It suffices to show that if a is a fundamental element, then
2

ü + b]/~5 3 + j/5 1 (3a + 5b 3b + a r-\
b ^ |/| B I. Indeed 1 \ ]/5 1 and

2 2 2 \ 2 2 J

a + bV5 3-1/5 1 (3a -5b3 ba + b]/5 rH 1 ]/5 Since is funda-
2 2 2 \ 2 2

mental, then b ^
3b + a

b^
3b - a
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If 0 ^ ^ + ü
then - a < b hence 5b2 + 4B a2 ^ b2 so b2 ^ - B

2

I B I hence b < ]/| B |. If ^ +
^ 0 then 5b ^ - a and 25b2 ^ a2 5Z?2

i/« /-
2

+ 4B so b ^ I / — ^ ]/| B |. The other cases give the same bound for b.

Now, we consider the equivalence class of the fundamental element

ci + b ]/5
Define the integers xn, yn (for every ne Z) by the relation

2

+ yn l/5a + b]/5 /3 + ]/5\"
_ x„_ ^ —j

_~.-y.\ß ,hen
a - b1/5 /3 - ]/5\ "

2 I 2 j
And from what precedes, if a:2 — 5j>2 4_S there exists a fundamental

a + b|/5element — and neZ such that x ± ±

We may describe the sequences (x„)„ e z and (>„)„ 6 z by linear recurrences
of order 2.

Let t/0(3,1) 0, «7,(3,1) 1 and for 2, «7„(3,1) 3«7„_,(3,1)
- (7„_2(3,1), while for « < 0, t/„(3,1) - «7_„(3,1).

Similarly, let L0(3,l) 2, K,(3,1) 3, for ^ 2, F„(3,l) 3K„_,(3,1)
- Ln_2(3,1), while for n<0,F„(3,1) F_„(3,1).

With this notation, we verify by a simple induction, that

12x„ K„(3,l)a +
\2ynC/„ (3, \)a+ F„(3,l

We are interested in finding an effective bound for ^ 1 such that y„ is

a square.

But 17,(3,1 C"^ ^(3,1) C + C!

hence 2y„ ~ (Ç«_Ç-«) + ô(Ç" + C~")

C" -
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By the theorem of Pethö [Pe] and Shorey & Stewart [Sh-St] (see also

[Sh-Ti], theorem 9.6) there exists an effective constant C(a,b)> 0 such

that if (4= + £ I Kf - 14;-6 Ç 2 (twice a square), then n < C(a,&).
Ii 5 ; li 5 ;

Letting C max {C(a, &)
a + Z?]/5

is a fundamental element of S}, then if

r2 - 5y4 AB it follows that \y | is effectively bounded, since y yn 2D
a + bj/5

(for some fundamental element e S).

3. Here is our proposition:

Proposition. Let n ^ 5.

1) For every non-zero integer A, //zcrc cxFF effectively determined

integer ß > 0, such that if Xn - BX — A e Z[X] has a quadratic factor
in Z[X] which is monic, then | B | < ß.

2) For every non-zero integer F, there exists an effectively determined

integer a > 0, such that if Xn - BX - A e Z\X] has a quadratic factor
in Z[X] which is monic, then | A |< a.

Proof. Write

Xn - BX - A (X2-bX-a) (X"~2 + cn_3X"~3 + ••• +c{X+c0)
where a, b, c,- e Z.

Then

H ac0

B aci + bc0

0 - ac2 - bc{ + c0

0 - ac3 - bc2 + Cj

0 acn- 3 be n - 4 + cn — ^

0 — ß - bc„_3 + C„_4

0 — ~ Z? + C^ _ 3

From these relations, we obtain successively

Cn-3 &

cn-4 a + 00^-3 a + b2
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cn-5 acn-3 + bcn_4 lab + b3

cn-6 acn_4 + £c„_5 a2 + 3a&2 + b4

C ÖC3 + bc2,

c0 ac2 + be 1,

5 acx + bc0)

A ac0.

In order to determine explicitly c, in terms of a, b, consider the following
linear recurring sequence of polynomials:

F0(X) 1, Fx(X) 1, and for every / ^ 2, Ft(X) {(X) + XF^2(X).
' i '

By induction, it may be seen that Ft(X) has degree j
if i is even then

Moreover,

V ~ 1

1
x+ 1

and if i is odd then

Fxx)'[jy)x,+F)xi-+-+{jX)xi-
+ - + (y)Jr+1.

Note that F/(0) 1, /r(l) > 0 for every / ^ 0. Also, if r e Z and Fi(r) - 0
then r - 1.

Let fi(X, Y) YJFj j so MX, Y) is a homogeneous polynomial of

degree j. As easily seen,

MX Y)
Y) + Y) when ' is odd

1 Yfi-\(X, Y) + XfiMX, Y) when i is even
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Hence

cw_3 b bfx(a,b2)

cn-A a + b2 f2(a,b2)

c„_ 5 b(2a + b2) bMa,b2)
cn -6 a2 + 3ab2 + b4 fA(a,b2)

ac3 + bc2
J fn-3(a, &2) when n is odd

~ U/„

Co #c2 + Z?Ci

_3(a, Z?2) when « is even

bfn-2{a,b2) when n is odd

fn-i(a,b2) when « is even

A ac0

D_ f <*fn-z(fl,b2) + b2fn_2(a,b2) fn-A(a,b2) when n is odd
x5 — £7Cj + t?Co — <

[ abfn-3(a,b2) + bfn-2(a9b2) bfn-i(a,b2) when « is even

' abfn_2(a,b2) when n is odd

>afn-2(a,b2) when n is even

First let n be even. Given A, a belongs to the finite set of integers dividing
A ; thus b belongs to the finite set of integers which are solutions of any one

of the equations ff/„_2(tf, Y2) A. Therefore B, which is expressed in terms

of a, b, belongs to a finite set.

Given B, b belongs to the finite set of integers dividing B\ thus a belongs

to the finite set of integers which are solutions of any one of the equations

bfn-i(X,b2) B. Therefore A, which is expressed in terms of a, b, belongs

to a finite set.

Now, let n be odd. Given A, both a and b belong to the finite set of divisors

of A. Therefore B, which is expressible in terms of a, b, belongs to a finite
set too.

Finally, we treat the more interesting case, where n is odd, n ^ 5 and B

n - 1

is given. First let n ^ 7. Now i(X), has degree M ^ 3.
2

We consider the following cases.

1) i(X) has an irreducible factor in Z[X], of degree at least 3.

2) Fn-i(X) has at least two distinct irreducible factors in Z[X], each of
degree 2.

3) F„-i(X) has an irreducible factor of degree 2 and a linear factor in

Z[X],



FACTORIZATION 197

4) F„_1 {X) has at least three distinct linear factors in Z[X].
5) Fn_i(X) is a power of an irreducible polynomial of degree 2 in Z[X].
6) Fn_i(X) has exactly two distinct linear factors in Z[X].
7) Fn_!{X) is a power of a linear factor in Z[X].
In cases (1), (2), (3), (4), Fn_ x(X) has a factor G(X) e Z[X] with at least

three distinct roots. Let g(X, Y) be the homogeneous polynomial associated

to G(X).
Then a, b belong to the set / of integers such that g(a,b2) is a divisor of

B. By Thue's theorem (in its effective version), there is an effective bound for
the possible integers a, b, thus a, b belong to a finite set, and therefore A
belongs to finite set too.

n — 1

In case (5), Fn„x(X) (X2 + rX + s)k. Comparing degrees, m
2

2k and comparing the constant terms, 1 sk, hence s ± 1. Comparing

„ Im + 1\ (m + 1 )m mrthe coefficients of Xn~\ we have: \ kr, hence
m - 1/ 2 2

so r m + 1.

YYl —f— 2 \ Ik
Comparing the coefficients of Xm~2, we have: I ks + |

\m — 21 \2
rL

hence

(m + 2) (m + 1 )m{m - 1)
+

m
+

m(m ~ 2) (m + l)2

and this gives

respectively

24 2

m3 - m2 - 4m + 4 0

m3 - YYi2 - Am -8 0.

The first equation has only solutions m 1, m 2 in positive integers
— but this has been excluded.

The second equation has no solution in positive integers. Therefore, the
case (5) cannot happen.

In case (6), Fn_x(X) (X + + s)Ä with r,s eZ,r*s. Then
m k + h. Comparing the constant term, we have 1 rksh, so r, s - ±1,
and therefore say, r 1, s - 1.
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(m
+ 1 \

kr + hs, hence
m - 1/

m {m +1) (m + 1 )m
k - h. But k-h<k + h m< so this case is

2 2

impossible.

Finally, in case (7), Fn-X(X) (X + r)k, with re Z. Comparing degrees,

constant terms and coefficients of Xm~l, we have m k, 1 rk, so

(m + 1 )m
r ± 1, and I kr, so ± m ; this gives m 1, which

/m + 1\

\/77 — 1 /
is excluded.

It remains to treat the case n 5. Then F4(X) X2 + 3X + 1, so

f4(X, Y) X2 + 3XY + Y2. Given we consider the set E of all pairs of
integers {a, b) such that f4(a,b2) B, that is a2 + 3ab2 + b4 B; this may

be rewritten as I a + -b\ b2 B, hence x2 - 5y2 4B, where,
\ 2 4

x 2a + 3b, y - b2.

As it was indicated in §2, there is an explicitly computable constant C > 0,

such that if (x,y) satisfies the above relations, then y < C, this yields explicit
bounds for b, x and therefore also for a.

This concludes the proof.

Remarks.

1) An effective bound for the size of solutions of Thue's equation is

indicated, for example, in [Sh-Ti], page 99. It is far too large for any practical

purpose. It should however be noted that what is required is to determine the

solutions in integers x, y of the equations g(X, Y) - m (for every divisor m
of B), such that y is a square.

If n =* 5 and B ± 1, the calculations lead to ± 1 B b4 + 3ab2

+ a2 and A — ab(2a + b2), hence

so

(2a + 3 b2)2 -5b4 ±4

The solutions of X2 - 5Y2 ±4 are known to be x L2n,y F2n (for
the + sign), x L2n + X,y Fln + X (for the - sign), for every n > 0; here
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Fk, Lk(k ^ 0) are respectively the Fibonacci and the Lucas numbers. So b2 is

a Fibonacci number. As it is well known, b2 1 F\ F2 or

b2 144 Fn, and this leads eventually to the decompositions indicated by

Rabinowitz.

2) Let n ^ 5 and E {(A,B) e Z x Z | Xn - BX - A has a factor of
degree 2 in Z[X]}; for each A, Be Z, let {B e Z | (A, B) eE], Eg

{AeZ\{A,B)eE}.
It is easy to see that E is an infinite set. Indeed, if a, b e Z, let

X" q(X2 - bX - a) + BX + A where

q e Z[X], then X2 + bX + a divides Xn - BX - A. Since each polynomial
Xn - BX - A has at most finitely many factors of second degree, then the

set E is infinite.

The propositions proved in the paper state that each set E^, Eg (for
n ^ 5) is finite, and also its members may be found effectively. However it
is not ruled out that E^ or Eg be empty for values of A or B.

It is feasible to determine congruence conditions on A, resp. B which must
be satisfied if E^ ^ 0, respectively Eg 0.

Calculations made at my request by Y. Gérard, indicated that if n — 5

and Eg =£ 0 then B 0, ± 1 (mod 5). Gérard has also noted that if
B ± 1 (mod 5) and there exists a prime p dividing B and p ± 2 (mod 5)
then Eg 0.

For B -11, -19, -29, - 31, the following factorizations hold

A5 + lix + 12 (X + 1) (X2 + 2A + 3) (X2 - 3X + 4)

X5 + 19X + 60 (X2 + 2A + 5) (X3 - IX2 — X + 12)

X5 + 29X + 15 (X2 + 3X + 5) (X3 - 3X2 + 4X + 3)

A5 + 31A + 56 (X2 -4X+7) (X3 + 4X2 + 9X + 8)
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