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176 M. AUDIN

1.2. Sommes connexes de variétés presque complexes

Remarquons que, sauf en dimensions 2 et 6, il n'est pas possible de mettre
une structure presque complexe «somme connexe» sur la somme connexe de

deux variétés presque complexes.

Proposition 1.2.1. Si (VuJi) et (F2, J2) sont deux variétés presque
complexes de dimension ^ 2 ou 6, il n'existe aucune structure presque
complexe J sur W Vx # V2 qui induise une structure homotope à f
sur le complémentaire dans Vt du disque utilisé pour faire la chirurgie.

Démonstration. Sur le disque Dt utilisé pour faire la chirurgie dans F/,
le fibré tangent à F, est trivialisable. Supposons qu'une trivialisation en soit
fixée. Pour construire le fibré tangent à W Vx # F2, il suffit de recoller ces

trivialisations, le long du bord S2n~l par une application

Outre le fibré tangent à W, t permet de construire... le fibré tangent à la

sphère S2n comme on le voit sur la figure 1.

Prolonger des structures complexes f et J2 données sur Vx et V2 revient

à relever x en une application

ce qui n'est donc possible que quand la sphère S2n possède une structure

presque complexe, c'est-à-dire quand n 1 ou 3.

t S2n -1 — SO(2n)

Figure

t : S2n ~1 U(n)



VARIÉTÉS PRESQUE COMPLEXES 177

Remarque. Rappelons que, par intégralité du caractère de Chern de la

sphère S2n, celle-ci ne peut avoir de structure presque complexe que si sa

caractéristique d'Euler est divisible par (n - 1)! (voir par exemple [5]), donc

si n 1, 2 ou 3 mais dans le cas n 2 ça ne marche pas non plus à cause du

théorème de la signature comme on va le voir. Par ailleurs, chacun connaît

une structure presque complexe sur S2 et il n'est pas très difficile d'en

construire sur S6 (voir par exemple [4]).
La situation est encore plus grave en dimension 4 où il suffit que V\ et V2

possèdent une structure presque complexe pour que Vx # V2 n'en possède

aucune.

1.3. Structures presque complexes en dimension 4

Si W est une variété fermée orientée de dimension 4 et si / est une structure

presque complexe sur W alors le fibré tangent (TWy J) possède, comme
tout fibré vectoriel complexe de cette dimension, deux classes de Chern
Ci e H2(W\ Z) et c2 e H4(W;Z). Elles sont reliées à la signature o de (la
forme d'intersection de) W par la formule de Hirzebruch:

<<c\-2C2,[W]>3o

La classe de Chern de degré maximal c2 est la classe d'Euler de TW et ne
dépend pas de J. En appelant Qla forme quadratique sur Z) et x la
caractéristique d'Euler, on voit que c,(TW, J) doit vérifier

ÔCCi) 2x + 3g

Pour qu'une structure presque complexe J puisse exister sur W, il est donc
nécessaire que H2(W;Z) contienne une classe qui vérifie:

(j) | ÔM 2x + 3o

} p2(x) w2

(la réduction modulo 2 de la classe c, est la classe de Stiefel-Whitney w2).

Exemple. Pour que la somme connexe # P2(C) de n copies de P2(C)
possède une structure presque complexe, il faut que n soit impair.

Démonstration. Dans ce cas on a x n 2, o et dans la base

évidente de /f2(# P2(C); Z), la forme quadratique est diagonalisée en

Q a]+ • • • + a2n
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