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176 M. AUDIN

1.2. SOMMES CONNEXES DE VARIETES PRESQUE COMPLEXES

Remarquons que, sauf en dimensions 2 et 6, il n’est pas possible de mettre
une structure presque complexe «somme connexe» sur la somme connexe de
deux variétés presque complexes.

ProposITION 1.2.1. Si (Vi,J;) et (V,,J;) sont deux variétés presque
complexes de dimension + 2 ou 6, il n’existe aucune structure presque
complexe J sur W =V, # V, qui induise une structure homotope a J;
sur le complémentaire dans V; du disque utilisé pour faire la chirurgie.

Démonstration. Sur le disque D, utilisé pour faire la chirurgie dans V;
le fibré tangent a V; est trivialisable. Supposons qu’une trivialisation en soit
fixée. Pour construire le fibré tangent a W = V; # V>, il suffit de recoller ces
trivialisations, le long du bord S?7~! par une application

T =S8?""1-SOQ2n) .

FIGURE 1

Outre le fibré tangent a W, t permet de construire... le fibré tangent a la
sphére S2” comme on le voit sur la figure 1.

Prolonger des structures complexes J; et J, données sur V; et V, revient
a relever T en une application

T:8%7-1 > U(n)

ce qui n’est donc possible que quand la sphére S?” possede une structure
presque complexe, c’est-a-dire quand n = 1 ou 3. [
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Remarqgue. Rappelons que, par intégralité du caractére de Chern de la
sphére S27, celle-ci ne peut avoir de structure presque complexe que si sa
caractéristique d’Euler est divisible par (n — 1)! (voir par exemple [5]), donc
sinm = 1,2 ou 3 mais dans le cas n = 2 ¢a ne marche pas non plus a cause du
théoréme de la signature comme on va le voir. Par ailleurs, chacun connait
une structure presque complexe sur S? et il n’est pas tres difficile d’en
construire sur S¢ (voir par exemple [4]).

La situation est encore plus grave en dimension 4 ou il suffit que V; et V;
possédent une structure presque complexe pour que V; # V, n’en possede
aucune.

1.3. STRUCTURES PRESQUE COMPLEXES EN DIMENSION 4

Si W est une variété fermée orientée de dimension 4 et si J est une structure
presque complexe sur W alors le fibré tangent (7W,J) possede, comme
tout fibré vectoriel complexe de cette dimension, deux classes de Chern
c, € H*(W;Z) et ¢c; €e HY(W;Z). Elles sont reliées a la signature ¢ de (la
forme d’intersection de) W par la formule de Hirzebruch:

(c1 =26, [W]) = 30 .

La classe de Chern de degré maximal c¢, est la classe d’Euler de TW et ne
dépend pas de J. En appelant Q la forme quadratique sur H2(W;Z) et y la
caractéristique d’Euler, on voit que ¢, (TW, J) doit vérifier

O(cy) = 2y + 36 .

Pour qu’une structure presque complexe J puisse exister sur W, il est donc
nécessaire que H2(W;Z) contienne une classe x qui vérifie:

0 {Q(x) = 2y + 30
P2(x) = Wr
(Ia réduction modulo 2 de la classe ¢, est la classe de Stiefel-Whitney w,).

Exemple. Pour que la somme connexe # P2(C) de n copies de P2(C)
possede une structure presque complexe, il faut que n soit impair.

Démonstration. Dans ce cas on a X=n+ 2,6 =n et dans la base

evidente de H 2(;25 P2(C);Z), la forme quadratique est diagonalisée en

— 42 2
Q=aj+ + a,
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