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L'Enseignement Mathématique, t. 37 (1991), p. 175-190

EXEMPLES DE VARIÉTÉS PRESQUE COMPLEXES

par Michèle Audin1)

1. Introduction

1.1. Le problème

A l'origine de ce travail, j'ai essayé de comprendre pourquoi il était si

difficile de construire des exemples de variétés symplectiques compactes. En

général, on essaie de construire de nouveaux exemples en modifiant ceux qu'on
connaît déjà. L'idée la plus simple est de faire des chirurgies, en particulier
des sommes connexes... et l'essentiel de ces notes tourne autour du fait que

ce n'est pas possible (sauf dans le cas des surfaces)2).
Si une variété paracompacte Wpossède une 2-forme co non-dégénérée, alors

elle possède des structures presque complexes (et inversement): le groupe
structural admet alors une réduction au groupe Sp(2n) des isométries d'une
forme bilinéaire alternée non-dégénérée sur R2n, groupe dont U(n) est la

composante compacte.
Pour que W soit une variété symplectique, il faut en plus que la forme co

soit fermée. On sait, et on en aura confirmation dans cet article, que cette

condition impose des restrictions très sévères. Il n'est reste pas moins que
l'existence d'une structure presque complexe sur W est une condition nécessaire

à l'existence d'une forme symplectique. Nous allons donc montrer quelques
résultats sur les variétés presque complexes, qui pour être assez simples, sont

apparemment mal (ou pas?) connus.
En appendice, le lecteur trouvera une démonstration du fait qu'il n'y a pas

de somme connexe dans la catégorie symplectique, même dans les cas où il
n'y a pas de difficulté de nature presque complexe. Le résultat est dû à

Gromov [3], mais son article ne contient pas de démonstration détaillée.

1) Cet article est une extension des notes [1] d'un exposé fait au Séminaire de Géométrie
de l'Université de Montpellier en mars 1990. Outre Jacques Lafontaine et les participants de
ce séminaire, je remercie Dusa McDuff pour [6] et pour ses remarques récentes.

2) Dans le cas des variétés de contact, toutes les chirurgies sont possibles (voir [101
et [11]).
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1.2. Sommes connexes de variétés presque complexes

Remarquons que, sauf en dimensions 2 et 6, il n'est pas possible de mettre
une structure presque complexe «somme connexe» sur la somme connexe de

deux variétés presque complexes.

Proposition 1.2.1. Si (VuJi) et (F2, J2) sont deux variétés presque
complexes de dimension ^ 2 ou 6, il n'existe aucune structure presque
complexe J sur W Vx # V2 qui induise une structure homotope à f
sur le complémentaire dans Vt du disque utilisé pour faire la chirurgie.

Démonstration. Sur le disque Dt utilisé pour faire la chirurgie dans F/,
le fibré tangent à F, est trivialisable. Supposons qu'une trivialisation en soit
fixée. Pour construire le fibré tangent à W Vx # F2, il suffit de recoller ces

trivialisations, le long du bord S2n~l par une application

Outre le fibré tangent à W, t permet de construire... le fibré tangent à la

sphère S2n comme on le voit sur la figure 1.

Prolonger des structures complexes f et J2 données sur Vx et V2 revient

à relever x en une application

ce qui n'est donc possible que quand la sphère S2n possède une structure

presque complexe, c'est-à-dire quand n 1 ou 3.

t S2n -1 — SO(2n)

Figure

t : S2n ~1 U(n)



VARIÉTÉS PRESQUE COMPLEXES 177

Remarque. Rappelons que, par intégralité du caractère de Chern de la

sphère S2n, celle-ci ne peut avoir de structure presque complexe que si sa

caractéristique d'Euler est divisible par (n - 1)! (voir par exemple [5]), donc

si n 1, 2 ou 3 mais dans le cas n 2 ça ne marche pas non plus à cause du

théorème de la signature comme on va le voir. Par ailleurs, chacun connaît

une structure presque complexe sur S2 et il n'est pas très difficile d'en

construire sur S6 (voir par exemple [4]).
La situation est encore plus grave en dimension 4 où il suffit que V\ et V2

possèdent une structure presque complexe pour que Vx # V2 n'en possède

aucune.

1.3. Structures presque complexes en dimension 4

Si W est une variété fermée orientée de dimension 4 et si / est une structure

presque complexe sur W alors le fibré tangent (TWy J) possède, comme
tout fibré vectoriel complexe de cette dimension, deux classes de Chern
Ci e H2(W\ Z) et c2 e H4(W;Z). Elles sont reliées à la signature o de (la
forme d'intersection de) W par la formule de Hirzebruch:

<<c\-2C2,[W]>3o

La classe de Chern de degré maximal c2 est la classe d'Euler de TW et ne
dépend pas de J. En appelant Qla forme quadratique sur Z) et x la
caractéristique d'Euler, on voit que c,(TW, J) doit vérifier

ÔCCi) 2x + 3g

Pour qu'une structure presque complexe J puisse exister sur W, il est donc
nécessaire que H2(W;Z) contienne une classe qui vérifie:

(j) | ÔM 2x + 3o

} p2(x) w2

(la réduction modulo 2 de la classe c, est la classe de Stiefel-Whitney w2).

Exemple. Pour que la somme connexe # P2(C) de n copies de P2(C)
possède une structure presque complexe, il faut que n soit impair.

Démonstration. Dans ce cas on a x n 2, o et dans la base

évidente de /f2(# P2(C); Z), la forme quadratique est diagonalisée en

Q a]+ • • • + a2n
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On doit donc pouvoir trouver des entiers impairs (ax,...,an) tels que

n

(2) £ a] 2(n + 2) + 3n 5n + 4
i

En calculant modulo 8 on voit que n 5n + 4 mod 8 et donc que n doit être

impair.

Si on se rappelle, que grâce à Wu [12], w2 est caractéristique pour Q,

c'est-à-dire que

<w2 u p2(x), [W]) Q(x) mod 2

pour tout x de H2(W; Z), on montre de façon analogue:

Proposition 1.3.1. Si Vx et V2 sont deux variétés presque
complexes de dimension 4, la somme connexe Vx # V2 ne possède aucune

structure presque complexe.

Corollaire 1.3.2. Si W est une variété de dimension 4 qui
possède une structure presque complexe, alors W # P2(C) n'en possède

aucune.

n
Par exemple P2(C) # P2(C) # # P2(C) ne possède aucune structure

presque complexe, a fortiori aucune forme symplectique. En effet

p2(C) # # P2(C)

est le résultat de l'éclatement de n points de P2(C) et porte donc une structure
complexe.

Remarque. En dépit de la notation, P2(C) # P2(C) n'est bien sûr pas

une somme connexe de variétés presque complexes: il n'y a aucune structure

presque complexe sur P2(C) qui induise l'orientation opposée (c'est-à-dire
celle qui définit l'objet noté P2(C)).

Démonstration de la proposition. Soit x, la première classe de Chern de

(F,,//), de sorte que

Qi(xd 2%(Vi) + 3(5 (Vi)

Supposons que la somme connexe W possède une structure presque complexe.
Elle va ainsi acquérir une première classe de Chern
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y Ol ,yz) e H2(V\ ; Z) © H2(V2 ; Z) H2(W; Z)

qui vérifiera:

GO) Gi Oi) + G2O2)

2%(W) + 3 o(W)

2(x(V1) + X(V2) - 2) + 3(o(K0 + g(K2»

Mais 7 est caractéristique pour Q, sa réduction modulo 2 est la deuxième classe

de Stiefel-Whitney de W ce qui fait que yt a même réduction modulo 2

que Xi et est donc caractéristique... d'où on déduit, en calculant modulo 8:

2(x(Vi) + X(V2)-2) + 3(o(K!) + o(K2)) ß,(^) + Q2U2)

Qi(xi) +

- 2X(K,) + 3o(K,) + 2X(F2)

+ 3o(F2)

ce qui est absurde puisque 4 n'est pas divisible par 8.

Ce n'est pas vraiment un problème de somme connexe mais un problème
de chirurgie: si on ajoute une anse d'indice 0 sur une même composante d'une
variété W, on a un résultat tout à fait analogue.

Figure 2
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La variété «chirurgisée» W* a le même H2 que W et sa caractéristique
d'Euler est

%(W*) %(W) - 2

Si W est presque complexe, soit x sa première classe de Chern. On a

Q(x) 3o + 2%. Pour que W* possède une structure presque complexe

quelle qu'elle soit, il faut qu'on puisse trouver un y e H2(W;Z) avec

p20>) Pi(x) w2 et Q(y) 3o + 2% - 4 ce qui est interdit par le même

calcul modulo 8.

C'est encore un théorème de Wu [12] qui affirme que l'existence d'une
classe x vérifiant (1) est suffisante pour l'existence d'une structure presque
complexe J (dont x est alors la première classe de Chern, plus précisément la
classe d'homotopie de J est déterminée par cet x).

Exemple. Pour que la somme connexe # P2(C) de n copies de P2(C)

possède une structure presque complexe, il suffit que n soit impair.

Démonstration. Montrons en effet que l'équation (2) a toujours des

solutions. C'est évidemment le cas pour n 1 et bien sûr, si (a\,..., an) est

une solution

n

£ a]+ 1 + 9 5« + 4 + 10 5(n +2) + 4
i 1

et (ax,..., an, 1,3) est une solution (pour n + 2).

Remarque. Dès que n ^ 5, l'équation (2) a d'autres solutions que celles

obtenues par récurrence ci-dessus, par exemple (5,1,1,1,1) et celles qu'on en

déduit en ajoutant des (1,3).
n m —-

Exemple. On en déduit que #P2##P2 a une structure presque
complexe si et seulement si n est impair. Comme on a dit, ajouter un P2

peut se faire en éclatant un point, ce qui fait qu'on peut en ajouter autant
n

qu'on veut à # P2 (pour n impair) et obtenir une variété presque complexe.
n m —- 2p - 1 m

Au contraire si n 2p, alors # P2 # # P2 # P2 # # P2) # P2 est la

somme connexe de deux variétés possédant des structures presque complexes
et donc n'en possède pas.

Remarque. Il y a aussi des structures presque complexes sur
n m n

# P2 # # P2 qui ne correspondent pas à des éclatements de # P2.

L'équation analogue à (2) est
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(3) a\ + + a\ - b\ - • • • - b2m= 3(n-m) + 2(n-im + 2)

5n - m + 4

(toujours en entiers impairs) qui a bien sûr comme solutions les

(ClJ Qn 1
5

1

où (ai %***9an) est solution de (2), mais aussi par exemple pour n 1 et

ïyi ^2: (5,3,3,1,...,!) et pour n 3 et m ^ 1 : (3,3,3,3,1,..., 1).

2. Anses presque complexes

2.1. Anses classiques

Il est assez clair que le mal vient du fait que S4 ne possède pas de

structure presque complexe. Essayons donc de remplacer S4 par une variété

presque complexe pas trop compliquée. La chirurgie considérée ci-dessus peut
se décrire ainsi:

W* W - (S°X B4) ua CS1 X S3)

- W - 0S°xB4) Ua s4 - (S°xB4)

où le recollement se fait maintenant par un difféomorphisme des bords qui
renverse l'orientation.

2.2. Anses presque complexes

Cette description se prête à une généralisation: on y remplace S4 par une
variété fermée (c'est-à-dire compacte sans bord) et connexe V.

Figure 3
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On appelle V - (,S°xB4), W - (S°xB4) et W* IT ua^,
on suppose que V est simplement connexe pour simplifier. L'homologie de y
et celle de W se calculent facilement à l'aide des longues suites exactes. On

en déduit ensuite celle de W* par Mayer-Vietoris.
Pour ce qui est de la forme quadratique et de la signature, on trouve des

isomorphismes

H2(W) © H2(V) <- H2(W) © H2{T) -* H2(W*)

Pour ce qui est de la caractéristique d'Euler, que les deux disques soient

pris ou non dans la même composante de W, on trouve

%(W*) X(W) + %{V) ~ 4

Pour construire une structure presque complexe sur W*, il suffit donc de

trouver (x,y) e H2(W) © H2(V), caractéristiques et tels que

Qw(x) + Qv(y) 2(%(W) + %(V) — 4) + 3(a(W) + a(V))

Supposons que x soit le c1 d'une structure presque complexe sur W et

considérons Vet y comme des inconnues. Il faut donc que y soit caractéristique
et que

Qv(y) 2%(V) + 3g(V) - 8

En particulier, alors que y n'est certainement la première classe de Chern
d'aucune structure presque complexe sur F, il est remarquable qu'il n'y a plus
aucune obstruction modulo 8 à l'existence d'un tel y... dès lors que Vpossède
une structure presque complexe.

La «plus petite» solution possible est certainement V P2(C) et y un
générateur de H2(V\ Z) (rappelons que le cx de n'importe quelle structure

presque complexe sur P2(C) est 3 fois le générateur). On voit ainsi P2(C)

jouer encore une fois le rôle de la sphère quand celle-ci refuse sa coopération,
ici dans le cadre presque complexe.

Remarque. Il y a bien d'autres solutions possibles ne serait-ce que parce
qu'il suffit d'éclater des points dans une solution pour en construire d'autres.

La structure presque complexe ainsi obtenue sur la variété «chirurgisée»
W* se restreint en une structure presque complexe homotope à la structure
donnée sur le complémentaire des disques utilisés dans W, par contre, répétons

que sa restriction à l'«anse» n'est la restriction d'aucune structure presque
complexe sur P2(C).
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Appelons arise presque complexe la donnée de la variété à bord

T= P2(C) - S0 x B4

et de la classe y, générateur de H2( ; Z) H2(P2(C);Z).
Remarquons que dans le cas d'une variété ouverte ou à bord comme notre

anse presque complexe, il est facile de vérifier que pour qu'une classe

y e H2('/ ;Z) soit la première classe de Chern d'une structure presque
complexe, il faut et il suffit que p2y w2.

Remarque. Les solutions de (2) dont nous avons indiqué la construction

par récurrence pour n impair entrent précisément dans ce cadre: on commence

par connecter deux copies de P2(C) qu'on connecte par une anse presque

complexe, la variété obtenue est # P2, avec la structure presque complexe
déterminée par les entiers (3,1,3) (fig. 4). On connecte encore une copie de

P2 par une anse presque complexe, obtenant ainsi # P2 avec (3,1,3,1,3)
et ainsi de suite.

La construction de W* est une manipulation topologique un peu violente,
à laquelle il n'est pas étonnant que les structures complexes (intégrables)
résistent, de même que les structures symplectiques :

Proposition 2.2.1. Il n'existe aucune structure complexe (resp. forme
symplectique) sur l'anse presque complexe qui se recolle à chaque extrémité
à la structure standard de C2.
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Figure 5

Démonstration. Sinon, on pourrait recoller cette anse à la structure
standard de P2(C) (fig. 5). La variété W* obtenue contiendrait alors une
courbe rationnelle (un P1 standard de P2) à auto-intersection positive, ce qui
est exclu dans les deux cas: W* serait minimale (la forme d'intersection est

positive) mais n'est ni P2 ni un fibré en P1 comme on le vérifie aisément par
un calcul de caractéristique d'Euler, ce qui contredit [2,V.4.3] dans le cas

complexe3) et [8] dans le cas symplectique.

Remarque. En fait, c'est une conséquence simple de l'inégalité de
2

3

Miyaoka cl < 3c2 (voir par exemple [2]) que # P2 et plus généralement
n

# P2 pour n > 1 ne possède aucune structure complexe intégrable. En effet

# P2 serait nécessairement une surface de type général (voir la classification

d'Enriques-Kodaira par exemple dans [2]) avec c\ 5n + 4 et c2 n + 2

d'où

3) Pour ne pas allonger démesurément la bibliographie, j'ai renvoyé au livre [2] pour
tous les résultats sur les surfaces complexes. On y trouvera les références aux travaux
originaux.
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c\ - 3c2 5n + 4 - 3(n + 2) 2n - 2 ^ 0

ce qui n'est possible que pour n 1.

Plus généralement, on peut construire par cette «chirurgie» de nombreuses

variétés presque complexes sans structure complexe puisque l'opération
augmente c\ de 1 et diminue 3c2 de 2.

2.3. Anses d'indice 1

On peut jouer au même jeu avec des chirurgies d'indice supérieur. On

trouve toujours une impossibilité à la chirurgie ordinaire, mais une possibilité
d'ajouter une anse presque complexe. A titre d'exemple simple, détaillons ici
le cas des anses d'indice 1.

On choisit un plongement à fibré normal trivial de S1 dans W (resp. V).
On écrit comme plus haut 'W =s W - S1 x B3, et y V - S1 x B3 (V est

la variété inconnue, que l'on suppose simplement connexe). Les mêmes

méthodes que ci-dessus fonctionnent pour donner

0 -> Z - H27^-+ H2V-> 0

(H2 y^ est somme de H2 V et du facteur Z engendré par une sphère * x S2

d(*xB3) fibre du fibré en sphères normal à S1)- Supposons W
simplement connexe, on a de même

0 Z -+ H2'// ^ H2W^0
et Mayer-Vietoris donne

0 Z -> if2 H2 H2 W* Z 0

(les deux sphères sont les mêmes dans W*).
Ainsi b2(W*) b2(W) + b2{V) + 2, a(W*) o(W) + a(V): on a

rajouté un facteur hyperbolique comme on s'en convainc agréablement en
imaginant que W V S4 et donc que W* S2 x S2; de plus %(W*)

1{W) + x(V)>
Si x est la première classe de Chern de W, l'équation à résoudre est

(4) Qw{x) + Qv(y) + 2uv 2(%(W) + %(V)) + 3(o(L) + g(W))
où x et y sont caractéristiques et u et v sont pairs.

Cette fois on peut prendre pour V n'importe quelle variété presque
complexe (avec y le cx d'une structure presque complexe) avec u ou u nul; on
peut aussi choisir u d 2 (ce qui correspond à la structure complexe usuelle
dans le cas de S2 x S2)... et V et y comme ci-dessus (2uv 8).
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Appelons anse presque complexe d'indice 1 le choix de y obtenu à partir
de V P2(C) avec la structure complexe usuelle (alors uu 0). On a comme
plus haut:

Proposition 2.3.1. Il n'existe aucune structure complexe intégrable
(resp. symplectique) sur l'anse presque complexe d'indice 1 qui se recolle à la
structure usuelle de C2 - S1 x B2 (où S1 x B3 est un voisinage tubulaire
d'un petit cercle standard de C2).

Démonstration. Supposons qu'une telle structure existe. En plongeant
C2 dans P2(C) on construit une variété complexe (resp. symplectique)

compacte dont la forme d'intersection s'écrit a2 + 2bc + d2 et qui contient

une courbe rationnelle plongée (une droite projective de l'exemplaire de

P2(C) obtenu en complétant le C2 standard) d'auto-intersection + 1. La
forme 2bc + d2 est équivalente (sur Z) à - x2 + y2 + z2 ce qui fait qu'un
modèle minimal de notre surface complexe (variété symplectique) va être une

surface avec forme d'intersection a2 + y2 + z2 et une courbe rationnelle à

auto-intersection + 1 (nous n'avons pas modifié le a2). Ceci est interdit

comme plus haut.

Figure 6
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Remarque. La proposition reste vraie si on remplace le P2(C) ayant

permis de construire l'anse y par une variété presque complexe V dont la

forme d'intersection est définie positive et de type I (c'est-à-dire prend des

valeurs paires et impaires). La démonstration est identique: la forme
2bc + Qv{d) prend la valeur - 1 (si d est tel que Qv(d) - 2m - 1, on prend
b s= 1 et c — - m), elle est donc équivalente (sur Z) à -x2 + Q(y) où Q est

une forme quadratique entière de rang b2(V) + 1 et de signature o(F) + 1

donc définie positive. Un modèle minimal de notre variété aura une courbe

rationelle à auto-intersection positive et une forme d'intersection a2 + Q(y)
ce qui n'est pas possible pour les mêmes raisons.

3. Appendice: Sommes connexes de variétés symplectiques

3.1. Structure sur les tubes

Naïvement, on pourrait espérer construire une forme symplectique «somme
connexe» en faisant la chirurgie sur des disques contenus dans des ouverts de

Darboux et en construisant une forme symplectique sur le tube S2n ~1 X / qui
se recolle de chaque côté avec la structure standard de R2/î - Disque. Les

remarques précédentes impliquent qu'une telle forme n'existe certainement pas
en dimension ^ 2 ou 6. Les arguments utilisés sont assez grossiers (structure
presque complexe au lieu de forme symplectique) et, en réponse à ma question
sur la dimension 6, Dusa McDuff [6] m'a fourni un argument plus fin, basé

sur les techniques de Gromov [3], que je vais décrire maintenant et qui montre
qu'une telle forme n'existe sur aucun tube S2"-1 x / (pour 2).

3.2. Le contre-exemple

Il suffit donc d'exhiber deux variétés symplectiques de dimension 6,
(Kj,co!) et (V2,cd2) telles que sur W= Vx # V2, aucune forme symplectique
co ne puisse avoir, en restriction à V1} une propriété que possède ©j.

Proposition 3.2.1. [3,2.4.£3], [6.9] Sur W P"(C) # T2n, il
n'existe aucune forme symplectique co qui admette P^-^C) comme sous-
variété symplectique.

Remarque. D'après 1.2 et [9], P3(C) # possède des structures
presque complexes.
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Démonstration. On va utiliser le fait que l'une des variétés est P"(C)
parce qu'on connaît beaucoup de courbes holomorphes et leurs propriétés dans

celle-ci; c'est seulement à la fin de l'argument qu'on utilisera vraiment que
l'autre variété est un tore. Supposons donc que co soit une forme symplectique

sur W telle qu'un hyperplan P"_1(C) (non touché par la chirurgie) en soit

une sous-variété symplectique. Soit J0 une structure presque complexe

adaptée à co et qui soit la structure standard au voisinage de ce P"-1(Q- Soit

A e H2(W;Z) la classe d'homologie d'une droite PJ(Q C P"-1(C) C W.

Remarquons d'abord que cette classe est simple: elle engendre l'image de

tï2(W) et ne peut donc s'écrire comme somme de classes représentées par des

courbes holomorphes (pour aucune structure presque complexe adaptée à co).

Ainsi, d'après Gromov, l'espace MP{J,A)/G des courbes /-holomorphes
(non paramétrées) de la classe A est une variété compacte pour J générique.

On va considérer les courbes de la classe A qui passent par deux points fixés

en utilisant l'application d'évaluation

ej:Mp(J,A) x G (S2 x S2) W x W

(où le groupe G - PSL2{C) opère par changement de paramétrage). Si J est

générique, on a affaire à deux variétés compactes de dimension An. En effet

dimMP(J,A)/G 2c(A) + 2n - 6 - 2{n + 1) + 2n - 6 An - A

grâce au théorème de l'indice (où c(A) (c{(W, J),A) <c1(PAÎ(C)),^4>

n + 1 et 6 dim G), et donc dimMp(J,A) xG(S2xS2) An.

On montre maintenant que ej est de degré 1. Ce degré ne dépend pas du

choix de J générique. Considérons un point (x0,y0) e P77-1^) x P77-1^).
On sait qu'il y a une unique courbe C0 de la classe A et /0-holomorphe qui

passe par ces deux points: c'est vrai dans P77-1^) et on a le

Lemme 3.2.2. Si une courbe rationnelle JQ-holomorphe de la classe A

passe par deux points de P77-1^) elle est contenue dans P77-1^).

Démonstration du lemme. En effet, /0 est intégrable au voisinage de

P77-1^) et on a des intersections > 0, de plus l'intersection homologique de

A et P77-1^) vaut + 1, donc une courbe de la classe A non contenue dans

P77-1^) le rencontre en exactement un point.

Soit,maintenant Jn une suite de structures presque complexes génériques4)

avec lim/n J0 et (xn,yn) une suite tendant vers (x0,y0) et telle que (xn,yn)

4) Il n'y a aucune raison pour que Jq soit générique, il n'y a qu'au voisinage de Co qu'on
peut en dire quelque chose (voir 3.2.3).



VARIÉTÉS PRESQUE COMPLEXES 189

soit une valeur régulière de eJn. Pour n assez grand, il y a une et une seule

courbe C„, /„-holomorphe, passant par xn et yn et proche de C0 (voir le

lemme 3.2.3). Supposons degeJn 1. On peut alors trouver, pour chaque n,

une courbe C'„, /„-holomorphe, passant par xn et yn et qui ne peut être

proche de C0. Le théorème de compacité permet d'en déduire une courbe

/0-holomorphe C'0 C0 passant par x0 et yQ, ce qui est absurde.

Donc degcj 1 pour tout / générique.

Pour l'instant, on a surtout utilisé qu'un des morceaux était un PW(C), il
faut maintenant utiliser que l'autre est T2n. En composant ej avec le carré

d'une application de degré 1 de W dans T2n, on obtient une application de

degré 1

X Mp(JyA) xg(S2xS2) T2n x T2n

donc H4n(X; Z) serait engendré par un produit d'éléments de Hl(X; Z).
Comme X est un S2 x S2-fibré sur une variété de dimension 4n - 4, tout son
H1 provient de celle-ci et tous les produits sont déjà nuls en dimension
4n - 3. C'est donc absurde.

La démonstration est terminée, modulo l'existence de C„ proche de C0.

Avec les notations de [7, par. 2], c'est une conséquence du

Lemme 3.2.3. Soit f0:J*l(C)-+ W le plongement (linéaire) d'image
Co. Alors (/o,C0) est un point régulier de l'opérateur Fredholm PA.

Démonstration (voir. [3, 2.1.Ci]). Soit E1 f*TW, c'est aussi f$TY*n(C)
avec sa structure complexe naturelle (puisque /0 est la structure complexe
usuelle au voisinage de C0). On sait que dPA s'identifie à

Comme Q(Q°'°(P1, TP1)) C Q°'l(Pl, 7T1), grâce au lemme du serpent dans

0 Q°'°(P1, TT!) ^ Q°'°(E) Q°'°(v) 0

0 TP1) ^ Q0 l(E) ^ Qo,i(v) 0

I
0

où v E/7T1, on voit que

Coker dPA Coker (9 : Q0'°(P1, v) ->• Q0'^?1, v))
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Comme il s'agit d'une courbe,

0 0(v) - Q°'°(P1,v) ^ QO'KPVv) 0

est une résolution (flasque) du faisceau â(y) des sections holomorphes de v et

CokerÔ Hl(Vl,v)

Maintenant, on sait que

v (n- 1)^(1)

et

hl(Pl,v) h°(Fl,v*(g)K) P1, l)(x)#(-2))
(n-1)/î°(P1, ^(-3)) 0
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