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EXEMPLES DE VARIETES PRESQUE COMPLEXES

par Michéle AUDIN')

1. INTRODUCTION

1.1. LE PROBLEME

A D’origine de ce travail, j’ai essayé de comprendre pourquoi il était si
difficile de construire des exemples de variétés symplectiques compactes. En
général, on essaie de construire de nouveaux exemples en modifiant ceux qu’on
connait déja. L’idée la plus simple est de faire des chirurgies, en particulier
des sommes connexes... et I’essentiel de ces notes tourne autour du fait que
ce n’est pas possible (sauf dans le cas des surfaces)?).

Si une variété paracompacte W posséde une 2-forme o non-dégénérée, alors
elle posséde des structures presque complexes (et inversement): le groupe
structural admet alors une réduction au groupe Sp(2n) des isométries d’une
forme bilinéaire alternée non-dégénérée sur R??, groupe dont U(n) est la
composante compacte.

Pour que W soit une variété symplectique, il faut en plus que la forme ®
soit fermée. On sait, et on en aura confirmation dans cet article, que cette
condition impose des restrictions tres séveres. Il n’est reste pas moins que
I’existence d’une structure presque complexe sur W est une condition nécessaire
a D'existence d’une forme symplectique. Nous allons donc montrer quelques
résultats sur les variétés presque complexes, qui pour étre assez simples, sont
apparemment mal (ou pas?) connus.

En appendice, le lecteur trouvera une démonstration du fait qu’il n’y a pas
de somme connexe dans la catégorie symplectique, méme dans les cas ou il
n’y a pas de difficulté de nature presque complexe. Le résultat est di a
Gromov [3], mais son article ne contient pas de démonstration détaillée.

h (;et article est une extension des notes [1] d’un exposé fait au Séminaire de Géométrie
del ,Ur§1ve_rs1té. de Montpelher en mars 1990. Outre Jacques Lafontaine et les participants de
ce seminaire, je remercie Dusa McDuff pour [6] et pour ses remarques récentes.

[12) Dans le cas des variétés de contact, toutes les chirurgies sont possibles (voir [10]
et [11]).
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1.2. SOMMES CONNEXES DE VARIETES PRESQUE COMPLEXES

Remarquons que, sauf en dimensions 2 et 6, il n’est pas possible de mettre
une structure presque complexe «somme connexe» sur la somme connexe de
deux variétés presque complexes.

ProposITION 1.2.1. Si (Vi,J;) et (V,,J;) sont deux variétés presque
complexes de dimension + 2 ou 6, il n’existe aucune structure presque
complexe J sur W =V, # V, qui induise une structure homotope a J;
sur le complémentaire dans V; du disque utilisé pour faire la chirurgie.

Démonstration. Sur le disque D, utilisé pour faire la chirurgie dans V;
le fibré tangent a V; est trivialisable. Supposons qu’une trivialisation en soit
fixée. Pour construire le fibré tangent a W = V; # V>, il suffit de recoller ces
trivialisations, le long du bord S?7~! par une application

T =S8?""1-SOQ2n) .

FIGURE 1

Outre le fibré tangent a W, t permet de construire... le fibré tangent a la
sphére S2” comme on le voit sur la figure 1.

Prolonger des structures complexes J; et J, données sur V; et V, revient
a relever T en une application

T:8%7-1 > U(n)

ce qui n’est donc possible que quand la sphére S?” possede une structure
presque complexe, c’est-a-dire quand n = 1 ou 3. [
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Remarqgue. Rappelons que, par intégralité du caractére de Chern de la
sphére S27, celle-ci ne peut avoir de structure presque complexe que si sa
caractéristique d’Euler est divisible par (n — 1)! (voir par exemple [5]), donc
sinm = 1,2 ou 3 mais dans le cas n = 2 ¢a ne marche pas non plus a cause du
théoréme de la signature comme on va le voir. Par ailleurs, chacun connait
une structure presque complexe sur S? et il n’est pas tres difficile d’en
construire sur S¢ (voir par exemple [4]).

La situation est encore plus grave en dimension 4 ou il suffit que V; et V;
possédent une structure presque complexe pour que V; # V, n’en possede
aucune.

1.3. STRUCTURES PRESQUE COMPLEXES EN DIMENSION 4

Si W est une variété fermée orientée de dimension 4 et si J est une structure
presque complexe sur W alors le fibré tangent (7W,J) possede, comme
tout fibré vectoriel complexe de cette dimension, deux classes de Chern
c, € H*(W;Z) et ¢c; €e HY(W;Z). Elles sont reliées a la signature ¢ de (la
forme d’intersection de) W par la formule de Hirzebruch:

(c1 =26, [W]) = 30 .

La classe de Chern de degré maximal c¢, est la classe d’Euler de TW et ne
dépend pas de J. En appelant Q la forme quadratique sur H2(W;Z) et y la
caractéristique d’Euler, on voit que ¢, (TW, J) doit vérifier

O(cy) = 2y + 36 .

Pour qu’une structure presque complexe J puisse exister sur W, il est donc
nécessaire que H2(W;Z) contienne une classe x qui vérifie:

0 {Q(x) = 2y + 30
P2(x) = Wr
(Ia réduction modulo 2 de la classe ¢, est la classe de Stiefel-Whitney w,).

Exemple. Pour que la somme connexe # P2(C) de n copies de P2(C)
possede une structure presque complexe, il faut que n soit impair.

Démonstration. Dans ce cas on a X=n+ 2,6 =n et dans la base

evidente de H 2(;25 P2(C);Z), la forme quadratique est diagonalisée en

— 42 2
Q=aj+ + a,
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On doit donc pouvoir trouver des entiers impairs (a,, ..., a,) tels que

Q) Y ad=2n+2)+3n=5n+4.

i=1

En calculant modulo 8 on voit que » = 57 + 4 mod 8 et donc que » doit étre
impair. [ |

Si on se rappelle, que griace a Wu [12], w, est caractéristique pour O,
c’est-a-dire que
(wy U pa(x), [W]) = Q(x) mod 2

pour tout x de H2(W;Z), on montre de facon analogue:

PrRoOPOSITION 1.3.1. Si V, et V, sont deux variétés presque
complexes de dimension 4, la somme connexe V| # V, ne posséde aucune
structure presque complexe.

COROLLAIRE 1.3.2. Si W est une variété de dimension 4 qui
posséde une structure presque complexe, alors W # P2(C) n’en posséde
aucune. [

Par exemple P2?(C) # P2(C) # # P2(C) ne posséde aucune structure
presque complexe, a fortiori aucune forme symplectique. En effet

P2(C) # # P2(C)

est le résultat de I’éclatement de n points de P?(C) et porte donc une structure
complexe.

Remarque. En dépit de la notation, P2(C) # FZ(—CS n’est bien slr pas
une somme connexe de variétés presque complexes: il n’y a aucune structure
presque complexe sur P2?(C) qui induise ’orientation opposée (c’est-a-dire
celle qui définit I’objet noté P2(C)).

Démonstration de la proposition. Soit x; la premiére classe de Chern de
(V:,J;), de sorte que

Qi(xi) = 2¢(V) + 30(V)

Supposons que la somme connexe W possede une structure presque complexe. ~
Elle va ainsi acquérir une premiere classe de Chern
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¥y =,y e H*(Vi;Z) @ HX(Vy;Z) = H (W3 Z)
qui vérifiera:
Q) = Qi) + Qa(32)
= 2%(W) + 36 (W)
=200 (V) +x(V2) = 2) + 3(c (V) + 6(V2))
Mais y est caractéristique pour Q, sa réduction modulo 2 est la deuxieme classe

de Stiefel-Whitney de W ce qui fait que y; a méme réduction modulo 2
que x; et est donc caractéristique... d’ou on déduit, en calculant modulo 8:

200(V) + x (V) —=2) + 3(c(V) +0(12)) = OQ:1()01) + Oa()2)
= 01(x1) + Oz(x2)
= 2x(V1) + 3o (V1) + 2x(V2)
+ 30(V2)

ce qui est absurde puisque 4 n’est pas divisible par 8. [

Ce n’est pas vraiment un probléme de somme connexe mais un probléme
de chirurgie: si on ajoute une anse d’indice 0 sur une méme composante d’une
variété W, on a un résultat tout a fait analogue.

W /
W*

FIGURE 2
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La variété «chirurgisée» W* a le méme H? que W et sa caractéristique
d’Euler est

X(W*) =x(W) — 2.

Si W est presque complexe, soit x sa premicre classe de Chern. On a
O(x) = 306 + 2%. Pour que W* posséde une structure presque complexe
quelle qu’elle soit, il faut qu’on puisse trouver un y € H*(W;Z) avec
P2(¥) = p2(x) = w, et O(¥) = 36 + 2y — 4 ce qui est interdit par le méme
calcul modulo 8. [

C’est encore un théoreme de Wu [12] qui affirme que I’existence d’une
classe x vérifiant (1) est suffisante pour 1’existence d’une structure presque
complexe J (dont x est alors la premiere classe de Chern, plus précisément la
classe d’homotopie de J est déterminée par cet x).

Exemple. Pour que la somme connexe # P2(C) de n copies de P?(C)
posséde une structure presque complexe, il suffit que » soit impair.

Démonstration. Montrons en effet que 1’équation (2) a toujours des
solutions. C’est évidemment le cas pour » = 1(!) et bien sfir, si (a,...,a,) est
une solution

Y a?+1+9=5n+4+10=5n+2) +4

i=1

et (a,...,an,1,3) est une solution (pour n+2). [

Remarque. Deés que n > 5, I’équation (2) a d’autres solutions que celles
obtenues par récurrence ci-dessus, par exemple (5,1,1,1, 1) et celles qu’on en
déduit en ajoutant des (1, 3).

. n m — '
Exemple. On en déduit que # P?# # P2? a une structure presque
complexe si et seulement si # est impair. Comme on a dit, ajouter un P2
peut se faire en éclatant un point, ce qui fait qu’on peut en ajouter autant

n . . . 4
qu’on veut a # P? (pour n impair) et obtenir une variété presque complexe.

. . n — 20— 1 -
Au contraire si n = 2p, alors # P2 # # P2 = (p# P2# # P2) # P? est la
somme connexe de deux variétés possédant des structures presque complexes
et donc n’en posséde pas. [

Remarque. 11 y a aussi des structures presque complexes sur

# P2 # # P2 qui ne correspondent pas a des éclatements de # P2,
L’équation analogue a (2) est

-
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(3) a%+...+a’27_b%_..._b2m:3(n—m)+2(n+m+2)
=5n—-—m+ 4

(toujours en entiers impairs) qui a bien siir comme solutions les
(al, ceeylpy 1, ceey 1)

ou (a,...,a,) est solution de (2), mais aussi par exemple pour n =1 et
m>=2:(,3,3,1,...,)etpour n =3 etm>1:(3,3,3,3,1,...,1).

2. ANSES PRESQUE COMPLEXES

2.1. ANSES CLASSIQUES

Il est assez clair que le mal vient du fait que S* ne posséde pas de
structure presque complexe. Essayons donc de remplacer S* par une variété
presque complexe pas trop compliquée. La chirurgie considérée ci-dessus peut
se décrire ainsi:

W* = W — (S°%X B%) us (B! X S?)
=W — (S°%X B%) UsS* = (S° X B?)

ou le recollement se fait maintenant par un difféomorphisme des bords qui
renverse 1’orientation.

2.2. ANSES PRESQUE COMPLEXES

Cette description se préte a une généralisation: on y remplace S* par une
variété fermée (c’est-a-dire compacte sans bord) et connexe V.

FIGURE 3
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On appelle 7=V — (S°%xB*), #'= W — (S°XB*) et W* = W Uy 7,
on suppose que V est simplement connexe pour simplifier. L’homologie de 7~
et celle de 77 se calculent facilement a ’aide des longues suites exactes. On
en déduit ensuite celle de W* par Mayer-Vietoris.

Pour ce qui est de la forme quadratique et de la signature, on trouve des
isomorphismes

Hy(W) @ Hy(V) « Hy (V) @ Ho(77) = Hy (W) .

Pour ce qui est de la caractéristique d’Euler, que les deux disques soient
pris ou non dans la méme composante de W, on trouve

X(W*) = x(W) + x(V) — 4.

Pour construire une structure presque complexe sur W*, il suffit donc de
trouver (x,y) € H,(W) @ H,(V), caractéristiques et tels que

Ow(x) + Ov(¥) = 2(x(W)+x(V)—4) + 3(c (W) + o (V)) .

Supposons que x soit le ¢; d’une structure presque complexe sur W et
considérons V et y comme des inconnues. Il faut donc que y soit caractéristique
et que

Ov(y) = 2x(V) + 36(V) — 8.

En particulier, alors que y n’est certainement la premiére classe de Chern
d’aucune structure presque complexe sur V, il est remarquable qu’il n’y a plus
aucune obstruction modulo 8 a I’existence d’un tel y... dés lors que V posséde
une structure presque complexe.

La «plus petite» solution possible est certainement V = P2(C) et y un
générateur de H?(V;Z) (rappelons que le ¢; de n’importe quelle structure
presque complexe sur P2?(C) est 3 fois le générateur). On voit ainsi P2(C)
jouer encore une fois le role de la sphere quand celle-ci refuse sa coopération,
ici dans le cadre presque complexe.

Remarque. 11y a bien d’autres solutions possibles ne serait-ce que parce
qu’il suffit d’éclater des points dans une solution pour en construire d’autres.

La structure presque complexe ainsi obtenue sur la variété «chirurgisée»
W* se restreint en une structure presque complexe homotope a la structure
donnée sur le complémentaire des disques utilisés dans W, par contre, répétons
que sa restriction a ’«anse» n’est la restriction d’aucune structure presque
complexe sur P2(C).




VARIETES PRESQUE COMPLEXES 183

Appelons anse presque complexe la donnée de la variété a bord

7 = P%(C) — 89 x B*

et de la classe y, générateur de H2(7;Z) = H*(P%(C);Z).

Remarquons que dans le cas d’une variété ouverte ou a bord comme notre
anse presque complexe, il est facile de vérifier que pour qu’une classe
vy e H?(7/ ;Z) soit la premiére classe de Chern d’une structure presque
complexe, il faut et il suffit que p,y = w,.

Remarque. Les solutions de (2) dont nous avons indiqué la construction
par récurrence pour z impair entrent précisément dans ce cadre: on commence
par connecter deux copies de P?(C) qu’on connecte par une anse presque

3
complexe, la variété obtenue est # P2, avec la structure presque complexe
déterminée par les entiers (3,1, 3) (fig. 4). On connecte encore une copie de

P? par une anse presque complexe, obtenant ainsi ;26 P2 avec (3,1,3,1,3)
et ainsi de suite.

La construction de W* est une manipulation topologique un peu violente,
a laquelle il n’est pas étonnant que les structures complexes (intégrables)
résistent, de méme que les structures symplectiques:

PROPOSITION 2.2.1. Il n’existe aucune structure complexe (resp. forme

symplectique) sur I’anse presque complexe qui se recolle a chaque extrémité
a la structure standard de C?2.

FIGURE 4
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v

FIGURE 5

Démonstration. Sinon, on pourrait recoller cette anse a la structure
standard de P2?(C) (fig. 5). La variété W* obtenue contiendrait alors une
courbe rationnelle (un P! standard de P?) & auto-intersection positive, ce qui
est exclu dans les deux cas: W* serait minimale (la forme d’intersection est
positive) mais n’est ni P2 ni un fibré en P! comme on le vérifie aisément par
un calcul de caracteéristique d’Euler, ce qui contredit [2,V.4.3] dans le cas
complexe?3) et [8] dans le cas symplectique. [

Remarque. En fait, c’est une conséquence simple de 1’inégalité de

3
Miyaoka cf < 3¢, (voir par exemple [2]) que # P? et plus généralement
# P2 pdur n > 1 ne posseéde aucune structure complexe intégrable. En effet

# P2 serait nécessairement une surface de type général (voir la classification
d’Enriques-Kodaira par exemple dans [2]) avec cf =5Sn+4etc,=n+2
d’ou

3) Pour ne pas allonger démesurément la bibliographie, j’ai renvoyé au livre [2] pour
tous les résultats sur les surfaces complexes. On y trouvera les références aux travaux
originaux.

Ot sl
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c—3c,=5n+4-3n+2)=2n-2<0

ce qui n’est possible que pour n = 1.

Plus généralement, on peut construire par cette «chirurgie» de nombreuses
variétés presque complexes sans structure complexe puisque I’opération
augmente c: de 1 et diminue 3¢, de 2.

2.3. ANSES D’INDICE 1

On peut jouer au méme jeu avec des chirurgies d’indice supérieur. On
trouve toujours une impossibilité a la chirurgie ordinaire, mais une possibilité
d’ajouter une anse presque complexe. A titre d’exemple simple, détaillons ici
le cas des anses d’indice 1.

On choisit un plongement a fibré normal trivial de S! dans W (resp. V).
On écrit comme plus haut %7 = W — S! X B3, et 7 =V — S' X B3 (V est
la variété inconnue, que I’on suppose simplement connexe). Les mémes
méthodes que ci-dessus fonctionnent pour donner

0->Z-H, 7> H,V—-0

(H, 7" est somme de H,V et du facteur Z engendré par une sphére * X S2
= 0(x X B3) fibre du fibré en sphéres normal a S'). Supposons W
simplement connexe, on a de méme

0->Z-H, 77— H,W-0
et Mayer-Vietoris donne
0—-7Z~— Hzi%@ sz/"_) HzW* —7Z—-0

(les deux spheéres sont les mémes dans W*).

Ainsi - Dy(W*) = by(W) + by(V) + 2, 6(W*) = c(W) + o(V): on a
rajouté un facteur hyperbolique comme on s’en convainc agréablement en
imaginant que W =V = §* et donc que W* = §2 x S2; de plus x(W*)
= x(W) + (V).

Si x est la premiére classe de Chern de W, I’équation a résoudre est

(4) Qw(x) + Qv(y) + 2w = 2(x(W) + x(V)) + 3(c(V) + o(W))

ou x et y sont caracteristiques et u et v sont pairs.

Cette fois on peut prendre pour ¥V n’importe quelle variété presque
complexe (avec y le ¢; d’une structure presque complexe) avec u ou v nul; on
peut aussi choisir # = v = 2 (ce qui correspond a la structure complexe usuelle
| dans le cas de S% x S2)... et V et y comme ci-dessus (2uv = 8).



186 M. AUDIN

Appelons anse presque complexe d’indice 1 le choix de 7 obtenu a partir
de V = P?(C) avec la structure complexe usuelle (alors uv =0). On a comme
plus haut:

PROPOSITION 2.3.1. Il n’existe aucune structure complexe intégrable
(resp. symplectique) sur I’anse presque complexe d’indice 1 qui se recolle a la
structure usuelle de C? — S! X B3 (ou S'X B? est un voisinage tubulaire
d’un petit cercle standard de C?).

C2

FIGURE 6

Démonstration. Supposons qu’une telle structure existe. En plongeant
C? dans P?(C) on construit une variété complexe (resp. symplectique)
compacte dont la forme d’intersection s’écrit a? + 2bc + d? et qui contient
une courbe rationnelle plongée (une droite projective de I’exemplaire de
P2(C) obtenu en complétant le C? standard) d’auto-intersection + 1. La
forme 2bc + d? est équivalente (sur Z) a — x?2 + y? + z? ce qui fait qu’un
modéle minimal de notre surface complexe (variété symplectique) va étre une
surface avec forme d’intersection a2 + y? + z2? et une courbe rationnelle a
auto-intersection + 1 (nous n’avons pas modifié le a?). Ceci est interdit
comme plus haut. [
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Remarque. La proposition reste vraie si on remplace le P?(C) ayant
permis de construire I’anse 7 par une variété presque complexe V dont la
forme d’intersection est définie positive et de type I (c’est-a-dire prend des
valeurs paires et impaires). La démonstration est identique: la forme
2bc + Qy(d) prend la valeur — 1 (si d est tel que Qp(d) = 2m — 1, on prend
b=1etc= — m), elle est donc équivalente (sur Z) a —x2 4+ Q(y) ou Q est
une forme quadratique entiére de rang b,(V) + 1 et de signature (V) + 1
donc définie positive. Un modéle minimal de notre variété aura une courbe
rationelle & auto-intersection positive et une forme d’intersection a? + Q(y)
ce qui n’est pas possible pour les mémes raisons.

3. APPENDICE: SOMMES CONNEXES DE VARIETES SYMPLECTIQUES

3.1. STRUCTURE SUR LES TUBES

Naivement, on pourrait espérer construire une forme symplectique «somme
connexe» en faisant la chirurgie sur des disques contenus dans des ouverts de
Darboux et en construisant une forme symplectique sur le tube $27-! X [ qui
se recolle de chaque coté avec la structure standard de R?" — Disque. Les
remarques précédentes impliquent qu’une telle forme n’existe certainement pas
en dimension # 2 ou 6. Les arguments utilisés sont assez groésiers (structure
presque complexe au lieu de forme symplectique) et, en réponse & ma question
sur la dimension 6, Dusa McDuff [6] m’a fourni un argument plus fin, basé
sur les techniques de Gromov [3], que je vais décrire maintenant et qui montre
qu’une telle forme n’existe sur aucun tube S27-1! X I (pour n >2).

3.2. LE CONTRE-EXEMPLE

Il suffit donc d’exhiber deux variétés symplectiques de dimension 6,
(Vi,0,) et (V3,m,) telles que sur W = V; # V,, aucune forme symplectique
@ ne puisse avoir, en restriction & V;, une propriété que posséde ;.

PrRoPoOSITION 3.2.1. [3,2.4.B;], [6.9] Sur W=Pn(C)# T, |l

n’existe aucune forme symplectique ® qui admette P"- (C) comme sous-
variété symplectique.

Remarque. D’aprés 1.2 et [9], P3(C) # T6 posséde des structures
presque complexes.

G
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Démonstration. On va utiliser le fait que ’une des variétés est P”(C)
parce qu’on connait beaucoup de courbes holomorphes et leurs propriétés dans
celle-ci; c’est seulement & la fin de ’argument qu’on utilisera vraiment que
I’autre variété est un tore. Supposons donc que o soit une forme symplectique
sur W telle qu’un hyperplan P”-!(C) (non touché par la chirurgie) en soit
une sous-variété symplectique. Soit J, une structure presque complexe
adaptée a w et qui soit la structure standard au voisinage de ce P"~1(C). Soit
A e Hy(W;Z) la classe d’homologie d’une droite P(C) C P"-1(C) C W.

Remarquons d’abord que cette classe est simple: elle engendre I’image de
m,(W) et ne peut donc s’écrire comme somme de classes représentées par des
courbes holomorphes (pour aucune structure presque complexe adaptée a ®).
Ainsi, d’aprés Gromov, ’espace M,(J, A)/G des courbes J-holomorphes
(non paramétrées) de la classe A est une variété compacte pour J générique.

On va considérer les courbes de la classe 4 qui passent par deux points fixés
en utilisant ’application d’évaluation

e;:M,(J,A) Xg(S*XS)=> WX W

(ou le groupe G = PSL,(C) opére par changement de paramétrage). Si J est
générique, on a affaire a deux variétés compactes de dimension 4n. En effet

dimM,(J, A)/G = 2c(A) + 2n — 6 =2(n+1) + 2n — 6 = 4n — 4

grace au théoréme de l’indice (ou c(A4) = {c;(W,J]),A) = {c;(P"(C)),A)
=n+ 1et 6=dimG), et donc dimM,(J, A) X 5(S? X S?) = 4n.

On montre maintenant que e, est de degré 1. Ce degré ne dépend pas du
choix de J générique. Considérons un point (X, ) € P7"~1(C) x P~ 1(C).
On sait qu’il y a une unique courbe C, de la classe A et Jy-holomorphe qui |
passe par ces deux points: c¢’est vrai dans P~ 1(C) et on a le

LEMME 3.2.2. Si une courbe rationnelle Jy-holomorphe de la classe A
passe par deux points de P"~1(C) elle est contenue dans P"~1(C).

Démonstration du lemme. En effet, J, est intégrable au voisinage de
P7-1(C) et on a des intersections > 0, de plus ’intersection homologique de
A et P"-1(C) vaut + 1, donc une courbe de la classe A non contenue dans
P7-1(C) le rencontre en exactement un point. [J

Soit.maintenant J, une suite de structures presque complexes génériques 4)
avec limJ, = J, et (x,,y,) une suite tendant vers (x,, o) et telle que (x,,¥,)

>

4) 1l n’y a aucune raison pour que Jy soit générique, il n’y a qu’au voisinage de Cy qu’on
peut en dire quelque chose (voir 3.2.3).
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soit une valeur réguliére de e; . Pour n assez grand, il y a une et une seule
courbe C,, J,-holomorphe, passant par x, et y, et proche de C, (voir le
lemme 3.2.3). Supposons dege; # 1. On peut alors trouver, pour chaque n,
une courbe C;, J,-holomorphe, passant par x, et y, €t qui ne peut Eétre
proche de C,. Le théoréme de compacité permet d’en déduire une courbe
Jo-holomorphe Cj # C, passant par X, et yo, ce qui est absurde.

Donc dege, = 1 pour tout J générique.

Pour I’instant, on a surtout utilisé qu’un des morceaux était un P*(C), il
faut maintenant utiliser que Pautre est 72". En composant e; avec le carré
d’une application de degré 1 de W dans T?", on obtient une application de
degré 1

X = M,(J, A) X (S?x §2) = T2 x T?n

donc H*"(X;Z) serait engendré par un produit d’éléments de H'(X;Z).
Comme X est un S% X S2-fibré sur une variété de dimension 4n — 4, tout sen
H' provient de celle-ci et tous les produits sont déja nuls en dimension
4n — 3. C’est donc absurde.

La démonstration est terminée, modulo ’existence de C, proche de C,.
Avec les notations de [7, par. 2], c¢’est une conséquence du

LEMME 3.2.3. Soit fy:PY(C)—> W le plongement (linéaire) d’image
Co. Alors (fy,Co) est un point régulier de I’opérateur Fredholm P,.

Démonstration (voir.[3,2.1.C,]). Soit E = f¥TW, c’est aussi fETP"(C)
avec sa structure complexe naturelle (puisque J, est la structure complexe
usuelle au voisinage de C;). On sait que dP, s’identifie a

9: QP! E) > QOLU(P!E) .
Comme 9 (Q%(P!, TPY)) C QOI(P!, TP'), grice au lemme du serpent dans
0 - QOOPL, TP1) » QOO(E) - Q00(v) — 0

|8 19 8

0 - QOIPL, TP') - QOI(E) > Q0! (v) = 0
!
0

ouv=E/TP!, on voit que

Coker dP, = Coker (8:Q0-(P1,v) - QO 1(P1,v)) .
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Comme il s’agit d’une courbe,

0= £(v) = QOUOP!,v) > QOL(PL,v) - 0

est une résolution (flasque) du faisceau Z(v) des sections holomorphes de v et

Coker 8 = H!(P!,V) .

Maintenant, on sait que

et

[9]
[10]

[11]
[12]

v=(n-1)7(1)

RUPL, V) = O, v QK) = (n— AP, Z(— ) ® £(—2))
= (n— Dh'(P!, 2(-3)) =0 . ]
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