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2 J. F. DAVIS AND C. LIVINGSTON

;'j(See [Mi] or §1 for definitions). We will be most interested in the case
F = F,, the finite field with p elements.

é

- THEOREM B. Let G be a p-group. Suppose C. X G act on a finite-
dimensional CW complex X with tkH.(X;F,) < oo, so that G acts

i

kemifreely and cellularly. Then

G i

%om (X Fp) tm(X O F )01 = 4, (X/G; F,)l0) .

Applying this to the case where X is the infinite cyclic cover of ¥ — K will
Eimmediately yield Murasugi’s congruence. One advantage of our approach is
that it generalizes to the case of high-dimensional periodic knots.

~In §1 we prove Theorem B and derive Theorem A. In §2 we discuss the
high-dimensional case and in §3 give the following application of Murasugi’s
%congruence to links.

PropoSITION C. Let L be a two-component link in a homology
3-sphere. If the Z/2 X Z/2— cover branched over the link is also a
‘homology 3-sphere, then the linking number of the two components is
congruent to =+ 1 modulo 8.

§1. MURASUGI’S CONGRUENCE

' We will derive Theorem A from Theorem B and then prove Theorem B,
gbut we first give some homological preliminaries. If R is a commutative
' Noetherian UFD with quotient field K and M is a finitely generated torsion
| R-module then we define the order of M to be [M] = E°(M) € R/R*. Here
we take an exact sequence '

RES RS M—0,

'and we let E O(M) be a greatest common divisor of the determinants of the
m X m-submatrices of A. If M is a torsion f.g. R-module then [M] # 0, and
we consider the order [M] as an element of K*/R*. If

0O-M->M->-M’"-0

is an exact sequence of torsion f.g. R-modules, then J. Levine [L, lemma 5]
i shows [M] = [M'][M"”]. It follows for formal reasons that if
 C. = {C,— ... Cp} is a chain complex of torsion f.g. R-modules then



PERIODIC KNOTS 3

Xm(c*) = H[Ci](—l)i

equals y,,(Hx(Cs)). In particular if Cy is exact, then %,(Cs) = 1.

Next we turn to Alexander polynomials. By Alexander duality
H((Z-K)=1Z. Let n: X = X — K be the infinite cyclic cover of the knot
complement. The infinite cyelic group C,, = <> acts on X and H,(X;Z) is
a f.g. torsion module over the group ring Z[C.] = Z[¢t, ¢t ~!']. The Alexander
polynomial Ag(7) is its associated order. (Note that Z[t,#~']* consists of
+ t'and the quotient field of Z[z, r ~!] is the field of rational functions Q(%).)
As usual we normalize so that Ag(¢) is a polynomial with integer coefficients
and non-zero constant term.

If K has period p’, let T: X = ¥ — K be the infinite cyclic cover of the
quotient knot. The G = Z/p"-action on X — K lifts to a G-action on X with
quotient X and fixed set B = n~1(B). Indeed, let g be a generator of G.
Then gcmn: X — X — K induces the trivial map on H; and so lifts to
g: X — X. Since g has a non-empty, path-connected fixed-point set there is a
unique lift g with fixed points and the fixed point set is B. Since gr is a
lift of the identity which has fixed points, it itself is the identity and hence
g is a map of period p”. This gives an action of C.. X G on X. It further
follows that X/G — £ — K is an abelian cover inducing the trivial map on
H,, so that we can identify this cover with ® and X/G with X,

The cover n is classified by a map c: ¥ — K— S! = K(Z,1) inducing
an isomorphism on A, . The inclusion map B = ¥ — K induces multiplication
by the linking number X on H,. Thus by considering c|z which classifies
n:B — B, we see B is homeomorphic to A disjoint copies of R, cyclically
permuted by the action of C...

Now H;(X) and H:(X) are zero for i > 1 and Hy(X) and Hy(X) are
isom_orphic to ¥, = F,[t, 17']/(t = DF,[t, t '], s0 %n(X) = (t = 1)/Ak(?) and
% (X) = (¢ = 1)/A%(¢). Since XS = B consists of A arcs cyclically permuted

by Co = <1>,x(X°) =1¢*— 1. Putting this together with Theorem B
we see

(£ = D/Ax@O] [17 = 117"~ = [(¢ = 1)/A ()] 7

or Ax(t) = AP (1 + ¢+ ...+~ 1)P -1 with the equality taking place in
F,(¢)/F,[t, t ~1]*. This gives Murasugi’s congruence.

Proof of Theorem B. We prove the theorem by induction on the order
of G. Let G be a group of prime order p with generator g. Let
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c=1+g+g>+..+gr!
d=1-¢

be elements of the group ring F,[G]. Note that 8¢ = 0 = 68 and 67! = ©.
' We consider the following chain complexes of F,[z, ¢~ !]-modules (all
ﬁ homology is with F,-coefficients).
L0 = Cu(X) > CulX) > 6Cs(X) = 0

0 = 3C4(X) ® Cu(X9) = Cu(X) = 6Ci(X) = 0

0 = 0Cy(X) > 8Cx(X) = 82C4(X) — 0

0 = 6Cx(X) = 82-2C4(X) = 87-1Cx(X) — 0.

| These induce long exact sequences in homology. All homology is finitely
generated and torsion over the PID F,[¢, #~!]. We use shorthand notation
— if peF,[G], we write x°(X) instead of y(H:(pC«(X)). The above
homological considerations show

| X(X) = 1 (X X)

f X(X) = x¥X) A (XC)x°(X)

X3 = 12X )

137X = 1 (XDx°X)
Multiplying all equations but the first together and cancelling terms we see
%(X) = x(X°) - x°(X)P .
Using the first equation to substitute for % °(X) one finds
10 = x(X)?/1(XC)P-1.

Finally suppose G has order p”. Let G, be a normal subgroup of index p.
By the exact sequences above rk H,(X/G,;F,) < . By applying inductively
the result for the G,-action on X and the G/G; action on X/G;, Theorem B
follows.

§2. HIGH-DIMENSIONAL PERIODIC KNOTS

One advantage of our approach to Murasugi’s congruence is that it applies
equally well to a more general situation. Higher-dimensional periodic knots
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