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MOY F: Un groupe libre non abélien (avec la topologie discrète) n'est pas

moyennable (voir [Ey], II.4; [Gl], exemple 1.2.3; [vN], §5 de

l'Introduction).

L'implication (iii) => (iv) du théorème est alors une conséquence immédiate de

MOY E et MOY F.

4. Preuve de l'implication (iv) => (i) du Théorème

Nous allons montrer que, si X est un arbre localement fini, les stabilisateurs

dans AutX d'un sommet, d'une arête, d'un bout, ou d'une paire de bouts

de X, sont des sous-groupes fermés moyennables.

— Stabilisateur d'un sommet: Si x est un sommet, (AutX)x est un sous-

groupe compact, donc moyennable par MOY D.

— Stabilisateur d'une arête: Si [xfy] est une arête, nous notons (AutX)[x,y]
son stabilisateur dans AutJY. Le sous-groupe compact ouvert (AutAQ*
n (AutX)y est d'indice 2 ou 1 dans (AutJY)^^ (selon qu'il existe une
inversion conservant [x, y] ou pas). Par conséquent (Aut X)[x>y] est lui-même

compact, donc moyennable.

— Stabilisateur d'un bout: Soit co un bout de X; considérons l'homomor-
phisme /œ: (AutX)w Z fourni par le lemme 4 (iii); comme Z est

moyennable ainsi que ses sous-groupes (par MOY A), il suffit par MOY B de

vérifier que le noyau Ker/W est moyennable. Pour cela, observons que la
famille de sous-groupes compacts ((AutX)^ n (AutA)x)X6^ forme un
système dirigé: si x, y sont des sommets quelconques de X, et z un sommet
sur [x, co[ n [y, co[, on a:

((AutA% n (AutAO*) u ((AutX)w n (AutAT),) ç (AutX)^ n (Aut A3 Ä

puisque (Aut A3© n (Aut AT)* fixe ponctuellement la demi-droite [x, co[. La
limite inductive de ce système est l'ensemble des rotations dans (Aut A3 œ, qui
coïncide avec Ker/W par le lemme 4 (ii). Le groupe Ker/W est limite inductive
de groupes compacts, il est donc moyennable par MOY C.

— Stabilisateur d'une paire de bouts: Soit {a,co} une paire de bouts de X;
considérons l'homomorphisme ra(ù: (AutA){a,w} -> Dœ introduit vers la fin du
§1. Comme Dœ est un groupe résoluble, tous ses sous-groupes sont
moyennables, et il suffit par MOY B de vérifier que le noyau Ker ra(ù est
moyennable; mais ce noyau est nxe]aM((A\xtX){aj(ù} n (AutX)x), qui est
compact.
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