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166 I. PAYS ET A. VALETTE

Remarque. Si ’arbre X est localement fini, on peut donner une preuve
différente du fait que A agit librement sur X. Grace au lemme 7, on sait déja
que H est libre et qu’il existe au moins un sommet dont le stabilisateur dans
H soit trivial (prendre par exemple un sommet sur I’axe de ). Par le lemme 3,
H est un sous-groupe discret de Aut X. Si x est un sommet quelconque, le sous-
groupe H N (Aut X), est discret dans le groupe compact (Aut X),, donc
H N (Aut X), est fini. Comme H est libre, H n (Aut X), est trivial.

3. PREUVES DES IMPLICATIONS (ii) = (ii1) ET (iil) = (iv) DU THEOREME

MOYENNABILITE

L’implication (ii) = (iii) résulte immédiatement du lemme 3. Nous donnons
maintenant quelques rappels sur la moyennabilité qui rendront évidente
I’implication (ii1) = (iv).

Soit G un groupe localement compact. On dit que G est moyennable si,
chaque fois que G opere de maniere affine et continue sur un convexe compact
non vide C dans un espace vectoriel topologique localement convexe, il existe
dans C un point fixe pour l’action de G. Comme références sur la
moyennabilité, nous recommandons la petite monographie de Greenleaf [Gl],
le livre de Paterson [Pa], et I’article remarquable d’efficacité d’Eymard [Ey];
a propos de la moyennabilité des groupes discrets, 1’article original de
von Neumann [vN] vaut la peine d’étre lu; pour I’évolution historique de la
notion, on consultera avec profit le livre de Pier ([Pi], Chapitre 9). Nous
rasssemblons maintenant sans démonstration quelques faits classiques sur la
moyennabilité.

MOY A: Un groupe abélien est moyennable (c’est le théoreme de Markoff-
Kakutani, voir [Bo], Appendice du Chapitre IV).

MOY B: La moyennabilité est préservée par extensions; en d’autres termes,
sil>N—-G— G/N—1 est une suite exacte courte de groupes
localement compacts avec N et G/N moyennables, alors G est
moyennable (voir [Ey], II.1; [Gl], Theorem 2.3.3).

MOY C: La moyennabilité est préservée par limites inductives (voir [Gl],
Theorem 2.3.4).

MOY D: Un groupe compact est moyennable.

MOY E: Un sous-groupe fermé d’un groupe moyennable est moyennable
(voir [Ey], IV; [Gl], Theorem 2.3.2).




AUTOMORPHISMES D’ARBRES 167

MOY F: Un groupe libre non abélien (avec la topologie discréte) n’est pas
moyennable (voir [Ey], 11.4; [Gl], exemple 1.2.3; [vN], §5 de
I’Introduction).

L’implication (iii) = (iv) du théoréme est alors une conséquence immeédiate de
MOY E et MOY F.

4. PREUVE DE L’IMPLICATION (iv) = (i) DU THEOREME

Nous allons montrer que, si X est un arbre localement fini, les stabilisateurs
dans Aut X d’un sommet, d’une aréte, d’un bout, ou d’une paire de bouts
de X, sont des sous-groupes fermés moyennables.

— Stabilisateur d’un sommet: Si x est un sommet, (Aut X), est un sous-
groupe compact, donc moyennable par MOY D.

— Stabilisateur d’une aréte: Si [x, y] est une aréte, nous notons (Aut X), ,
son stabilisateur dans Aut X. Le sous-groupe compact ouvert (Aut X),
N (Aut X), est d’indice 2 ou 1 dans (Aut X)[., (selon qu’il existe une
inversion conservant [x, y] ou pas). Par conséquent (Aut X),, ,; est lui-méme
compact, donc moyennable.

— Stabilisqteur d’un bout: Soit ® un bout de X; considérons ’homomor-
phisme /,: (Aut X), > Z fourni par le lemme 4 (iii); comme Z est
moyennable ainsi que ses sous-groupes (par MOY A), il suffit par MOY B de
vérifier que le noyau Ker/, est moyennable. Pour cela, observons que la
famille de sous-groupes compacts ((AutX), N (AutX),).cx forme un
systeme dirigé: si x, y sont des sommets quelconques de X, et z un sommet
sur [x, o[ N [y, o[, on a:

(AutX), N (AutX),) U ((AutX), N (Aut X),) C (AutX), N (AutX),

puisque (AutX), N (AutX), fixe ponctuellement la demi-droite [x, ®[. La
limite inductive de ce systéme est I’ensemble des rotations dans (Aut X )e, qui
coincide avec Ker/, par le lemme 4 (ii). Le groupe Ker/, est limite inductive
de groupes compacts, il est donc moyennable par MOY C.

— Stabilisateur d’une paire de bouts: Soit {0, ®} une paire de bouts de X ;
considérons I’homomorphisme r,,: (Aut X )Mo, 0} = Do introduit vers la fin du
§1. Comme D, est un groupe résoluble, tous ses sous-groupes sont
moyennables, et il suffit par MOY B de vérifier que le noyau Kerr,, est

moyennable; mais ce noyau est Myejo,o((AutX)(q o) N (AutX),), qui est
compact.
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