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160 I. PAYS ET A. VALETTE

discontinu. Si X est localement fini, l'espace X est compact, et fournit ainsi

une compactification de l'arbre X. Enfin, les actions de AutX sur X et Q(X)
se «recollent» en une action par homéomorphismes sur X. Le lemme suivant
est encore dû à Tits ([T3], Lemma 1.6).

Lemme 5. Soit (7))/e/ une famille de sous-arbres de l'arbre X, qui
se rencontrent deux à deux. Alors nieITi est non vide.

Preuve. Supposons d'abord l'arbre A localement fini. Le lemme 1 montre
alors que la famille (T})/e/ de fermés de X a la propriété d'intersection finie
non vide, et la compacité de X permet de conclure. Pour ramener le cas

général au cas localement fini, nous utilisons un argument de la preuve
originale de Tits. Soit x un sommet fixé dans X. Notons [x, tt] le pont qui
joint {x} à f. Pour i, j e I, on voit facilement qu'on a [x, tj\ ç [.x3tj] ou
[x, ti] D [x, tj], car 7}n 7} est non vide. Donc S vieI[x, tt\ est un segment
géodésique ou une demi-droite, et de plus les sous-arbres de la famille
(S n Ti)ieI se rencontrent deux à deux. Comme S est localement fini, on
conclut.

2. Preuve de l'implication (i) => (ii) du Théorème

Nous scindons la preuve de l'implication (i) => (ii) en trois propositions qui,
ensemble, la démontrent.

Proposition 1. Soient X un arbre, et G un sous-groupe de Aut X.
Si G ne fixe aucun sommet, aucune arête, et aucun bout de X, alors G

contient une translation.

Proposition 2. Soient X un arbre, et G un sous-groupe de Aut A
contenant une translation. Si G ne fixe aucun bout et aucune paire de bouts
de X, alors G contient deux translations d'axes disjoints.

Proposition 3. Soient a, b deux translations d'axes disjoints dans un

arbre X. Le sous-groupe H <a,b> engendré par a et b est libre

sur les deux générateurs a, b; de plus H agit librement sur X.

Remarques. 1) Les trois propositions ci-dessus montrent que l'implication

(i) => (ii) du Théorème est en fait vraie pour tout arbre, sans hypothèse
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de locale finitude. Nous verrons au §6 qu'il en est de même pour l'implication

réciproque.

2) La proposition 1 est due à Tits ([Tl], Proposition 3.4; voir aussi [Ti],

Proposition 2.4, pour le cas des arbres réels). La proposition 2 est de Culler

et Morgan ([CM], Lemma 2.1). La première partie de la proposition 3 est due

à Hausmann ([Ha], Proposition 3.5); elle apparaît aussi, comme d'ailleurs la

proposition 2, dans une preuve de Nebbia ([N2], p. 373). La seconde partie
de la proposition 3 a été obtenue par Culler et Morgan ([CM], Lemma 2.6)

avec une preuve très différente de la nôtre.

2.a. Preuve de la proposition 1

Nous allons montrer que, si le sous-groupe G de Aut A ne contient pas de

translation, alors G agit sur l'arbre X en fixant ou un sommet, ou une arête,

ou un bout de X.
Nous commençons par utiliser une astuce standard pour pouvoir supposer

que G ne contient pas d'inversion: pour cela, nous considérons le premier
subdivisé barycentrique Y de X, c'est-à-dire l'arbre Y obtenu en ajoutant un
sommet en chaque milieu d'arête de X. Il est clair que G peut être vu comme

sous-groupe de Aut Y, et que G ne contient pas d'inversion de Y. Notre
hypothèse entraîne donc que G consiste exclusivement en rotations de Y. Le
lemme 2 montre que, quels que soient les éléments g, h de G, les sous-arbres
Y8 et Yh se rencontrent. Considérons l'action de G sur Y YII Q(7)> et

remarquons que Q(T) s'identifie canoniquement à Q(A). Le lemme 5 montre
alors que ngeGY8 ^ 0. En d'autres termes, G possède un point fixe
dans Y; ce point fixe correspond soit à un sommet de X, soit à une arête
de X, soit à un bout de X. La preuve est donc terminée.

Remarque. Jointe au lemme 1, la première partie du raisonnement
ci-dessus permet de retrouver le fait que, si G est un sous-groupe finiment
engendré de Aut A ne contenant pas de translation, alors G fixe un sommet
ou une arête de X (voir [Se], Corollaire 3 de 1.6.5; [T3], 2.2.3).

2.b. Preuve de la proposition 2

Nous dirons que deux translations d'un arbre sont transverses si l'intersection

de leurs axes est finie.

Lemme 6. Soient g\,g2 deux translations transverses; le sous-groupe
<gugi> de Aut A engendré par gl et g2 contient alors deux
translations d'axes disjoints.
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Preuve. Si les axes de g1 et g2 sont disjoints, il n'y a rien à démontrer.

Supposons donc que l'intersection de ces deux axes soit une géodésique [x,y].
Pour | n | assez grand, [x,y] et [g"x, g"y] sont disjoints.

Donc g2 et g"g2g^n sont des translations d'axes disjoints. Ceci termine la

preuve du lemme 6.

Passons maintenant à la preuve de la proposition 2. Soit g une translation
dans G; notons ]a,co[ son axe. Nous utiliserons constamment le fait que, si

h e G, alors hgh~l est une translation d'axe ]/z(a),/z(co)[. Comme G ne fixe

aucune paire de bouts de X, il existe h e G tel que {/z(a), /z(co)} ^ {a,co}.
Quitte à permuter les rôles de a et co, on peut supposer h(co) ${a,co}.

a* • 0)
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On distingue alors trois cas:

1) /!(a)«t{a,co}. Dans ce cas, get hgh'1 sont transverses, et on applique

le lemme 6.

2) h (a)(û. Posons h' gh; donc h (a) h'(a) co. En utilisant le fait

que a et or sont les seuls points fixes de g dans £2(^0, on, voit que les bouts

a, co, h((o), /î'(co) sont deux à deux distincts, et qu'on ne peut avoir simultanément

h2{co)a et h'2{co)a. Donc l'une au moins des intersections

{a,co} n {/î2(a),/)2(cû)} et {a,co} n {h'2(a),h'2estvide. En d'autres

termes, ou bien g et h2gh~2sonttransverses, ou bien g et sont

transverses.

3) h(a) a. Posons alors co' h(co), et g' hgh~l. Nous voulons

considérer g et g' de manière symétrique.

Comme G ne fixe aucun bout de Xil existe k e G tel que k(a) a. En faisant
quelques dessins, il est facile de voir que, parmi les quatre droites

]a,co[, ]a,co'[, ]k{a), /:(co)[, ]&(a), &(©')[> on peut en trouver deux dont
l'intersection est finie. Cela veut dire que, parmi les quatre translations
g, g', kgk~{, kg'k~\ deux au moins sont transverses. Le lemme 6 permet
une dernière fois de conclure.

2.c. Preuve de la proposition 3

0)

Nous commençons par un raffinement du «lemme du ping-pong » (voir
[T2], Proposition 1.1; [Hl], p. 130; [Ha], Proposition 3.1).
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Lemme 1. Soit E un ensemble dans lequel on s'est donné deux
sous-ensembles disjoints A et B; soient a, b deux permutations de E.
Notons A' (resp. Bj l'ensemble des éléments de E dont l'orbite sous

<a> (resp. <b>) est contenue dans A (resp. B); notons encore Y le

complémentaire de A u B dans E, et F la plus petite partie de E
invariante sous H < a,b >, et contenant A' \j B' u Y. On fait les

hypothèses suivantes:

a) A' et B' sont non vides, et l'action de <a> (resp. <b>)
sur A' (resp. B') est libre;

ß) Pour tout m e Z\{0} \ am(B u Y) ç A et bm(A u Y) ç B.

Alors le groupe H est libre sur les deux générateurs a et b; de plus H
agit librement sur F.

Preuve du lemme 7. Nous allons démontrer simultanément les deux

assertions, en remarquant pour la seconde qu'il suffit de montrer que tout
élément x de^' u u Y a un stabilisateur trivial dans H. Soit donc w un
élément de H qui s'écrit comme un mot non trivial en a ± 1, b ± 1. Il y a trois
cas à considérer.

1) x e A': on peut supposer vu l'hypothèse (a) que w n'est pas une puissance
de a; on considère alors quatre sous-cas:

a) w commence et finit par une puissance de b; du fait de l'hypothèse
(ß) : wx e B, et en particulier wx 4 x.

b) w commence par une puissance de b et finit par une puissance de a.

On peut donc écrire w ham, où h est comme en a). Comme
amx e A', on a wx - hamx e B, donc wx 4 x.

c) w commence par une puissance de a et finit par une puissance de b.

Alors w-1 est comme en b), et par conséquent w~lx4x, donc

wx 4 x.

d) w commence et finit par une puissance de a. On peut écrire w ang,

avec g comme en b). Si on avait wx x, on aurait gx a ~nx, ce qui
est absurde puisque gx e B et a ~ nx e A '.

On a en particulier montré que w 1 si w est un mot non trivial en

a ± 1, b ± 1

; donc H est libre sur les deux générateurs a et b.

2) x e B'\ ce cas est symétrique du cas 1).

3) x e Y: on a wx e A (resp. wxeB) si w commence par une puissance
de a (resp. b); a fortiori wx 4=- x. Ceci termine la preuve du lemme 7.

Pour démontrer la proposition 3, considérons le pont [p} q] qui joint l'axe
de a à l'axe de b, et considérons la partition de X associée à \p, q] :
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A fpq{p}\ B fpg{q}\ Y X — (A u B)

(où fpq est définie comme au § 1). Nous allons appliquer le lemme 7 à cette

partition de X. Remarquons que A' est non vide, puisque A' contient l'axe

de a; il en va symétriquement pour B. Les autres hypothèses du lemme 7 se

vérifient immédiatement, et le lemme 7 s'applique donc pour montrer que
FL - <a,b> est un groupe libre sur les deux générateurs a et b, agissant

librement sur la partie F qui est le saturé par H de A' u B' v Y. Il reste à

montrer que F X.

Choisissons pour cela un réel r tel que 0 < r ^ min{/(#), 1(b)}. Pour

ne N, appelons Cn l'ensemble des sommets de X dont la distance à

Lu [p, q] est inférieure ou égale à nr, et montrons par récurrence sur n que
Cn est contenu dans F, le cas n 0 étant clair. Soient donc n > 0, et i un
sommet dans Cn; vu la symétrie entre A et B, on peut supposer que x est

dans A. Soit [x, x'] le pont qui joint {x} à l'axe de a. Si x' n'est pas dans l'orbite
de p sous < a >, ou si x' p, alors x est dans A', donc dans F. Supposons
donc x' akp, avec k e Z\{0}, et considérons le sommet a~kxs qui est dans

A ' u B u Y. Si a ~ kx e A ' u F, alors x e F; si a~kx e B (cas illustré
ci-dessous), alors la distance de a~kx à Fu [p,q] est la distance de a~kx
à q, et

d(a~kx,q) < d{xyp) - d(x\p) d(xfp) - \k\.l(a) l)r
Ainsi a~kx est dans C„_ j, et l'hypothèse de récurrence permet de conclure.

X
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Remarque. Si l'arbre X est localement fini, on peut donner une preuve
différente du fait que H agit librement sur X. Grâce au lemme 7, on sait déjà

que H est libre et qu'il existe au moins un sommet dont le stabilisateur dans

H soit trivial (prendre par exemple un sommet sur l'axe de a). Par le lemme 3,

//est un sous-groupe discret de Aut X. Si x est un sommet quelconque, le sous-

groupe H n (AutX)x est discret dans le groupe compact (AutX)xw donc

H n (AutX)x est fini. Comme H est libre, H n (Aut X)x est trivial.

3. Preuves des implications (ii) => (iii) et (iii) =» (iv) du Théorème

Moyennabilité

L'implication (ii) => (iii) résulte immédiatement du lemme 3. Nous donnons
maintenant quelques rappels sur la moyennabilité qui rendront évidente

l'implication (iii) => (iv).
Soit G un groupe localement compact. On dit que G est moyennable si,

chaque fois que G opère de manière affine et continue sur un convexe compact
non vide C dans un espace vectoriel topologique localement convexe, il existe

dans C un point fixe pour l'action de G. Comme références sur la

moyennabilité, nous recommandons la petite monographie de Greenleaf [Gl],
le livre de Paterson [Pa], et l'article remarquable d'efficacité d'Eymard [Ey];
à propos de la moyennabilité des groupes discrets, l'article original de

von Neumann [vN] vaut la peine d'être lu; pour l'évolution historique de la

notion, on consultera avec profit le livre de Pier ([Pi], Chapitre 9). Nous
rasssemblons maintenant sans démonstration quelques faits classiques sur la

moyennabilité.

MOY A: Un groupe abélien est moyennable (c'est le théorème de Markoff-
Kakutani, voir [Bo], Appendice du Chapitre IV).

MOY B: La moyennabilité est préservée par extensions; en d'autres termes,
si 1 - N -> G -+ G/N -+ 1 est une suite exacte courte de groupes
localement compacts avec N et G/N moyennables, alors G est

moyennable (voir [Ey], II.1; [Gl], Theorem 2.3.3).

MOY C: La moyennabilité est préservée par limites inductives (voir [Gl],
Theorem 2.3.4).

MOY D: Un groupe compact est moyennable.

MOY E: Un sous-groupe fermé d'un groupe moyennable est moyennable

(voir [Ey], IV; [Gl], Theorem 2.3.2).
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