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160 I. PAYS ET A. VALETTE

discontinu. Si X est localement fini, espace X est compact, et fournit ainsi
une compactification de ’arbre X. Enfin, les actions de Aut X sur X et Q(X)
se «recollent» en une action par homéomorphismes sur X. Le lemme suivant
est encore di a Tits ([T3], Lemma 1.6).

LEMME 5. Soit (T:);e; une famille de sous-arbres de ’arbre X, qui
se rencontrent deux a deux. Alors n;.;T; est non vide.

Preuve. Supposons d’abord I’arbre X localement fini. Le lemme 1 montre
alors que la famille (7_}),-E ; de fermés de X a la propriété d’intersection finie
non vide, et la compacité de X permet de conclure. Pour ramener le cas
général au cas localement fini, nous utilisons un argument de la preuve
originale de Tits. Soit x un sommet fixé dans X. Notons [x, #;] le pont qui
joint {x} a T;. Pour i, j € I, on voit facilement qu’on a [x,#] C [x, ¢] ou
[x, t;] 2 [x,¢], car T;n T; est non vide. Donc S = uU;¢/[x, #;] est un segment
geodésique ou une demi-droite, et de plus les sous-arbres de la famille
(S n T));e; se rencontrent deux a deux. Comme S est localement fini, on
conclut.

2. PREUVE DE L’IMPLICATION (i) = (ii) DU THEOREME

Nous scindons la preuve de I’implication (i) = (ii) en trois propositions qui,
ensemble, la démontrent.

PROPOSITION 1. Soient X wun arbre, et G un sous-groupe de Aut X.
Si G ne fixe aucun sommet, aucune aréte, et aucun bout de X, alors G
contient une translation.

PROPOSITION 2. Soient X un arbre, et G un sous-groupe de AutX
contenant une translation. Si G ne fixe aucun bout et aucune paire de bouts
de X, alors G contient deux translations d’axes disjoints.

PROPOSITION 3. Soient a, b deux translations d’axes disjoints dans un
arbre X. Le sous-groupe H = <a,b> -engendré par a et b estlibre
sur les deux générateurs a, b; de plus H agit librement sur X.

Remarques. 1) Les trois propositions ci-dessus montrent que 1’impli-
cation (i) = (ii) du Théoreéme est en fait vraie pour tout arbre, sans hypothése
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de locale finitude. Nous verrons au § 6 qu’il en est de méme pour I'implication
réciproque.

2) La proposition 1 est due a Tits ([T1], Proposition 3.4; voir aussi [Ti],
Proposition 2.4, pour le cas des arbres réels). La proposition 2 est de Culler
et Morgan ([CM], Lemma 2.1). La premiére partie de la proposition 3 est due
a Hausmann ([Ha], Proposition 3.5); elle apparait aussi, comme d’ailleurs la
proposition 2, dans une preuve de Nebbia ([N2], p. 373). La seconde partie
de la proposition 3 a été obtenue par Culler et Morgan ([CM], Lemma 2.6)
avec une preuve tres différente de la notre.

2.a. PREUVE DE LA PROPOSITION 1

Nous allons montrer que, si le sous-groupe G de Aut X ne contient pas de
translation, alors G agit sur I’arbre X en fixant ou un sommet, ou une aréte,
ou un bout de X.

Nous commencons par utiliser une astuce standard pour pouvoir supposer
que G ne contient pas d’inversion: pour cela, nous considérons le premier
subdivisé barycentrique Y de X, c’est-a-dire I’arbre Y obtenu en ajoutant un
sommet en chaque milieu d’aréte de X. Il est clair que G peut €tre vu comme
sous-groupe de Aut Y, et que G ne contient pas d’inversion de Y. Notre
hypothése entraine donc que G consiste exclusivement en rotations de Y. Le
lemme 2 montre que, quels que soient les éléments g, 2 de G, les sous-arbres
Y¢ et Y” se rencontrent. Considérons ’action de G sur ¥ = v 11 Q(Y), et
remarquons que Q(Y) s’identifie canoniquement a Q(X). Le lemme 5 montre
alors que N,c Y¢ # ¢5. En d’autres termes, G possede un point fixe
dans Y; ce point fixe correspond soit a un sommet de X, soit & une aréte
de X, soit a un bout de X. La preuve est donc terminée.

Remarque. Jointe au lemme 1, la premiére partie du raisonnement
ci-dessus permet de retrouver le fait que, si G est un sous-groupe finiment
engendré de Aut X ne contenant pas de translation, alors G fixe un sommet
ou une aréte de X (voir [Se], Corollaire 3 de 1.6.5; [T3], 2.2.3).

2.b. PREUVE DE LA PROPOSITION 2

Nous dirons que deux translations d’un arbre sont transverses si I’inter-
section de leurs axes est finie.

LEMME 6. Soient g,,g, deux translations transverses; le sous-groupe

<&,8> de AutX engendré par g, et g, contient alors deux
translations d’axes disjoints.
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Preuve. Si les axes de g; et g, sont disjoints, il n’y a rien a démontrer.
Supposons donc que ’intersection de ces deux axes soit une géodésique [x, y].
Pour | n | assez grand, [x, y] et [g]x, g}y] sont disjoints.

n =N
I, | 9, 9,9
n n
Y 9 x 9

>SJl

Donc g, et g"g,g; " sont des translations d’axes disjoints. Ceci termine la
preuve du lemme 6.

Passons maintenant a la preuve de la proposition 2. Soit g une translation
dans G; notons Jo, ®[ son axe. Nous utiliserons constamment le fait que, si
h € G, alors hgh —! est une translation d’axe lk(a), A(®)[. Comme G ne fixe
aucune paire de bouts de X, il existe 2 € G tel que {h(0),h(w)} # {a,®}.
Quitte a permuter les roles de o et w, on peut supposer A(®) ¢{o,w®}.

h(w)

m..... .....w ~

A 4
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On distingue alors trois cas:

1) h(a) ¢{a,w}. Dans ce cas, g €t hgh -1 gont transverses, et on applique
le lemme 6.

2) h(a) = . Posons &’ = gh; donc A(a) = h’(a) = . En utilisant le fait
que o et o sont les seuls points fixes de g dans Q(X), on_ voit que les bouts
o, ®, h(w), h’(0) sont deux & deux distincts, et qu’on ne peut avoir simulta-
nément A2(®) = o et h'%(®) = a. Donc 'une au moins des intersections
{a,0} N {h*(0), F2(@)} et {o,0} N {h'2(a), h'2(w)} est vide. En d’autres
termes, ou bien g et high~2 sont transverses, ou bien g et h'*gh’—?% sont
transverses.

3) h(a) = o. Posons alors ©' = h(®), et g’ = hgh-'. Nous voulons
considérer g et g’ de maniére symétrique.

Comme G ne fixe aucun bout de X, il existe k € G tel que k(o) # a. En faisant
quelques dessins, il est facile de voir que, parmi les quatre droites
la, o, Ja,o’[, 1k(a), k(w)[, 1k(a),k(®")], on peut en trouver deux dont
Pintersection est finie. Cela veut dire que, parmi les quatre translations

g 8 ,kgk~1,kg'k-1!, deux au moins sont transverses. Le lemme 6 permet
une derniere fois de conclure.

2.c. PREUVE DE LA PROPOSITION 3

Nous commeng¢ons par un raffinement du «lemme du ping-pong» (voir
T2], Proposition 1.1; [H1], p. 130; [Ha], Proposition 3.1).
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LEMME 7. Soit E un ensemble dans lequel on s’est donné deux
sous-ensembles disjoints A et B; soient a,b deux permutations de E.
Notons A’ (resp. B’) [’ensemble des éléments de E dont [’orbite sous
<a> (resp. <b>) est contenue dans A (resp. B); notons encore Y le
complémentaire de A U B dans E, et F la plus petite partie de E
invariante sous H = <a,b>, et contenant A’ v B’ U Y. On fait les
hypothéses suivantes:

a) A’ et B’ sont non vides, et I’action de <a> (resp. <b>)
sur A’ (resp. B’) est libre;
B) Pour tout me Z\{O}:a"(BuY)C A et bm"(AuUY)CB.
Alors le groupe H est libre sur les deux générateurs a et b; de plus H
agit librement sur F.

Preuve du lemme 7. Nous allons démontrer simultanément les deux
assertions, en remarquant pour la seconde qu’il suffit de montrer que tout
¢lément x de A" U B” U Y a un stabilisateur trivial dans H. Soit donc w un
élément de H qui s’écrit comme un mot non trivial en a*!, b*!. Il y a trois
cas a considérer.

1) x € A’: on peut supposer vu I’hypothese (o) que w n’est pas une puissance
de a; on considére alors quatre sous-cas:

a) w commence et finit par une puissance de b; du fait de I’hypothése
(B): wx € B, et en particulier wx # x.

b) w commence par une puissance de b et finit par une puissance de a.
On peut donc écrire w = ha™, ou h est comme en a). Comme
a"x e A’, on a wx = ha"x € B, donc wx # x.

¢) w commence par une puissance de a et finit par une puissance de b.
Alors w~-! est comme en b), et par conséquent w~lx # x, donc
WX *+ X.

d) w commence et finit par une puissance de a. On peut écrire w = a”g,
avec g comme en b). Si on avait wx = X, on aurait gx = a ~"x, ce qui
est absurde puisque gx e Bet a "x e A’.

On a en particulier montré que w # 1 si w est un mot non trivial en

a*l, b*1l; donc H est libre sur les deux générateurs a et b.

2) x € B’: ce cas est symétrique du cas 1).

3) xeY:on awxeA (rtesp. wxeB) si w commence par une puissance
de a (resp. b); a fortiori wx # x. Ceci termine la preuve du lemme 7.

Pour démontrer la proposition 3, considérons le pont [p, g] qui joint I’axe
de a a ’axe de b, et considérons la partition de X associée a [p, q]:

&
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A= f,4p}; B=frlq}; Y=X-(A4UB)

(ou f,, est définie comme au §1). Nous allons appliquer le Jemme 7 a cette
partition de X. Remarquons que A’ est non vide, puisque A" contient 1’axe
de a; il en va symétriquement pour B. Les autres hypothéses du lemme 7 se
vérifient immédiatement, et le lemme 7 s’applique donc pour montrer que
H = <a,b> est un groupe libre sur les deux générateufs a et b, agissant
librement sur la partie F qui est le saturé par H de A’ U B” u Y. Il reste a
montrer que F = X.

Choisissons pour cela un réel r tel que 0 < r < min{/(@),/(b)}. Pour
n e N, appelons C, I’ensemble des sommets de X dont la distance a
Y U [p, q] est inférieure ou égale a nr, et montrons par récurrence sur n que
C, est contenu dans F, le cas n = 0 étant clair. Soient donc » > 0, et x un
sommet dans C,; vu la symétrie entre A et B, on peut supposer que x est
dans A. Soit [x, x’] le pont qui joint {x} a I’axe de a. Si x" n’est pas dans I’orbite
de p sous <a>, ou si x’ = p, alors x est dans A’, donc dans F. Supposons
donc x” = a*p, avec k € Z\{0}, et considérons le sommet a ~*x, qui est dans
A"UBUY. Si a-*xe A"u Y, alors xe F; si a *x e B (cas illustré
ci-dessous), alors la distance de ¢ ~*x a Y U [p, g] est la distance de a —*x
agq, et

d(a=*x,q) < d(x,p) — d(x’,p) = dx,p) — | k|.l(a) < (n—Dr
Ainsi a ~*x est dans C,_,, et ’hypothése de récurrence permet de conclure.

X

pj

-k %%
a X

TN
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Remarque. Si ’arbre X est localement fini, on peut donner une preuve
différente du fait que A agit librement sur X. Grace au lemme 7, on sait déja
que H est libre et qu’il existe au moins un sommet dont le stabilisateur dans
H soit trivial (prendre par exemple un sommet sur I’axe de ). Par le lemme 3,
H est un sous-groupe discret de Aut X. Si x est un sommet quelconque, le sous-
groupe H N (Aut X), est discret dans le groupe compact (Aut X),, donc
H N (Aut X), est fini. Comme H est libre, H n (Aut X), est trivial.

3. PREUVES DES IMPLICATIONS (ii) = (ii1) ET (iil) = (iv) DU THEOREME

MOYENNABILITE

L’implication (ii) = (iii) résulte immédiatement du lemme 3. Nous donnons
maintenant quelques rappels sur la moyennabilité qui rendront évidente
I’implication (ii1) = (iv).

Soit G un groupe localement compact. On dit que G est moyennable si,
chaque fois que G opere de maniere affine et continue sur un convexe compact
non vide C dans un espace vectoriel topologique localement convexe, il existe
dans C un point fixe pour l’action de G. Comme références sur la
moyennabilité, nous recommandons la petite monographie de Greenleaf [Gl],
le livre de Paterson [Pa], et I’article remarquable d’efficacité d’Eymard [Ey];
a propos de la moyennabilité des groupes discrets, 1’article original de
von Neumann [vN] vaut la peine d’étre lu; pour I’évolution historique de la
notion, on consultera avec profit le livre de Pier ([Pi], Chapitre 9). Nous
rasssemblons maintenant sans démonstration quelques faits classiques sur la
moyennabilité.

MOY A: Un groupe abélien est moyennable (c’est le théoreme de Markoff-
Kakutani, voir [Bo], Appendice du Chapitre IV).

MOY B: La moyennabilité est préservée par extensions; en d’autres termes,
sil>N—-G— G/N—1 est une suite exacte courte de groupes
localement compacts avec N et G/N moyennables, alors G est
moyennable (voir [Ey], II.1; [Gl], Theorem 2.3.3).

MOY C: La moyennabilité est préservée par limites inductives (voir [Gl],
Theorem 2.3.4).

MOY D: Un groupe compact est moyennable.

MOY E: Un sous-groupe fermé d’un groupe moyennable est moyennable
(voir [Ey], IV; [Gl], Theorem 2.3.2).
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