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Nous avions démontré le théoréme ci-dessus quand nous avons réalisé qu’il
était presque entiérement dii & Nebbia ([N2], Theorem 1); Nebbia était surtout
préoccupé par la non-moyennabilité des sous-groupes fermés de Aut X, de
sorte qu’il n’a énoncé que I’équivalence (i) ¢ (iv), et ce pour les sous-groupes
fermés de AutX; mais l’extension aux sous-groupes quelconques est
immeédiate. Quant a ’équivalence (iii) ¢ (iv), elle transparait dans la preuve
(voir d’ailleurs la remarque 3 a la page 375 de [N2]). Mentionnons aussi que
Woess a montré comment modifier ’équivalence (i) ¢ (iv) quand on s’intéresse
aux sous-groupes du groupe des automorphismes d’un graphe localement fini
([Wo], Theorems 1, 2). ’

D’autres portions du théoréme apparaissent ailleurs dans la littérature;
ainsi, I’équivalence (i) ¢ (ii) a été obtenue par Culler et Morgan ([CM],
Theorem 2.7), dans le contexte plus général des arbres réels, mais sous
I’hypothése supplémentaire que le groupe G contient un automorphisme
hyperbolique. Cette hypothése est en fait superflue, comme le montre un
résultat de Tits ([T1], Proposition 3.4) dans le cas des arbres ordinaires, et un
résultat de Tignol ([Ti], Proposition 2.4) dans le cas des arbres réels ). Notre
apport consiste donc essentiellement a donner une présentation unifiée de tous
ces résultats, a simplifier les preuves, et a relier les résultats a quelques
problémes classiques.

L’article se présente comme suit: au §1, nous donnons les rappels
nécessaires sur les arbres, leurs automorphismes, et leurs bouts. La preuve du
théoréme occupe les §§2 a 4, selon le schéma (i) = (ii) = (iii) = (iv) = (i); nous
avons aussi regroupé au §3 quelques rappels sur la moyennabilité. Le §5 est
consacré aux corollaires du théoréme. Enfin, au §6, nous discutons le cas des
arbres réels, et montrons que ’équivalence (i) ¢ (ii) du théoréme subsiste pour
les groupes d’isométries de ces espaces.

1. RAPPELS SUR LES ARBRES

Un arbre X est un graphe connexe sans circuit (les graphes que nous
considérons sont toujours non orientés, sans boucle ni aréte multiple).
L’arbre X est localement fini si tout sommet n’a qu’un nombre fini de voisins.
Si x, y sont des sommets d’un arbre X, il existe un unique chemin d’arétes

%) Attention & I’énoncé donné dans I’introduction de Iarticle de Culler et Morgan, ou

Phypothése supplémentaire a été omise! (Comparer dans [CM] le théoréme au milieu de la
page 573 avec le théoreme 2.7, pp. 582-583).
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minimal de x a y, qui est la géodésique de x a y; on notera [x, y] ’ensemble
des sommets de X sur la géodésique de x & y, et d(x,y) le nombre d’arétes
sur cette géodésique: d(x, y) est la distance de x a y (voir [Se], 1.2.2).

Un sous-arbre de ’arbre X est un sous-graphe connexe de X. Une demi-
droite de X est un sous-arbre isomorphe a une chaine simplement infinie:

&- A o> - i

Une droite («droit chemin» chez Serre, [Se] 1.6.4) est un sous-arbre isomorphe
a une chaine doublement infinie:

..... & . — P AP - > - ceans

Si T, T, sont deux sous-arbres de X, non vides et d’intersection réduite a au
plus un sommet, il existe un unique couple (p,,p,) € T; X T, tel que tout
sous-arbre de X qui rencontre 7; et 7, contient [p;,p,] (voir [Se], 1.6.4,
lemme 9; [T3], Lemma 1.4; [CM], 1.1); la géodésique [p;, p.] est le pont qui
joint 7, a T5:

P Py
T, T2

Si p, g sont deux sommets distincts fixés de X, et x un sommet quelconque,
nous noterons [x, f,,(x)] le pont qui joint {x} a [p,q]; ’application
Jog: X = [p, q] ainsi définie fournit les trois classes de la partition de X
associée & [p,ql: P = [, {p};0= [, {q};Y=X - (PuQ) (la classe Y
pouvant étre vide si [p, g] est une aréte).
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En particulier, si S, T sont deux sous-arbres non vides et disjoints de X, et si
[p, g] est le pont qui joint S a 7, on a Sc PetTc Q dans la partition
ci-dessus.

Toute intersection de sous-arbres est clairement un sous-arbre. Cela permet
de parler du sous-arbre engendré par une partie quelconque de X. Notons la
forme du sous-arbre engendré par trois sommets X, y, z: il existe un unique
sommet ¢ tel que {t} = [x,¥] N [, z] N [z, x].

LEMME 1 («Théoréme de Helly sur un arbre»). Soient Ty,T,..., T,
des sous-arbres de I’arbre X qui se rencontrent deux a deux. Alors leur
intersection est non vide.

Preuve. On travaille par induction sur n, en commengant par n = 3. Pour
i,je€{1,2,3},i <j, faisons choix d’un sommet X; dans 7; n 7;. Soit ¢
I’unique sommet de X tel que {¢} = [x12,X13] N [X12, X23] N [x23, x13]. Comme
[x;;, xix] est contenu dans T;, on voit que ¢ est dans 7} N 7> n T3 (pour une
autre preuve de ce cas, voir [CM] 1.2). Traitons maintenant le cas général, et
considérons les n — 1 sous-arbres T) N T1,, To.nT,, ..., T,y T,. Le cas
n = 3 déja traité montre que ces sous-arbres se rencontrent deux a deux.
L’hypothése d’induction permet donc de conclure. On trouvera une autre
preuve de ce lemme dans [Se], 1.6.5, lemme 10.

Un automorphisme de I’arbre X est une permutation g des sommets de X
qui préserve les arétes>). Cela revient a exiger que g soit une isométrie pour
la distance d. Un résultat élémentaire mais fondamental de Tits ([T1],
Proposition 3.2; voir aussi [Se], 1.6.4) montre qu’un arbre peut posséder trois
types d’automorphismes:

3) Remarque: si g est un automorphisme, g~ ! en est un aussi (la preuve de ce fait,
facile, utilise la structure d’arbre: I’énoncé correspondant sur un graphe connexe serait faux!).
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— Les automorphismes qui fixent au moins un sommet. Il s’agit des
automorphismes elliptiques, ou rotations. Si g est un tel automorphisme, on
note X¢ I’ensemble des points fixes de g; c’est un sous-arbre de X.

— Les automorphismes qui ne fixent aucun sommet, mais fixent une aréte
. (nécessairement unique). Il s’agit des inversions.

— Les automorphismes qui ne fixent ni sommet, ni aréte de X. Il s’agit
des automorphismes hyperboliques, ou translations. Si g est un tel automor-
phisme, il existe une unique droite de X invariante par g; cette droite s’appelle
I’axe de g, et g agit par translation le long de son axe.

Si g est une translation, la distance de translation I(g) de g est ’entier

[(g) = min d(gx, x)
xeX

Il s’agit donc de I’amplitude de Ia translation induite par g sur son axe.

Le lemme suivant, qui aide a construire des automorphismes hyper-
boliques, a été remarqué par plusieurs personnes ([CM], 1.5; [P1], lemme 5.5;
[Se], 1.6.5, Corollaire 1; [Ti], Corollaire 2.3; voir aussi le lemme 35 du
chapitre 8 de [GH] pour une généralisation aux isométries .des espaces
hyperboliques a la Gromov):

LEMME 2. Soient g, h deux rotations de ’arbre X. Si X&¢ n X" est
vide, alors gh est une translation.

Preuve. Soit [p,q] le pont qui joint X¢ a X”. On voit alors, en
considérant successivement les trois classes de la partition de X associée a
[p, ql, que pour tout sommet x de X, on a d(ghx,x) > 2.d(p, q); donc gh
est une translation.

Muni de la topologie de la convergence simple sur les sommets de X,
le groupe AutX des automorphismes de [’arbre X s’érige en groupe



AUTOMORPHISMES D’ARBRES 157

topologique. Supposons X localement fini; pour tout sommet x, le stabilisateur
(Aut X), de x dans Aut X est alors un sous-groupe compact ouvert; et Aut X
est un groupe localement compact totalement discontinu.

LEMME 3. Soient X un arbre localement fini, et G un sous-groupe
de AutX. S’il existe un sommet x de X dont le stabilisateur dans G
soit réduit au neutre, alors G est discret dans Aut X.

Preuve. L’intersection de G et du sous-groupe ouvert (Aut X), est
réduite au neutre, donc G est discret.

Deux demi-droites d’un arbre X sont équivalentes si leur intersection est
encore une demi-droite (on voit immédiatement que cette relation sur
I’ensemble des demi-droites est bien une relation d’équivalence). Un bout de
X est une classe d’équivalence de demi-droites de X; on note Q(X) I’ensemble
des bouts de X. L’action de Aut X sur les demi-droites de X passe aux classes
d’équivalence, et fournit une action de Aut X sur Q(X). On note (Aut X), le
stabilisateur du bout ® dans Aut.X, qu’on munit de la topologie de la
convergence simple sur X.

Si x est un sommet et ® un bout de X, il existe une unique demi-droite
d’origine x qui représente ®; on la note [x, ®[. En particulier, Q(X) s’identifie
a ’ensemble des demi-droites d’origine x.

Si x, y sont des sommets, @ un bout de X, et # un sommet sur la demi-droite
[x, o[ N [y, ®], la quantité d(x, t) — d(», t) est indépendante de #; on la note
dy(x,¥). On a la relation immédiate mais importante (voir [C1], §1):

*) do(x,2) = dy(x, ) + dy(¥, 2) quels que soient x, y,z € X .

Si g € (Aut X),, et si x est un sommet de X, on pose

l,(g) = dy(x, gx)
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Le lemme suivant montrera entre autres que cette définition ne dépend pas du
choix du sommet x.

LEMME 4. Soient X un arbre, et ® un bout de X. Alors
1) (AutX), ne contient pas d’inversion;
. 0 si g est elliptique
11) lm(g) = ) .
+ [(g) si g est hyperbolique

i) /ly: (Aut X), = Z est un homomorphisme continu.

Preuve. 1) Si g est une inversion et x un sommet de X, ’intersection de
[x, o[ et g[x, o[ est finie. Donc go # w.

i1) Soit x le sommet apparaissant dans la définition de /,. Soit d’abord
g un ¢élément elliptique de (Aut X),; si y est un sommet dans X¢, la
demi-droite [y, o[ est fixée ponctuellement par g. Notons [f, ®[ la demi-droite
[y, o] N [x, o] N [gx, o[. En calculant d,(gx, x) par rapport a ¢, on a:

l,(g) = d(gx, t) — d(x, 1)
= d(gx, gt) —d(x,t) car gt =1t
=0

Soit maintenant g un élément hyperbolique de (Aut X),; si y est un sommet
sur I’axe de g, la demi-droite [y, ®[ est contenue dans ’axe de g. Notons a
nouveau [z, o[ la demi-droite [y, o[ N [x, o[ N [gx, ©o[. En calculant d,(gx, x)
par rapport a £, on a:

lo(g) = d(gx, t) — dx, 1)
|- [(g) si g pointe vers ®
[(g) si g~ ! pointe vers
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i11) La continuité de /, est claire. Si g, & € (Aut X),, on a pour tout
sommet x de X:

l,(gh) = d,(ghx, x) = d,(ghx, hx) + d,(hx,x) (par la relation (*))
= lm(g) + lw(h)

puisque /,(g) peut se calculer griace a n’importe quel sommet de X. Ceci
termine la preuve du lemme 4.

Si a et o sont deux bouts distincts de ’arbre X, il existe une unique droite
de X, notée Ja,m[, telle que pour tout sommet x sur cette droite, on ait:

lo, o = [x,af U [x, o]

On note (Aut X)) le stabilisateur de la paire {o,®} dans Aut X, qu’on
munit toujours de la topologie de la convergence simple. Le groupe
(Aut X)(q, ) laisse invariant la droite Ja,®[. On a donc un homomorphisme
de restriction ry, de (Aut X),, )} dans le groupe des automorphismes de la
droite Ja, o[, qui est le groupe diédral infini D, . Cet automorphisme

Faw: (Aut Xj{a,m} - D,

est évidemment continu.
On note X la réunion disjointe de X et de Q(X):

x=x1l owx
Pour x, y sommets distincts de X, on pose:
Vo ={zeXiyelxz]l} u{oeQX):yelx, o[}

On munit X de la topologie dont une base est formée des V,, ainsi que des
parties finies de X; I’espace X devient ainsi un espace topologique séparé,
dans lequel X est une partie discréte, ouverte, et dense. En fait, si 7 est un
sous-arbre de X, son adhérence T dans X est la réunion de 7T et des bouts
de T. Les V,, sont a la fois ouverts et fermés dans )—(, qui est totalement
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discontinu. Si X est localement fini, espace X est compact, et fournit ainsi
une compactification de ’arbre X. Enfin, les actions de Aut X sur X et Q(X)
se «recollent» en une action par homéomorphismes sur X. Le lemme suivant
est encore di a Tits ([T3], Lemma 1.6).

LEMME 5. Soit (T:);e; une famille de sous-arbres de ’arbre X, qui
se rencontrent deux a deux. Alors n;.;T; est non vide.

Preuve. Supposons d’abord I’arbre X localement fini. Le lemme 1 montre
alors que la famille (7_}),-E ; de fermés de X a la propriété d’intersection finie
non vide, et la compacité de X permet de conclure. Pour ramener le cas
général au cas localement fini, nous utilisons un argument de la preuve
originale de Tits. Soit x un sommet fixé dans X. Notons [x, #;] le pont qui
joint {x} a T;. Pour i, j € I, on voit facilement qu’on a [x,#] C [x, ¢] ou
[x, t;] 2 [x,¢], car T;n T; est non vide. Donc S = uU;¢/[x, #;] est un segment
geodésique ou une demi-droite, et de plus les sous-arbres de la famille
(S n T));e; se rencontrent deux a deux. Comme S est localement fini, on
conclut.

2. PREUVE DE L’IMPLICATION (i) = (ii) DU THEOREME

Nous scindons la preuve de I’implication (i) = (ii) en trois propositions qui,
ensemble, la démontrent.

PROPOSITION 1. Soient X wun arbre, et G un sous-groupe de Aut X.
Si G ne fixe aucun sommet, aucune aréte, et aucun bout de X, alors G
contient une translation.

PROPOSITION 2. Soient X un arbre, et G un sous-groupe de AutX
contenant une translation. Si G ne fixe aucun bout et aucune paire de bouts
de X, alors G contient deux translations d’axes disjoints.

PROPOSITION 3. Soient a, b deux translations d’axes disjoints dans un
arbre X. Le sous-groupe H = <a,b> -engendré par a et b estlibre
sur les deux générateurs a, b; de plus H agit librement sur X.

Remarques. 1) Les trois propositions ci-dessus montrent que 1’impli-
cation (i) = (ii) du Théoreéme est en fait vraie pour tout arbre, sans hypothése
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