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Nous avions démontré le théorème ci-dessus quand nous avons réalisé qu'il
était presque entièrement dû à Nebbia ([N2], Theorem 1); Nebbia était surtout

préoccupé par la non-moyennabilité des sous-groupes fermés de AutX, de

sorte qu'il n'a énoncé que l'équivalence (i) <=> (iv), et ce pour les sous-groupes
fermés de AutX; mais l'extension aux sous-groupes quelconques est

immédiate. Quant à l'équivalence (iii) (iv), elle transparaît dans la preuve

(voir d'ailleurs la remarque 3 à la page 375 de [N2]). Mentionnons aussi que
Woess a montré comment modifier l'équivalence (i) (iv) quand on s'intéresse

aux sous-groupes du groupe des automorphismes d'un graphe localement fini
([Wo], Theorems 1, 2).

D'autres portions du théorème apparaissent ailleurs dans la littérature;
ainsi, l'équivalence (i) & (ii) a été obtenue par Culler et Morgan ([CM],
Theorem 2.7), dans le contexte plus général des arbres réels, mais sous

l'hypothèse supplémentaire que le groupe G contient un automorphisme
hyperbolique. Cette hypothèse est en fait superflue, comme le montre un
résultat de Tits ([Tl], Proposition 3.4) dans le cas des arbres ordinaires, et un
résultat de Tignol ([Ti], Proposition 2.4) dans le cas des arbres réels4). Notre
apport consiste donc essentiellement à donner une présentation unifiée de tous
ces résultats, à simplifier les preuves, et à relier les résultats à quelques
problèmes classiques.

L'article se présente comme suit: au §1, nous donnons les rappels
nécessaires sur les arbres, leurs automorphismes, et leurs bouts. La preuve du
théorème occupe les §§2 à 4, selon le schéma (i) => (ii) => (iii) => (iv) (i); nous
avons aussi regroupé au §3 quelques rappels sur la moyennabilité. Le §5 est
consacré aux corollaires du théorème. Enfin, au §6, nous discutons le cas des

arbres réels, et montrons que l'équivalence (i) o (ii) du théorème subsiste pour
les groupes d'isométries de ces espaces.

1. Rappels sur les arbres

Un arbre X est un graphe connexe sans circuit (les graphes que nous
considérons sont toujours non orientés, sans boucle ni arête multiple).
L'arbre X est localement fini si tout sommet n'a qu'un nombre fini de voisins.
Si Xj y sont des sommets d'un arbre X, il existe un unique chemin d'arêtes

4) Attention à l'énoncé donné dans l'introduction de l'article de Culler et Morgan, où
l'hypothèse supplémentaire a été omise! (Comparer dans [CM] le théorème au milieu de la
page 573 avec le théorème 2.7, pp. 582-583).



154 I. PAYS ET A. VALETTE

minimal de x à y, qui est la géodésique de x à y; on notera [xyy] l'ensemble
des sommets de X sur la géodésique de x à y, et d(xyy) le nombre d'arêtes

sur cette géodésique: d(xyy) est la distance de x à y (voir [Se], 1.2.2).

Un sous-arbre de l'arbre X est un sous-graphe connexe de X. Une demi-

droite de X est un sous-arbre isomorphe à une chaîne simplement infinie:

Une droite («droit chemin» chez Serre, [Se] 1.6.4) est un sous-arbre isomorphe
à une chaîne doublement infinie:

Si T{, T2 sont deux sous-arbres de X, non vides et d'intersection réduite à au

plus un sommet, il existe un unique couple (P\,P2) e T\ x T2 tel que tout
sous-arbre de X qui rencontre Tx et T2 contient [p\ypi] (voir [Se], 1.6.4,
lemme 9; [T3], Lemma 1.4; [CM], 1.1); la géodésique [p\ypi\ est le pont qui
joint Tj à T2:

Si p, q sont deux sommets distincts fixés de X, et x un sommet quelconque,
nous noterons [x, fpq{x)\ le pont qui joint {x} à [pyq\\ l'application
fpq\ X [p3q] ainsi définie fournit les trois classes de la partition de X
associée à \p,q]: P« f~ql {p}; Q/M' {q}; YX -(PuQ)(laclasse Y

pouvant être vide si [p, q] est une arête).
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En particulier, si S, T sont deux sous-arbres non vides et disjoints de X, et si

[p, q] est le pont qui joint S ä T, onaSçPetrçQ dans la partition

ci-dessus.

Toute intersection de sous-arbres est clairement un sous-arbre. Cela permet

de parler du sous-arbre engendré par une partie quelconque de X. Notons la

forme du sous-arbre engendré par trois sommets x, y, z' il existe un unique

sommet t tel que {^} [x,y] n [y,z] n [z,x].

X

Lemme 1 («Théorème de Helly sur un arbre»). Soient T{, T2, Tn

des sous-arbres de l'arbre X qui se rencontrent deux à deux. Alors leur

intersection est non vide.

Preuve. On travaille par induction sur n, en commençant par n 3. Pour

ij e {1,2,3}, / < j, faisons choix d'un sommet Xq dans Tt n 7}. Soit t
l'unique sommet de X tel que {/} [xi2,Xi3] n [xi2,x23] n [x23,Xi3]. Comme

[Xjj ,Xj/c] est contenu dans 7), on voit que t est dans Tx n T2 n T3 (pour une

autre preuve de ce cas, voir [CM] 1.2). Traitons maintenant le cas général, et

considérons les n - T sous-arbres T{ n Tn,T2n Tn, Tn-\ n Tn. Le cas

n — 3 déjà traité montre que ces sous-arbres se rencontrent deux à deux.

L'hypothèse d'induction permet donc de conclure. On trouvera une autre

preuve de ce lemme dans [Se], 1.6.5, lemme 10.

Un automorphisme de l'arbre X est une permutation g des sommets de X
qui préserve les arêtes5). Cela revient à exiger que g soit une isométrie pour
la distance d. Un résultat élémentaire mais fondamental de Tits ([Tl],
Proposition 3.2; voir aussi [Se], 1.6.4) montre qu'un arbre peut posséder trois
types d'automorphismes:

5) Remarque: si g est un automorphisme, g
1

en est un aussi (la preuve de ce fait,
facile, utilise la structure d'arbre: l'énoncé correspondant sur un graphe connexe serait faux!).
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— Les automorphismes qui fixent au moins un sommet. Il s'agit des

automorphismes elliptiques, ou rotations. Si g est un tel automorphisme, on
note Xs l'ensemble des points fixes de g; c'est un sous-arbre de X.

— Les automorphismes qui ne fixent aucun sommet, mais fixent une arête

(nécessairement unique). Il s'agit des inversions.

— Les automorphismes qui ne fixent ni sommet, ni arête de X. Il s'agit
des automorphismes hyperboliques, ou translations. Si g est un tel automorphisme,

il existe une unique droite de Xinvariante par g; cette droite s'appelle
Vaxe de g, et g agit par translation le long de son axe.

Si g est une translation, la distance de translation 1(g) de g est l'entier

1(g) min d(gx,x)
xeX

Il s'agit donc de l'amplitude de la translation induite par g sur son axe.

Le lemme suivant, qui aide à construire des automorphismes
hyperboliques, a été remarqué par plusieurs personnes ([CM], 1.5; [PI], lemme 5.5;
[Se], 1.6.5, Corollaire 1; [Ti], Corollaire 2.3; voir aussi le lemme 35 du

chapitre 8 de [GH] pour une généralisation aux isométries des espaces

hyperboliques à la Gromov):

Lemme 2. Soient g, h deux rotations de l'arbre X. Si Xs n Xh est

videy alors gh est une translation.

Preuve. Soit [p, q] le pont qui joint Xs à Xh. On voit alors, en

considérant successivement les trois classes de la partition de X associée à

[P>Q\> Que pour tout sommet x de X, on a d(ghx,x) ^ 2 .d(p}q); donc gh

est une translation.
Muni de la topologie de la convergence simple sur les sommets de X,

le groupe AutX des automorphismes de l'arbre X s'érige en groupe
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topologique. Supposons Xlocalement fini; pour tout sommet a, le stabilisateur

(AutA)x de x dans Aut X est alors un sous-groupe compact ouvert; et Aut A
est un groupe localement compact totalement discontinu.

Lemme 3. Soient X un arbre localement fini, et G un sous-groupe
de Aut X. S'il existe un sommet x de X dont le stabilisateur dans G

soit réduit au neutre, alors G est discret dans Aut X.

Preuve. L'intersection de G et du sous-groupe ouvert (Aut A)* est

réduite au neutre, donc G est discret.

Deux demi-droites d'un arbre X sont équivalentes si leur intersection est

encore une demi-droite (on voit immédiatement que cette relation sur
l'ensemble des demi-droites est bien une relation d'équivalence). Un bout de

X est une classe d'équivalence de demi-droites de X; on note Q(A) l'ensemble
des bouts de X. L'action de Aut X sur les demi-droites de X passe aux classes

d'équivalence, et fournit une action de Aut X sur Q(A). On note (Aut A)w le

stabilisateur du bout co dans Aut A, qu'on munit de la topologie de la

convergence simple sur X.
Si x est un sommet et co un bout de X, il existe une unique demi-droite

d'origine x qui représente co; on la note [x, co[. En particulier, Q(A) s'identifie
à l'ensemble des demi-droites d'origine x.

Si x, y sont des sommets, co un bout de X, et t un sommet sur la demi-droite
[x, co[ n [y, co[, la quantité d(x, t) - d(y, t) est indépendante de t; on la note
da(x,y). On a la relation immédiate mais importante (voir [Cl], §1):

(*) d^{x, z) d^{x,y) + da(y, z) quels que soient x, y, z e X

X

y

œ

z

Si g e (Aut X)a, et si x est un sommet de X, on pose

lco(g) dœ(x, gx)
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Le lemme suivant montrera entre autres que cette définition ne dépend pas du
choix du sommet x.

Lemme 4. Soient X un arbre, et eo un bout de X. Alors

i) (AutX)co ne contient pas d'inversion;

..x x
f 0 si g est elliptique

ii) L(g) i
± 1(g) si g est hyperbolique

iii) /w: (Aut X)w -> Z est un homomorphisme continu.

Preuve, i) Si g est une inversion et x un sommet de X, l'intersection de

[x, co[ et g[x, co[ est finie. Donc gco =£ co.

ii) Soit x le sommet apparaissant dans la définition de l(0. Soit d'abord
g un élément elliptique de (AutA)^; si y est un sommet dans Xg, la
demi-droite [y, co[ est fixée ponctuellement par g. Notons [t, co[ la demi-droite
[y, co[ n [x,<ù[ n [gx,co[. En calculant dw(gxyx) par rapport à t, on a:

/cote) ^te*. 0 - </(*, 0
gf) - </(*, t) car g/1 t

0

Soit maintenant g un élément hyperbolique de (Aut X)a ; si y est un sommet

sur l'axe de g, la demi-droite [y, co[ est contenue dans l'axe de g. Notons à

nouveau [t, co[ la demi-droite [y, co[ n [x, co[ n [gx, co[. En calculant d^igx, x)
par rapport à t, on a:

4te) d(gx, t) - d(x, t)

1(g) si g pointe vers co

J(g) si g-1 pointe vers co
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y
—•-

gx

00

iii) La continuité de /œ est claire. Si g, h e (Aut A)w, on a pour tout
sommet x de A:

L(gh) da(ghx,x) dw(ghx,hx) + da(hx,x) (par la relation (*))

k(g) + Uh)

puisque /Q(g) peut se calculer grâce à n'importe quel sommet de X. Ceci

termine la preuve du lemme 4.

Si a et co sont deux bouts distincts de l'arbre X, il existe une unique droite
de X, notée ]a,co[, telle que pour tout sommet x sur cette droite, on ait:

]a, co[ [x, a[ u [x, co[

On note (AutA){a)(û} le stabilisateur de la paire {a,co} dans Aut A, qu'on
munit toujours de la topologie de la convergence simple. Le groupe
(Aut A){tt)C0} laisse invariant la droite ]a,co[. On a donc un homomorphisme
de restriction ra(0 de (AutA){a;Co} dans le groupe des automorphismes de la
droite ]a,co[, qui est le groupe diédral infini Dœ. Cet automorphisme

^aco* (Aut A) | a # w
^ Dca

est évidemment continu.
On note A la réunion disjointe de A et de Q(A):

X= x]lQ(X)
Pour x, y sommets distincts de A, on pose:

Vxy {zeX:y e[x,z]} u {cû e Q(X):y e [x, co[}

On munit X de la topologie dont une base est formée des Vxy ainsi que des

parties finies de A; l'espace A devient ainsi un espace topologique séparé,
dans lequel A est une partie discrète, ouverte, et dense. En fait, si T est un
sous-arbre de A, son adhérence T dans Ä est la réunion de T et des bouts
de T. Les Vxy sont à la fois ouverts et fermés dans Ä, qui est totalement
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discontinu. Si X est localement fini, l'espace X est compact, et fournit ainsi

une compactification de l'arbre X. Enfin, les actions de AutX sur X et Q(X)
se «recollent» en une action par homéomorphismes sur X. Le lemme suivant
est encore dû à Tits ([T3], Lemma 1.6).

Lemme 5. Soit (7))/e/ une famille de sous-arbres de l'arbre X, qui
se rencontrent deux à deux. Alors nieITi est non vide.

Preuve. Supposons d'abord l'arbre A localement fini. Le lemme 1 montre
alors que la famille (T})/e/ de fermés de X a la propriété d'intersection finie
non vide, et la compacité de X permet de conclure. Pour ramener le cas

général au cas localement fini, nous utilisons un argument de la preuve
originale de Tits. Soit x un sommet fixé dans X. Notons [x, tt] le pont qui
joint {x} à f. Pour i, j e I, on voit facilement qu'on a [x, tj\ ç [.x3tj] ou
[x, ti] D [x, tj], car 7}n 7} est non vide. Donc S vieI[x, tt\ est un segment
géodésique ou une demi-droite, et de plus les sous-arbres de la famille
(S n Ti)ieI se rencontrent deux à deux. Comme S est localement fini, on
conclut.

2. Preuve de l'implication (i) => (ii) du Théorème

Nous scindons la preuve de l'implication (i) => (ii) en trois propositions qui,
ensemble, la démontrent.

Proposition 1. Soient X un arbre, et G un sous-groupe de Aut X.
Si G ne fixe aucun sommet, aucune arête, et aucun bout de X, alors G

contient une translation.

Proposition 2. Soient X un arbre, et G un sous-groupe de Aut A
contenant une translation. Si G ne fixe aucun bout et aucune paire de bouts
de X, alors G contient deux translations d'axes disjoints.

Proposition 3. Soient a, b deux translations d'axes disjoints dans un

arbre X. Le sous-groupe H <a,b> engendré par a et b est libre

sur les deux générateurs a, b; de plus H agit librement sur X.

Remarques. 1) Les trois propositions ci-dessus montrent que l'implication

(i) => (ii) du Théorème est en fait vraie pour tout arbre, sans hypothèse
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