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SOUS-GROUPES LIBRES
DANS LES GROUPES D’AUTOMORPHISMES D’ARBRES

par Isabelle PAYS et Alain VALETTE -

«Aupres de mon arbre, je vivais heureux...
J’aurais jamais dii m’éloigner d’mon arbre»

Georges Brassens

0. INTRODUCTION

Si ¥ est une classe de groupes, nous dirons que ¥ satisfait ’alternative
de Tits si tout groupe de % ou bien contient un sous-groupe résoluble d’indice
fini, ou bien contient un sous-groupe libre non abélien. La terminologie fait
bien siir référence au fameux résultat de Tits ([T2], Theorem 1 et Corollary 1)
qui assure que I’alternative est satisfaite par la classe des groupes lin¢aires en
caractéristique nulle, ainsi que par la classe des groupes finiment engendrés
linéaires en caractéristique positive. Par la suite, 1’alternative a été établie,
parfois sous des formes plus précises, pour de nombreuses classes inté-
ressantes; citons la classe des sous-groupes des groupes d’isotopie de
difféomorphismes de surfaces ([Mc], Theorem A), la classe des sous-groupes
des groupes hyperboliques au sens de Gromov ([Gr], §3.1; [GH], Théoréme 37
du Chapitre 8), la classe des produits a un relateur de groupes cycliques
[FLR]!). Mentionnons encore une preuve élémentaire de 1’alternative pour la
classe des groupes de Coxeter [H2], et des bornes sur 'indice d’un sous-groupe
resoluble d’indice fini dans un sous-groupe de GL,(C) sans sous-groupe libre
non abélien [Wa].

Dans le présent travail, on s’intéresse a la classe des sous-groupes du groupe
des automorphismes d’un arbre localement fini. Si I’on se fie 4 la philosophie
selon laquelle les groupes d’automorphismes d’arbres ont beaucoup d’ana-

1Y Plus précisément, il s’agit des groupes ayant une présentation de la forme
<ay,ay,...,ap; a;i' = 1(=1,...,n), Rm=1>

ou n 2 2,m>=22,2<e < o(i=1,...,n), e¢ R est un mot cycliquement réduit ou
apparaissent tous les a;.



152 [. PAYS ET A. VALETTE

logies avec les groupes linéaires (voir [C1] ou I’introduction de [Se] — ces
analogies sont a la base de I’analyse harmonique sur les arbres, cf. [C2], [N1],
[Sz], [V1]), il parait naturel de se demander si la classe des sous-groupes des
groupes d’automorphismes d’arbres localement finis satisfait I’alternative de
Tits. Mais la réponse est négative: en effet, pour tout premier p impair, Gupta
et Sidki [GS] ont construit dans le groupe des automorphismes de I’arbre
homogene de degré p + 1 un sous-groupe I', sur deux générateurs qui est un
p-groupe infini: I', ne contient aucun groupe libre non trivial (c’est un groupe
de torsion), et ne contient aucun sous-groupe résoluble d’indice fini (un
p-groupe résoluble et finiment engendré est fini)?).

Ce résultat semble indiquer qu’une caractérisation algébrique des sous-
groupes du groupe des automorphismes d’un arbre localement fini qui
contiennent un sous-groupe libre non abélien sera compliquée. Par contraste,
il peut étre intéressant de savoir qu’il existe une caractérisation simple des sous-
groupes qui contiennent un groupe libre non abélien agissant librement (au sens
ou les stabilisateurs des sommets de I’arbre dans ce groupe libre sont
triviaux)3). Cette caractérisation est notre résultat principal.

THEOREME. Soient X un arbre localement fini, et G un sous-groupe
de Aut X. Les propriétés suivantes sont équivalentes:

i) G ne fixe aucun sommet, aucune aréte, aucun bout et aucune paire
de bouts de X;

iil) G contient un sous-groupe libre non abélien qui agit librement sur X;
i) G contient un sous-groupe libre non abélien discret dans Aut X;
iv) L’adhérence G de G dans AutX n’est pas moyennable.

Nous renvoyons au §1 pour les rappels nécessaires sur la géomeétrie des
arbres et de leurs automorphismes. Signalons cependant que les points (iii) et
(iv) du théoréme doivent se comprendre comme suit: comme X est localement
fini, la topologie de la convergence simple sur les sommets de X fait de Aut X
un groupe localement compact. La condition (iv) exprime ainsi que le groupe
localement compact G n’est pas moyennable.

2) Dans une version antérieure de larticle, nous présentions comme une conjecture le
fait que la classe des sous-groupes des groupes d’automorphismes d’arbres localement finis
satisfait 1’alternative de Tits. Nous sommes reconnaissants a H. Bass et A. Lubotzky de nous
~avoir indiqué la référence [GS].

3) Pour un exemple d’arbre dont le groupe des automorphismes contient un sous-groupe
libre non abélien agissant non librement, voir la proposition 2 de [V2].



AUTOMORPHISMES D’ARBRES 153

Nous avions démontré le théoréme ci-dessus quand nous avons réalisé qu’il
était presque entiérement dii & Nebbia ([N2], Theorem 1); Nebbia était surtout
préoccupé par la non-moyennabilité des sous-groupes fermés de Aut X, de
sorte qu’il n’a énoncé que I’équivalence (i) ¢ (iv), et ce pour les sous-groupes
fermés de AutX; mais l’extension aux sous-groupes quelconques est
immeédiate. Quant a ’équivalence (iii) ¢ (iv), elle transparait dans la preuve
(voir d’ailleurs la remarque 3 a la page 375 de [N2]). Mentionnons aussi que
Woess a montré comment modifier ’équivalence (i) ¢ (iv) quand on s’intéresse
aux sous-groupes du groupe des automorphismes d’un graphe localement fini
([Wo], Theorems 1, 2). ’

D’autres portions du théoréme apparaissent ailleurs dans la littérature;
ainsi, I’équivalence (i) ¢ (ii) a été obtenue par Culler et Morgan ([CM],
Theorem 2.7), dans le contexte plus général des arbres réels, mais sous
I’hypothése supplémentaire que le groupe G contient un automorphisme
hyperbolique. Cette hypothése est en fait superflue, comme le montre un
résultat de Tits ([T1], Proposition 3.4) dans le cas des arbres ordinaires, et un
résultat de Tignol ([Ti], Proposition 2.4) dans le cas des arbres réels ). Notre
apport consiste donc essentiellement a donner une présentation unifiée de tous
ces résultats, a simplifier les preuves, et a relier les résultats a quelques
problémes classiques.

L’article se présente comme suit: au §1, nous donnons les rappels
nécessaires sur les arbres, leurs automorphismes, et leurs bouts. La preuve du
théoréme occupe les §§2 a 4, selon le schéma (i) = (ii) = (iii) = (iv) = (i); nous
avons aussi regroupé au §3 quelques rappels sur la moyennabilité. Le §5 est
consacré aux corollaires du théoréme. Enfin, au §6, nous discutons le cas des
arbres réels, et montrons que ’équivalence (i) ¢ (ii) du théoréme subsiste pour
les groupes d’isométries de ces espaces.

1. RAPPELS SUR LES ARBRES

Un arbre X est un graphe connexe sans circuit (les graphes que nous
considérons sont toujours non orientés, sans boucle ni aréte multiple).
L’arbre X est localement fini si tout sommet n’a qu’un nombre fini de voisins.
Si x, y sont des sommets d’un arbre X, il existe un unique chemin d’arétes

%) Attention & I’énoncé donné dans I’introduction de Iarticle de Culler et Morgan, ou

Phypothése supplémentaire a été omise! (Comparer dans [CM] le théoréme au milieu de la
page 573 avec le théoreme 2.7, pp. 582-583).
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minimal de x a y, qui est la géodésique de x a y; on notera [x, y] ’ensemble
des sommets de X sur la géodésique de x & y, et d(x,y) le nombre d’arétes
sur cette géodésique: d(x, y) est la distance de x a y (voir [Se], 1.2.2).

Un sous-arbre de ’arbre X est un sous-graphe connexe de X. Une demi-
droite de X est un sous-arbre isomorphe a une chaine simplement infinie:

&- A o> - i

Une droite («droit chemin» chez Serre, [Se] 1.6.4) est un sous-arbre isomorphe
a une chaine doublement infinie:

..... & . — P AP - > - ceans

Si T, T, sont deux sous-arbres de X, non vides et d’intersection réduite a au
plus un sommet, il existe un unique couple (p,,p,) € T; X T, tel que tout
sous-arbre de X qui rencontre 7; et 7, contient [p;,p,] (voir [Se], 1.6.4,
lemme 9; [T3], Lemma 1.4; [CM], 1.1); la géodésique [p;, p.] est le pont qui
joint 7, a T5:

P Py
T, T2

Si p, g sont deux sommets distincts fixés de X, et x un sommet quelconque,
nous noterons [x, f,,(x)] le pont qui joint {x} a [p,q]; ’application
Jog: X = [p, q] ainsi définie fournit les trois classes de la partition de X
associée & [p,ql: P = [, {p};0= [, {q};Y=X - (PuQ) (la classe Y
pouvant étre vide si [p, g] est une aréte).

........

........
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En particulier, si S, T sont deux sous-arbres non vides et disjoints de X, et si
[p, g] est le pont qui joint S a 7, on a Sc PetTc Q dans la partition
ci-dessus.

Toute intersection de sous-arbres est clairement un sous-arbre. Cela permet
de parler du sous-arbre engendré par une partie quelconque de X. Notons la
forme du sous-arbre engendré par trois sommets X, y, z: il existe un unique
sommet ¢ tel que {t} = [x,¥] N [, z] N [z, x].

LEMME 1 («Théoréme de Helly sur un arbre»). Soient Ty,T,..., T,
des sous-arbres de I’arbre X qui se rencontrent deux a deux. Alors leur
intersection est non vide.

Preuve. On travaille par induction sur n, en commengant par n = 3. Pour
i,je€{1,2,3},i <j, faisons choix d’un sommet X; dans 7; n 7;. Soit ¢
I’unique sommet de X tel que {¢} = [x12,X13] N [X12, X23] N [x23, x13]. Comme
[x;;, xix] est contenu dans T;, on voit que ¢ est dans 7} N 7> n T3 (pour une
autre preuve de ce cas, voir [CM] 1.2). Traitons maintenant le cas général, et
considérons les n — 1 sous-arbres T) N T1,, To.nT,, ..., T,y T,. Le cas
n = 3 déja traité montre que ces sous-arbres se rencontrent deux a deux.
L’hypothése d’induction permet donc de conclure. On trouvera une autre
preuve de ce lemme dans [Se], 1.6.5, lemme 10.

Un automorphisme de I’arbre X est une permutation g des sommets de X
qui préserve les arétes>). Cela revient a exiger que g soit une isométrie pour
la distance d. Un résultat élémentaire mais fondamental de Tits ([T1],
Proposition 3.2; voir aussi [Se], 1.6.4) montre qu’un arbre peut posséder trois
types d’automorphismes:

3) Remarque: si g est un automorphisme, g~ ! en est un aussi (la preuve de ce fait,
facile, utilise la structure d’arbre: I’énoncé correspondant sur un graphe connexe serait faux!).
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— Les automorphismes qui fixent au moins un sommet. Il s’agit des
automorphismes elliptiques, ou rotations. Si g est un tel automorphisme, on
note X¢ I’ensemble des points fixes de g; c’est un sous-arbre de X.

— Les automorphismes qui ne fixent aucun sommet, mais fixent une aréte
. (nécessairement unique). Il s’agit des inversions.

— Les automorphismes qui ne fixent ni sommet, ni aréte de X. Il s’agit
des automorphismes hyperboliques, ou translations. Si g est un tel automor-
phisme, il existe une unique droite de X invariante par g; cette droite s’appelle
I’axe de g, et g agit par translation le long de son axe.

Si g est une translation, la distance de translation I(g) de g est ’entier

[(g) = min d(gx, x)
xeX

Il s’agit donc de I’amplitude de Ia translation induite par g sur son axe.

Le lemme suivant, qui aide a construire des automorphismes hyper-
boliques, a été remarqué par plusieurs personnes ([CM], 1.5; [P1], lemme 5.5;
[Se], 1.6.5, Corollaire 1; [Ti], Corollaire 2.3; voir aussi le lemme 35 du
chapitre 8 de [GH] pour une généralisation aux isométries .des espaces
hyperboliques a la Gromov):

LEMME 2. Soient g, h deux rotations de ’arbre X. Si X&¢ n X" est
vide, alors gh est une translation.

Preuve. Soit [p,q] le pont qui joint X¢ a X”. On voit alors, en
considérant successivement les trois classes de la partition de X associée a
[p, ql, que pour tout sommet x de X, on a d(ghx,x) > 2.d(p, q); donc gh
est une translation.

Muni de la topologie de la convergence simple sur les sommets de X,
le groupe AutX des automorphismes de [’arbre X s’érige en groupe
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topologique. Supposons X localement fini; pour tout sommet x, le stabilisateur
(Aut X), de x dans Aut X est alors un sous-groupe compact ouvert; et Aut X
est un groupe localement compact totalement discontinu.

LEMME 3. Soient X un arbre localement fini, et G un sous-groupe
de AutX. S’il existe un sommet x de X dont le stabilisateur dans G
soit réduit au neutre, alors G est discret dans Aut X.

Preuve. L’intersection de G et du sous-groupe ouvert (Aut X), est
réduite au neutre, donc G est discret.

Deux demi-droites d’un arbre X sont équivalentes si leur intersection est
encore une demi-droite (on voit immédiatement que cette relation sur
I’ensemble des demi-droites est bien une relation d’équivalence). Un bout de
X est une classe d’équivalence de demi-droites de X; on note Q(X) I’ensemble
des bouts de X. L’action de Aut X sur les demi-droites de X passe aux classes
d’équivalence, et fournit une action de Aut X sur Q(X). On note (Aut X), le
stabilisateur du bout ® dans Aut.X, qu’on munit de la topologie de la
convergence simple sur X.

Si x est un sommet et ® un bout de X, il existe une unique demi-droite
d’origine x qui représente ®; on la note [x, ®[. En particulier, Q(X) s’identifie
a ’ensemble des demi-droites d’origine x.

Si x, y sont des sommets, @ un bout de X, et # un sommet sur la demi-droite
[x, o[ N [y, ®], la quantité d(x, t) — d(», t) est indépendante de #; on la note
dy(x,¥). On a la relation immédiate mais importante (voir [C1], §1):

*) do(x,2) = dy(x, ) + dy(¥, 2) quels que soient x, y,z € X .

Si g € (Aut X),, et si x est un sommet de X, on pose

l,(g) = dy(x, gx)
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Le lemme suivant montrera entre autres que cette définition ne dépend pas du
choix du sommet x.

LEMME 4. Soient X un arbre, et ® un bout de X. Alors
1) (AutX), ne contient pas d’inversion;
. 0 si g est elliptique
11) lm(g) = ) .
+ [(g) si g est hyperbolique

i) /ly: (Aut X), = Z est un homomorphisme continu.

Preuve. 1) Si g est une inversion et x un sommet de X, ’intersection de
[x, o[ et g[x, o[ est finie. Donc go # w.

i1) Soit x le sommet apparaissant dans la définition de /,. Soit d’abord
g un ¢élément elliptique de (Aut X),; si y est un sommet dans X¢, la
demi-droite [y, o[ est fixée ponctuellement par g. Notons [f, ®[ la demi-droite
[y, o] N [x, o] N [gx, o[. En calculant d,(gx, x) par rapport a ¢, on a:

l,(g) = d(gx, t) — d(x, 1)
= d(gx, gt) —d(x,t) car gt =1t
=0

Soit maintenant g un élément hyperbolique de (Aut X),; si y est un sommet
sur I’axe de g, la demi-droite [y, ®[ est contenue dans ’axe de g. Notons a
nouveau [z, o[ la demi-droite [y, o[ N [x, o[ N [gx, ©o[. En calculant d,(gx, x)
par rapport a £, on a:

lo(g) = d(gx, t) — dx, 1)
|- [(g) si g pointe vers ®
[(g) si g~ ! pointe vers
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y g t
..... i % - veeee O
s gX s X

i11) La continuité de /, est claire. Si g, & € (Aut X),, on a pour tout
sommet x de X:

l,(gh) = d,(ghx, x) = d,(ghx, hx) + d,(hx,x) (par la relation (*))
= lm(g) + lw(h)

puisque /,(g) peut se calculer griace a n’importe quel sommet de X. Ceci
termine la preuve du lemme 4.

Si a et o sont deux bouts distincts de ’arbre X, il existe une unique droite
de X, notée Ja,m[, telle que pour tout sommet x sur cette droite, on ait:

lo, o = [x,af U [x, o]

On note (Aut X)) le stabilisateur de la paire {o,®} dans Aut X, qu’on
munit toujours de la topologie de la convergence simple. Le groupe
(Aut X)(q, ) laisse invariant la droite Ja,®[. On a donc un homomorphisme
de restriction ry, de (Aut X),, )} dans le groupe des automorphismes de la
droite Ja, o[, qui est le groupe diédral infini D, . Cet automorphisme

Faw: (Aut Xj{a,m} - D,

est évidemment continu.
On note X la réunion disjointe de X et de Q(X):

x=x1l owx
Pour x, y sommets distincts de X, on pose:
Vo ={zeXiyelxz]l} u{oeQX):yelx, o[}

On munit X de la topologie dont une base est formée des V,, ainsi que des
parties finies de X; I’espace X devient ainsi un espace topologique séparé,
dans lequel X est une partie discréte, ouverte, et dense. En fait, si 7 est un
sous-arbre de X, son adhérence T dans X est la réunion de 7T et des bouts
de T. Les V,, sont a la fois ouverts et fermés dans )—(, qui est totalement
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discontinu. Si X est localement fini, espace X est compact, et fournit ainsi
une compactification de ’arbre X. Enfin, les actions de Aut X sur X et Q(X)
se «recollent» en une action par homéomorphismes sur X. Le lemme suivant
est encore di a Tits ([T3], Lemma 1.6).

LEMME 5. Soit (T:);e; une famille de sous-arbres de ’arbre X, qui
se rencontrent deux a deux. Alors n;.;T; est non vide.

Preuve. Supposons d’abord I’arbre X localement fini. Le lemme 1 montre
alors que la famille (7_}),-E ; de fermés de X a la propriété d’intersection finie
non vide, et la compacité de X permet de conclure. Pour ramener le cas
général au cas localement fini, nous utilisons un argument de la preuve
originale de Tits. Soit x un sommet fixé dans X. Notons [x, #;] le pont qui
joint {x} a T;. Pour i, j € I, on voit facilement qu’on a [x,#] C [x, ¢] ou
[x, t;] 2 [x,¢], car T;n T; est non vide. Donc S = uU;¢/[x, #;] est un segment
geodésique ou une demi-droite, et de plus les sous-arbres de la famille
(S n T));e; se rencontrent deux a deux. Comme S est localement fini, on
conclut.

2. PREUVE DE L’IMPLICATION (i) = (ii) DU THEOREME

Nous scindons la preuve de I’implication (i) = (ii) en trois propositions qui,
ensemble, la démontrent.

PROPOSITION 1. Soient X wun arbre, et G un sous-groupe de Aut X.
Si G ne fixe aucun sommet, aucune aréte, et aucun bout de X, alors G
contient une translation.

PROPOSITION 2. Soient X un arbre, et G un sous-groupe de AutX
contenant une translation. Si G ne fixe aucun bout et aucune paire de bouts
de X, alors G contient deux translations d’axes disjoints.

PROPOSITION 3. Soient a, b deux translations d’axes disjoints dans un
arbre X. Le sous-groupe H = <a,b> -engendré par a et b estlibre
sur les deux générateurs a, b; de plus H agit librement sur X.

Remarques. 1) Les trois propositions ci-dessus montrent que 1’impli-
cation (i) = (ii) du Théoreéme est en fait vraie pour tout arbre, sans hypothése
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de locale finitude. Nous verrons au § 6 qu’il en est de méme pour I'implication
réciproque.

2) La proposition 1 est due a Tits ([T1], Proposition 3.4; voir aussi [Ti],
Proposition 2.4, pour le cas des arbres réels). La proposition 2 est de Culler
et Morgan ([CM], Lemma 2.1). La premiére partie de la proposition 3 est due
a Hausmann ([Ha], Proposition 3.5); elle apparait aussi, comme d’ailleurs la
proposition 2, dans une preuve de Nebbia ([N2], p. 373). La seconde partie
de la proposition 3 a été obtenue par Culler et Morgan ([CM], Lemma 2.6)
avec une preuve tres différente de la notre.

2.a. PREUVE DE LA PROPOSITION 1

Nous allons montrer que, si le sous-groupe G de Aut X ne contient pas de
translation, alors G agit sur I’arbre X en fixant ou un sommet, ou une aréte,
ou un bout de X.

Nous commencons par utiliser une astuce standard pour pouvoir supposer
que G ne contient pas d’inversion: pour cela, nous considérons le premier
subdivisé barycentrique Y de X, c’est-a-dire I’arbre Y obtenu en ajoutant un
sommet en chaque milieu d’aréte de X. Il est clair que G peut €tre vu comme
sous-groupe de Aut Y, et que G ne contient pas d’inversion de Y. Notre
hypothése entraine donc que G consiste exclusivement en rotations de Y. Le
lemme 2 montre que, quels que soient les éléments g, 2 de G, les sous-arbres
Y¢ et Y” se rencontrent. Considérons ’action de G sur ¥ = v 11 Q(Y), et
remarquons que Q(Y) s’identifie canoniquement a Q(X). Le lemme 5 montre
alors que N,c Y¢ # ¢5. En d’autres termes, G possede un point fixe
dans Y; ce point fixe correspond soit a un sommet de X, soit & une aréte
de X, soit a un bout de X. La preuve est donc terminée.

Remarque. Jointe au lemme 1, la premiére partie du raisonnement
ci-dessus permet de retrouver le fait que, si G est un sous-groupe finiment
engendré de Aut X ne contenant pas de translation, alors G fixe un sommet
ou une aréte de X (voir [Se], Corollaire 3 de 1.6.5; [T3], 2.2.3).

2.b. PREUVE DE LA PROPOSITION 2

Nous dirons que deux translations d’un arbre sont transverses si I’inter-
section de leurs axes est finie.

LEMME 6. Soient g,,g, deux translations transverses; le sous-groupe

<&,8> de AutX engendré par g, et g, contient alors deux
translations d’axes disjoints.
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Preuve. Si les axes de g; et g, sont disjoints, il n’y a rien a démontrer.
Supposons donc que ’intersection de ces deux axes soit une géodésique [x, y].
Pour | n | assez grand, [x, y] et [g]x, g}y] sont disjoints.

n =N
I, | 9, 9,9
n n
Y 9 x 9

>SJl

Donc g, et g"g,g; " sont des translations d’axes disjoints. Ceci termine la
preuve du lemme 6.

Passons maintenant a la preuve de la proposition 2. Soit g une translation
dans G; notons Jo, ®[ son axe. Nous utiliserons constamment le fait que, si
h € G, alors hgh —! est une translation d’axe lk(a), A(®)[. Comme G ne fixe
aucune paire de bouts de X, il existe 2 € G tel que {h(0),h(w)} # {a,®}.
Quitte a permuter les roles de o et w, on peut supposer A(®) ¢{o,w®}.

h(w)

m..... .....w ~

A 4
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On distingue alors trois cas:

1) h(a) ¢{a,w}. Dans ce cas, g €t hgh -1 gont transverses, et on applique
le lemme 6.

2) h(a) = . Posons &’ = gh; donc A(a) = h’(a) = . En utilisant le fait
que o et o sont les seuls points fixes de g dans Q(X), on_ voit que les bouts
o, ®, h(w), h’(0) sont deux & deux distincts, et qu’on ne peut avoir simulta-
nément A2(®) = o et h'%(®) = a. Donc 'une au moins des intersections
{a,0} N {h*(0), F2(@)} et {o,0} N {h'2(a), h'2(w)} est vide. En d’autres
termes, ou bien g et high~2 sont transverses, ou bien g et h'*gh’—?% sont
transverses.

3) h(a) = o. Posons alors ©' = h(®), et g’ = hgh-'. Nous voulons
considérer g et g’ de maniére symétrique.

Comme G ne fixe aucun bout de X, il existe k € G tel que k(o) # a. En faisant
quelques dessins, il est facile de voir que, parmi les quatre droites
la, o, Ja,o’[, 1k(a), k(w)[, 1k(a),k(®")], on peut en trouver deux dont
Pintersection est finie. Cela veut dire que, parmi les quatre translations

g 8 ,kgk~1,kg'k-1!, deux au moins sont transverses. Le lemme 6 permet
une derniere fois de conclure.

2.c. PREUVE DE LA PROPOSITION 3

Nous commeng¢ons par un raffinement du «lemme du ping-pong» (voir
T2], Proposition 1.1; [H1], p. 130; [Ha], Proposition 3.1).
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LEMME 7. Soit E un ensemble dans lequel on s’est donné deux
sous-ensembles disjoints A et B; soient a,b deux permutations de E.
Notons A’ (resp. B’) [’ensemble des éléments de E dont [’orbite sous
<a> (resp. <b>) est contenue dans A (resp. B); notons encore Y le
complémentaire de A U B dans E, et F la plus petite partie de E
invariante sous H = <a,b>, et contenant A’ v B’ U Y. On fait les
hypothéses suivantes:

a) A’ et B’ sont non vides, et I’action de <a> (resp. <b>)
sur A’ (resp. B’) est libre;
B) Pour tout me Z\{O}:a"(BuY)C A et bm"(AuUY)CB.
Alors le groupe H est libre sur les deux générateurs a et b; de plus H
agit librement sur F.

Preuve du lemme 7. Nous allons démontrer simultanément les deux
assertions, en remarquant pour la seconde qu’il suffit de montrer que tout
¢lément x de A" U B” U Y a un stabilisateur trivial dans H. Soit donc w un
élément de H qui s’écrit comme un mot non trivial en a*!, b*!. Il y a trois
cas a considérer.

1) x € A’: on peut supposer vu I’hypothese (o) que w n’est pas une puissance
de a; on considére alors quatre sous-cas:

a) w commence et finit par une puissance de b; du fait de I’hypothése
(B): wx € B, et en particulier wx # x.

b) w commence par une puissance de b et finit par une puissance de a.
On peut donc écrire w = ha™, ou h est comme en a). Comme
a"x e A’, on a wx = ha"x € B, donc wx # x.

¢) w commence par une puissance de a et finit par une puissance de b.
Alors w~-! est comme en b), et par conséquent w~lx # x, donc
WX *+ X.

d) w commence et finit par une puissance de a. On peut écrire w = a”g,
avec g comme en b). Si on avait wx = X, on aurait gx = a ~"x, ce qui
est absurde puisque gx e Bet a "x e A’.

On a en particulier montré que w # 1 si w est un mot non trivial en

a*l, b*1l; donc H est libre sur les deux générateurs a et b.

2) x € B’: ce cas est symétrique du cas 1).

3) xeY:on awxeA (rtesp. wxeB) si w commence par une puissance
de a (resp. b); a fortiori wx # x. Ceci termine la preuve du lemme 7.

Pour démontrer la proposition 3, considérons le pont [p, g] qui joint I’axe
de a a ’axe de b, et considérons la partition de X associée a [p, q]:

&
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A= f,4p}; B=frlq}; Y=X-(A4UB)

(ou f,, est définie comme au §1). Nous allons appliquer le Jemme 7 a cette
partition de X. Remarquons que A’ est non vide, puisque A" contient 1’axe
de a; il en va symétriquement pour B. Les autres hypothéses du lemme 7 se
vérifient immédiatement, et le lemme 7 s’applique donc pour montrer que
H = <a,b> est un groupe libre sur les deux générateufs a et b, agissant
librement sur la partie F qui est le saturé par H de A’ U B” u Y. Il reste a
montrer que F = X.

Choisissons pour cela un réel r tel que 0 < r < min{/(@),/(b)}. Pour
n e N, appelons C, I’ensemble des sommets de X dont la distance a
Y U [p, q] est inférieure ou égale a nr, et montrons par récurrence sur n que
C, est contenu dans F, le cas n = 0 étant clair. Soient donc » > 0, et x un
sommet dans C,; vu la symétrie entre A et B, on peut supposer que x est
dans A. Soit [x, x’] le pont qui joint {x} a I’axe de a. Si x" n’est pas dans I’orbite
de p sous <a>, ou si x’ = p, alors x est dans A’, donc dans F. Supposons
donc x” = a*p, avec k € Z\{0}, et considérons le sommet a ~*x, qui est dans
A"UBUY. Si a-*xe A"u Y, alors xe F; si a *x e B (cas illustré
ci-dessous), alors la distance de ¢ ~*x a Y U [p, g] est la distance de a —*x
agq, et

d(a=*x,q) < d(x,p) — d(x’,p) = dx,p) — | k|.l(a) < (n—Dr
Ainsi a ~*x est dans C,_,, et ’hypothése de récurrence permet de conclure.

X

pj

-k %%
a X

TN
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Remarque. Si ’arbre X est localement fini, on peut donner une preuve
différente du fait que A agit librement sur X. Grace au lemme 7, on sait déja
que H est libre et qu’il existe au moins un sommet dont le stabilisateur dans
H soit trivial (prendre par exemple un sommet sur I’axe de ). Par le lemme 3,
H est un sous-groupe discret de Aut X. Si x est un sommet quelconque, le sous-
groupe H N (Aut X), est discret dans le groupe compact (Aut X),, donc
H N (Aut X), est fini. Comme H est libre, H n (Aut X), est trivial.

3. PREUVES DES IMPLICATIONS (ii) = (ii1) ET (iil) = (iv) DU THEOREME

MOYENNABILITE

L’implication (ii) = (iii) résulte immédiatement du lemme 3. Nous donnons
maintenant quelques rappels sur la moyennabilité qui rendront évidente
I’implication (ii1) = (iv).

Soit G un groupe localement compact. On dit que G est moyennable si,
chaque fois que G opere de maniere affine et continue sur un convexe compact
non vide C dans un espace vectoriel topologique localement convexe, il existe
dans C un point fixe pour l’action de G. Comme références sur la
moyennabilité, nous recommandons la petite monographie de Greenleaf [Gl],
le livre de Paterson [Pa], et I’article remarquable d’efficacité d’Eymard [Ey];
a propos de la moyennabilité des groupes discrets, 1’article original de
von Neumann [vN] vaut la peine d’étre lu; pour I’évolution historique de la
notion, on consultera avec profit le livre de Pier ([Pi], Chapitre 9). Nous
rasssemblons maintenant sans démonstration quelques faits classiques sur la
moyennabilité.

MOY A: Un groupe abélien est moyennable (c’est le théoreme de Markoff-
Kakutani, voir [Bo], Appendice du Chapitre IV).

MOY B: La moyennabilité est préservée par extensions; en d’autres termes,
sil>N—-G— G/N—1 est une suite exacte courte de groupes
localement compacts avec N et G/N moyennables, alors G est
moyennable (voir [Ey], II.1; [Gl], Theorem 2.3.3).

MOY C: La moyennabilité est préservée par limites inductives (voir [Gl],
Theorem 2.3.4).

MOY D: Un groupe compact est moyennable.

MOY E: Un sous-groupe fermé d’un groupe moyennable est moyennable
(voir [Ey], IV; [Gl], Theorem 2.3.2).
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MOY F: Un groupe libre non abélien (avec la topologie discréte) n’est pas
moyennable (voir [Ey], 11.4; [Gl], exemple 1.2.3; [vN], §5 de
I’Introduction).

L’implication (iii) = (iv) du théoréme est alors une conséquence immeédiate de
MOY E et MOY F.

4. PREUVE DE L’IMPLICATION (iv) = (i) DU THEOREME

Nous allons montrer que, si X est un arbre localement fini, les stabilisateurs
dans Aut X d’un sommet, d’une aréte, d’un bout, ou d’une paire de bouts
de X, sont des sous-groupes fermés moyennables.

— Stabilisateur d’un sommet: Si x est un sommet, (Aut X), est un sous-
groupe compact, donc moyennable par MOY D.

— Stabilisateur d’une aréte: Si [x, y] est une aréte, nous notons (Aut X), ,
son stabilisateur dans Aut X. Le sous-groupe compact ouvert (Aut X),
N (Aut X), est d’indice 2 ou 1 dans (Aut X)[., (selon qu’il existe une
inversion conservant [x, y] ou pas). Par conséquent (Aut X),, ,; est lui-méme
compact, donc moyennable.

— Stabilisqteur d’un bout: Soit ® un bout de X; considérons ’homomor-
phisme /,: (Aut X), > Z fourni par le lemme 4 (iii); comme Z est
moyennable ainsi que ses sous-groupes (par MOY A), il suffit par MOY B de
vérifier que le noyau Ker/, est moyennable. Pour cela, observons que la
famille de sous-groupes compacts ((AutX), N (AutX),).cx forme un
systeme dirigé: si x, y sont des sommets quelconques de X, et z un sommet
sur [x, o[ N [y, o[, on a:

(AutX), N (AutX),) U ((AutX), N (Aut X),) C (AutX), N (AutX),

puisque (AutX), N (AutX), fixe ponctuellement la demi-droite [x, ®[. La
limite inductive de ce systéme est I’ensemble des rotations dans (Aut X )e, qui
coincide avec Ker/, par le lemme 4 (ii). Le groupe Ker/, est limite inductive
de groupes compacts, il est donc moyennable par MOY C.

— Stabilisateur d’une paire de bouts: Soit {0, ®} une paire de bouts de X ;
considérons I’homomorphisme r,,: (Aut X )Mo, 0} = Do introduit vers la fin du
§1. Comme D, est un groupe résoluble, tous ses sous-groupes sont
moyennables, et il suffit par MOY B de vérifier que le noyau Kerr,, est

moyennable; mais ce noyau est Myejo,o((AutX)(q o) N (AutX),), qui est
compact.
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5. QUELQUES COROLLAIRES DU THEOREME

Les trois premiers corollaires sont quasiment immédiats. Le premier est un
résultat assez connu de Tits ([T3], 3.4 et 2.3.6); les deux suivants sont diis a
Nebbia ([N2], Théoréme 2 et Remarque 3, p. 375).

COROLLAIRE 1. Soient X wun arbre, et G un sous-groupe de Aut X
contenant un sous-groupe résoluble d’indice fini. Alors G fixe un sommet,
ou une aréte, ou un bout, ou une paire de bouts de X.

Preuve. Vu les hypothéses, G ne peut contenir de sous-groupe libre non
abélien. Le résultat provient alors de I’implication (i) = (ii) du Théoréme, vraie
sans hypothe¢se de locale finitude de X (voir la remarque 1 du §2).

COROLLAIRE 2. Soit Xy [’arbre homogeéne de degré N, ou tout
sommet a exactement N voisins (3 < N < ), soit G un sous-groupe de
Aut X agissant transitivement sur Xy. Les propriétés suivantes sont
équivalentes:

(1) G fixe un bout de Xy,
(1) L’adhérence G de G dans AutXy est moyennable.

Preuve. Comme G agit transitivement, G ne peut fixer aucun sommet,
aucune aréte, et aucune paire de bouts de Xy (on utilise N > 3 pour ce
dernier point). L’équivalence (i) ¢ (iv) du Théoréme permet de conclure.

COROLLAIRE 3. Soient X un arbre localement fini, et G un sous-
groupe fermé de AutX. Les propriétés suivantes sont équivalentes:

(1) G n’est pas moyennable;
(i) G contient un sous-groupe discret qui est libre non abélien.
Preuve. Immédiate.

Nous mentionnons le corollaire 3 du fait de ses liens avec un probléme
classique: si % est une classe de groupes localement compacts, la non-
moyennabilité d’un groupe G de ¥ est-elle due a la présence dans G d’un sous-
groupe discret qui est libre non abélien? Une conjecture fort répandue sous
le nom de «conjecture de von Neumann»®) affirmait que la réponse devait
étre affirmative pour la classe % des groupes discrets: rappelons que
Ol’shanskii [Ol] a donné les premiers exemples de groupes discrets qui

) Nous n’avons trouvé dans larticle «Zur allgemeinen Theorie des Masses» de
von Neumann [vN], qu’un seul passage qui semble se rapporter au probleme qui nous occupe.
Au §4 de son Einleitung, von Neumann énonce quatre principes générateurs pour la classe
des groupes moyennables discrets: il s’agit de la version discréte des principes MOY A,
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montrent que la réponse est négative pour cette classe; plus récemment
Gromov a construit une infinité non dénombrable de tels exemples (voir [Gr],
Corollary 5.5.E; [GH], Théoréme 7 du Chapitre 12). Par contre, la réponse
au probléme est affirmative pour la classe ¥ des groupes discrets linéaires:
c’est une conséquence banale du théoréme de Tits mentionné tout au début
du présent article. Comme autre résultat positif, citons la réponse affirmative
au probléme pour la classe 4 des groupes localement compacts presque
connexes (c’est-a-dire dont le quotient par la composante connexe du neutre
est compact): c’est un résultat de Rickert [Ri] (voir aussi la page 132 de [H1]
pour le cas des groupes de Lie presque connexes). Le corollaire 3 ci-dessus
montre que la réponse au probléme est encore affirmative pour la classe % des
sous-groupes fermés des groupes d’automorphismes d’arbres localement finis.

COROLLAIRE 4. Soient X un arbre, et G un sous-groupe de Aut X.
On suppose que G n’a qu’un nombre fini d’orbites sur les sommets de X,
et que tout sommet de X a un stabilisateur fini dans G. On a alors ’alter-
native suivante: ou bien G est fini, ou bien G contient un sous-groupe
cyclique infini d’indice fini, ou bien G contient un sous-groupe libre non
abélien.

Preuve. Supposons que G ne contienne pas de sous-groupe libre non
abelien. L’implication (i) = (ii) du Théoréme (vraie sans hypothése de locale
finitude de X) conduit a considérer quatre cas, comme au §4 ci-dessus.

— G fixe un sommet x: Alors le groupe G et I’arbre X sont finis, comme
consequences immédiates des hypothéses.

— G fixe une aréte [x, y]: Le sous-groupe G N (Aut X), N (Aut X), est alors

d’indice 1 ou 2 dans G, et est justiciable du cas précédent. A nouveau, G et
X sont finis.

— G fixe un bout ®: Le raisonnement fait au §4 montre que G N Ker/, est
la limite inductive du systéme dirigé de groupes finis (G N (Aut X),),cx, dont
les ordres sont uniformément bornés sur X, vu les hypothéses. Donc

MOY B, MOY C, MOY D que nous avons énoncés dans notre §3. Au §6 de son introduction,

von Neumann a ce commentaire: «Jetzt diirfen wir wohl sagen: es kommt nur auf die

Eigenschaften der (abstrakten) Gruppe G an. Denn der gewiinschte allgemeine Mafbegriff

ist (unter den betrachteten Verhdltnissen) sicher vorhanden, wenn sie mit Hilfe der
Erzeugungs-Prinzipien A.-D. in §4 gewonnen werden kann, und er existiert bestimmt nicht
wenn G eine freie Untergruppe mit zwei Erzeugenden o, T enthdlt [...]. » Ceci suggere qué
von E\Ieumann avait le probléme en téte, sans qu’il prenne la peine de I’expliciter; mais il nous
parait abusif de lui attribuer une conjecture allant dans un sens ou l'autre. D’aprés [Pi]
Pp. 248-249, Day est le premier a avoir posé le probléme pour la classe des groupes discrets;

et en effet, I’énoncé apparait explicitement a la derniére ligne du §4 de [Da]; mais Day n’en
fait pas non plus une conjecture.
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G n Ker/, est un groupe fini. On ne peut avoir G = G n Ker/,, qui
impliquerait que G soit fini, et contredirait la finitude du nombre d’orbites
de G sur les sommets. Donc /,(G) est un groupe cyclique infini, et G contient
un sous-groupe cyclique infini d’indice fini. On voit facilement que, dans ce
cas, ’arbre X posséde une unique droite o, o[ le long de laquelle sont attachés
des arbres finis qui se répétent périodiquement (avec une période n si

ly (G) = nZ).
N

&— h'S
N\ 4

n

— G fixe une paire de bouts {a,w}: Comme G n’a qu’un nombre fini
d’orbites sur les sommets de la droite Jo,®[, on voit que r,,(G) est un
sous-groupe infini du groupe D,. Donc r,,(G) contient un sous-
groupe infini cyclique d’indice fini. D’autre part, G n Kerr,, coincide avec
Nyele,o(G N (Aut X),), qui est un groupe fini par hypothése. Donc G
lui-méme contient un sous-groupe infini cyclique d’indice fini. L’allure de
I’arbre X est la méme qu’au cas précédent.

Remarques. 1) On peut démontrer différemment le corollaire 4 quand
Parbre est localement fini. En effet, du fait des hypothéses, G est alors un
groupe finiment engendré, et si dg désigne la métrique sur G associée a une
partie génératrice finie S de G, I’espace métrique (G, ds) est quasi-isométrique
a ’espace métrique (X, d) (pour ces assertions, voir [GH], Proposition 19 du
Chapitre 4). L’espace (X, d) est un espace hyperbolique au sens de Gromov,
et ’hyperbolicité est invariante par quasi-isométrie ([GH]), Théoréme 12 du
Chapitre 5); donc G est un groupe hyperbolique au sens de Gromov, et la
trichotomie annoncée est valable pour ces groupes ([Gr], §3.1; [GH],
Théoreme 37 du Chapitre 8).

2) En utilisant la théorie de Bass-Serre des groupes fondamentaux de
graphes de groupes, Scott et Wall puis Bass et Kulkarni ont obtenu un résultat
plus précis que le corollaire 4: sous les mémes hypotheses, le groupe G contient
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un sous-groupe libre d’indice fini sur zéro, un ou plusieurs générateurs
(voir [SW], Theorem 7.3 et [BK], Corollary 2.8)7).

6. LE CAS DES ARBRES REELS

Un arbre réel est un espace métrique entre deux points duquel passe un arc
unique, qui est de plus isométrique a un intervalle de R. Ces objets ont €té
introduits par Tits [T3], sous le nom d’«arbres». Nous renvoyons a ’article
original de Tits pour le rdle des arbres réels en algebre, et aux travaux de
Morgan-Shalen [MS], Culler-Morgan [CM] et Paulin [Pl] pour leur rdle en
topologie. Notons qu’un arbre ordinaire peut étre vu comme un arbre réel, en
remplacant chaque aréte par une copie isométrique de I’intervalle [0, 1], et en
prolongeant la métrique d de maniere €vidente.

Une demi-droite (resp. droite) d’un arbre réel X est une image isométrique
de la demi-droite [0, oo[ (resp. la droite R).

On note Isom X le groupe des isométries de ’arbre réel X. La classification
des isométries est encore plus simple que pour un arbre ordinaire (voir [T3],
3.1; [MS], Theorem II.2.3). Les isométries sont de deux types:

— Les isométries qui fixent au moins un point. Il s’agit des isométries
elliptiques, ou rotations.

— Les isométries qui ne fixent aucun point. Il s’agit des isométries
hyperboliques, ou translations. Comme dans le cas des arbres ordinaires, une
telle isométrie g possede une unique droite invariante, appelée axe de g, et le
long de laquelle g agit par translation.

Un bout de ’arbre réel X est un élément de la limite projective

lim TC()(X"- B)

ou B parcourt les parties bornées fermées de X, et m,(X — B) désigne ’espace
des composantes connexes de X — B (voir [CM], §2; [Cl], § 1). Lorsque
Parbre réel X est complet, cette définition équivaut a celle de Tits ([T3], 1.1)
analogue a celle que nous avons donnée au §1 en termes de classes d’équi-
valence de demi-droites #). Si on le désire, on peut avec Tits ne considérer que
des arbres réels complets: en effet la complétion d’un arbre réel est encore un
arbre réel ([MS], Corollary II.1.10).

7y Notons X, Darbre homogéne de degré infini, ou tout sommet a une infinité
Qénombrable de voisins. Soit G un groupe discret opérant transitivement avec stabilisateurs
finis sur Xo. Dans [V1], le second auteur construit des représentations uniformément
bornées non unitarisables de G. L’existence de telles représentations implique la non-

moyennabilité¢ de G. Le corollaire 4 ou le résultat de Bass-Kulkarni donnent la raison de cette
non-moyennabilité.
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PROPOSITION 4. Soient X wun arbre réel, et G un sous-groupe de
Isom X. Les propriétés suivantes sont équivalentes:

() G ne fixe aucun point, aucun bout, et aucune paire de bouts de X;

(1) G contient un sous-groupe libre non abélien qui agit librement et
proprement discontiniiment sur X.

Preuve. (i) = (i) Nous avons pris soin, aux §§1-2, d’écrire la preuve de
I’'implication (i) = (ii) du Théoréme de maniére a ce qu’elle s’adapte mutatis
mutandis au cas des arbres réels. De plus, il est facile de vérifier a la propo-
sition 3 que le groupe libre engendré par deux translations d’axes disjoints agit
proprement discontiniment (voir la preuve de la proposition 3, ou le
lemme 2.6 de [CM]).

(i) = (i) Montrons que, si G fixe un point, un bout ou une paire de bouts
de X, alors G ne peut contenir de groupe libre non abélien agissant librement
sur X. C’est clair si G fixe un point. Si G fixe un bout w, on fait la remarque
suivante: si g, g, sont deux translations dans G, ’intersection de leurs axes
contient une demi-droite [x, w[. Quitte & remplacer g; par g; ', on peut
supposer g;[x, o] C [x, o[ (i = 1,2); alors g gx = ggx, donc gigg; 'g; "
fixe x. Cette remarque montre que les seuls sous-groupes libres de G agissant
librement sur X sont sur zéro ou un générateur. Enfin, si G fixe une paire de
bouts {a,}, une translation dans G a pour axe la droite Ja, ®[, donc deux
translations dans G commutent. A nouveau, on voit que les seuls sous-groupes
libres de G agissant librement sur X sont sur zéro ou un géneérateur.

Grace a la proposition 4, on déduit immédiatement I’analogue pour les
arbres réels du corollaire 1 du §5: si X est un arbre réel, et G un sous-groupe
de Isom X qui contient un sous-groupe résoluble d’indice fini, alors G fixe un
point, un bout ou une paire de bouts de X. Rappelons que ce résultat est dii
a Tits ([T3], 3.4 et 2.3.6).

AJOUTE SUR EPREUVES: Identifions PSL,(R) avec le groupe des isométries orientées du
disque de Poincaré D. Il résulte des preuves de la Proposition et du Théo-
réeme 1 de [H1] que I’alternative de Tits pour PSL,(R) prend la forme suivante: un
sous-groupe G de PSL,(R) contient un sous-groupe libre non abélien si et seulement
si G ne fixe aucun point de D, aucun point au bord de D, et aucune paire de points
au bord de D. L’analogie entre cet énoncé et I’équivalence (i) ¢ (ii) de notre théoréme
est évidemment frappante.

8) Ces deux définitions ne sont pas équivalentes pour un arbre réel non complet, comme
le montre ’exemple banal de ’intervalle semi-ouvert ]0, 1].
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