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VEnseignement Mathématique, t. 37 (1991), p. 151-174

SOUS-GROUPES LIBRES

DANS LES GROUPES D'AUTOMORPHISMES D'ARBRES

par Isabelle Pays et Alain Valette

«Auprès de mon arbre, je vivais heureux...

J'aurais jamais dû m'éloigner d'mon arbre»

Georges Brassens

0. Introduction

Si Vf est une classe de groupes, nous dirons que Vf7 satisfait l'alternative
de Tits si tout groupe de Vf7 ou bien contient un sous-groupe résoluble d'indice

fini, ou bien contient un sous-groupe libre non abélien. La terminologie fait
bien sûr référence au fameux résultat de Tits ([T2], Theorem 1 et Corollary 1)

qui assure que l'alternative est satisfaite par la classe des groupes linéaires en

caractéristique nulle, ainsi que par la classe des groupes finiment engendrés

linéaires en caractéristique positive. Par la suite, l'alternative a été établie,
parfois sous des formes plus précises, pour de nombreuses classes

intéressantes; citons la classe des sous-groupes des groupes d'isotopie de

difféomorphismes de surfaces ([Me], Theorem A), la classe des sous-groupes
des groupes hyperboliques au sens de Gromov ([Gr], § 3.1 ; [GH], Théorème 37

du Chapitre 8), la classe des produits à un relateur de groupes cycliques
[FLR]!). Mentionnons encore une preuve élémentaire de l'alternative pour la
classe des groupes de Coxeter [H2], et des bornes sur l'indice d'un sous-groupe
résoluble d'indice fini dans un sous-groupe de GLn(C) sans sous-groupe libre
non abélien [Wa].

Dans le présent travail, on s'intéresse à la classe des sous-groupes du groupe
des automorphismes d'un arbre localement fini. Si l'on se fie à la philosophie
selon laquelle les groupes d'automorphismes d'arbres ont beaucoup d'ana-

') Plus précisément, il s'agit des groupes ayant une présentation de la forme

< a\,a2, af 1 (/ 1,n), Rm 1 >
où n ^ 2, m ^ 2, 2 C ^ °°(i n), et R est un mot cycliquement réduit où
apparaissent tous les tf/.
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logies avec les groupes linéaires (voir [Cl] ou l'introduction de [Se] - ces

analogies sont à la base de l'analyse harmonique sur les arbres, cf. [C2], [NI],
[Sz], [VI]), il paraît naturel de se demander si la classe des sous-groupes des

groupes d'automorphismes d'arbres localement finis satisfait l'alternative de

Tits. Mais la réponse est négative: en effet, pour tout premier p impair, Gupta
et Sidki [GS] ont construit dans le groupe des automorphismes de l'arbre
homogène de degré p + 1 un sous-groupe Yp sur deux générateurs qui est un

/^-groupe infini: Yp ne contient aucun groupe libre non trivial (c'est un groupe
de torsion), et ne contient aucun sous-groupe résoluble d'indice fini (un

/7-groupe résoluble et finiment engendré est fini)2).
Ce résultat semble indiquer qu'une caractérisation algébrique des sous-

groupes du groupe des automorphismes d'un arbre localement fini qui
contiennent un sous-groupe libre non abélien sera compliquée. Par contraste,
il peut être intéressant de savoir qu'il existe une caractérisation simple des sous-

groupes qui contiennent un groupe libre non abélien agissant librement (au sens

où les stabilisateurs des sommets de l'arbre dans ce groupe libre sont

triviaux)3). Cette caractérisation est notre résultat principal.

Théorème. Soient X un arbre localement fini, et G un sous-groupe
de Aut X. Les propriétés suivantes sont équivalentes:

i) G ne fixe aucun sommet, aucune arête, aucun bout et aucune paire
de bouts de X;

ii) G contient un sous-groupe libre non abélien qui agit librement sur X;
iii) G contient un sous-groupe libre non abélien discret dans Aut X;
iv) L'adhérence G de G dans Aut A n'est pas moyennable.

Nous renvoyons au § 1 pour les rappels nécessaires sur la géométrie des

arbres et de leurs automorphismes. Signalons cependant que les points (iii) et

(iv) du théorème doivent se comprendre comme suit : comme X est localement

fini, la topologie de la convergence simple sur les sommets de X fait de Aut A
un groupe localement compact. La condition (iv) exprime ainsi que le groupe
localement compact G n'est pas moyennable.

2) Dans une version antérieure de l'article, nous présentions comme une conjecture le
fait que la classe des sous-groupes des groupes d'automorphismes d'arbres localement finis
satisfait l'alternative de Tits. Nous sommes reconnaissants à H. Bass et A. Lubotzky de nous
avoir indiqué la référence [GS].

3) Pour un exemple d'arbre dont le groupe des automorphismes contient un sous-groupe
libre non abélien agissant non librement, voir la proposition 2 de [V2].
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Nous avions démontré le théorème ci-dessus quand nous avons réalisé qu'il
était presque entièrement dû à Nebbia ([N2], Theorem 1); Nebbia était surtout

préoccupé par la non-moyennabilité des sous-groupes fermés de AutX, de

sorte qu'il n'a énoncé que l'équivalence (i) <=> (iv), et ce pour les sous-groupes
fermés de AutX; mais l'extension aux sous-groupes quelconques est

immédiate. Quant à l'équivalence (iii) (iv), elle transparaît dans la preuve

(voir d'ailleurs la remarque 3 à la page 375 de [N2]). Mentionnons aussi que
Woess a montré comment modifier l'équivalence (i) (iv) quand on s'intéresse

aux sous-groupes du groupe des automorphismes d'un graphe localement fini
([Wo], Theorems 1, 2).

D'autres portions du théorème apparaissent ailleurs dans la littérature;
ainsi, l'équivalence (i) & (ii) a été obtenue par Culler et Morgan ([CM],
Theorem 2.7), dans le contexte plus général des arbres réels, mais sous

l'hypothèse supplémentaire que le groupe G contient un automorphisme
hyperbolique. Cette hypothèse est en fait superflue, comme le montre un
résultat de Tits ([Tl], Proposition 3.4) dans le cas des arbres ordinaires, et un
résultat de Tignol ([Ti], Proposition 2.4) dans le cas des arbres réels4). Notre
apport consiste donc essentiellement à donner une présentation unifiée de tous
ces résultats, à simplifier les preuves, et à relier les résultats à quelques
problèmes classiques.

L'article se présente comme suit: au §1, nous donnons les rappels
nécessaires sur les arbres, leurs automorphismes, et leurs bouts. La preuve du
théorème occupe les §§2 à 4, selon le schéma (i) => (ii) => (iii) => (iv) (i); nous
avons aussi regroupé au §3 quelques rappels sur la moyennabilité. Le §5 est
consacré aux corollaires du théorème. Enfin, au §6, nous discutons le cas des

arbres réels, et montrons que l'équivalence (i) o (ii) du théorème subsiste pour
les groupes d'isométries de ces espaces.

1. Rappels sur les arbres

Un arbre X est un graphe connexe sans circuit (les graphes que nous
considérons sont toujours non orientés, sans boucle ni arête multiple).
L'arbre X est localement fini si tout sommet n'a qu'un nombre fini de voisins.
Si Xj y sont des sommets d'un arbre X, il existe un unique chemin d'arêtes

4) Attention à l'énoncé donné dans l'introduction de l'article de Culler et Morgan, où
l'hypothèse supplémentaire a été omise! (Comparer dans [CM] le théorème au milieu de la
page 573 avec le théorème 2.7, pp. 582-583).
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minimal de x à y, qui est la géodésique de x à y; on notera [xyy] l'ensemble
des sommets de X sur la géodésique de x à y, et d(xyy) le nombre d'arêtes

sur cette géodésique: d(xyy) est la distance de x à y (voir [Se], 1.2.2).

Un sous-arbre de l'arbre X est un sous-graphe connexe de X. Une demi-

droite de X est un sous-arbre isomorphe à une chaîne simplement infinie:

Une droite («droit chemin» chez Serre, [Se] 1.6.4) est un sous-arbre isomorphe
à une chaîne doublement infinie:

Si T{, T2 sont deux sous-arbres de X, non vides et d'intersection réduite à au

plus un sommet, il existe un unique couple (P\,P2) e T\ x T2 tel que tout
sous-arbre de X qui rencontre Tx et T2 contient [p\ypi] (voir [Se], 1.6.4,
lemme 9; [T3], Lemma 1.4; [CM], 1.1); la géodésique [p\ypi\ est le pont qui
joint Tj à T2:

Si p, q sont deux sommets distincts fixés de X, et x un sommet quelconque,
nous noterons [x, fpq{x)\ le pont qui joint {x} à [pyq\\ l'application
fpq\ X [p3q] ainsi définie fournit les trois classes de la partition de X
associée à \p,q]: P« f~ql {p}; Q/M' {q}; YX -(PuQ)(laclasse Y

pouvant être vide si [p, q] est une arête).
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En particulier, si S, T sont deux sous-arbres non vides et disjoints de X, et si

[p, q] est le pont qui joint S ä T, onaSçPetrçQ dans la partition

ci-dessus.

Toute intersection de sous-arbres est clairement un sous-arbre. Cela permet

de parler du sous-arbre engendré par une partie quelconque de X. Notons la

forme du sous-arbre engendré par trois sommets x, y, z' il existe un unique

sommet t tel que {^} [x,y] n [y,z] n [z,x].

X

Lemme 1 («Théorème de Helly sur un arbre»). Soient T{, T2, Tn

des sous-arbres de l'arbre X qui se rencontrent deux à deux. Alors leur

intersection est non vide.

Preuve. On travaille par induction sur n, en commençant par n 3. Pour

ij e {1,2,3}, / < j, faisons choix d'un sommet Xq dans Tt n 7}. Soit t
l'unique sommet de X tel que {/} [xi2,Xi3] n [xi2,x23] n [x23,Xi3]. Comme

[Xjj ,Xj/c] est contenu dans 7), on voit que t est dans Tx n T2 n T3 (pour une

autre preuve de ce cas, voir [CM] 1.2). Traitons maintenant le cas général, et

considérons les n - T sous-arbres T{ n Tn,T2n Tn, Tn-\ n Tn. Le cas

n — 3 déjà traité montre que ces sous-arbres se rencontrent deux à deux.

L'hypothèse d'induction permet donc de conclure. On trouvera une autre

preuve de ce lemme dans [Se], 1.6.5, lemme 10.

Un automorphisme de l'arbre X est une permutation g des sommets de X
qui préserve les arêtes5). Cela revient à exiger que g soit une isométrie pour
la distance d. Un résultat élémentaire mais fondamental de Tits ([Tl],
Proposition 3.2; voir aussi [Se], 1.6.4) montre qu'un arbre peut posséder trois
types d'automorphismes:

5) Remarque: si g est un automorphisme, g
1

en est un aussi (la preuve de ce fait,
facile, utilise la structure d'arbre: l'énoncé correspondant sur un graphe connexe serait faux!).



156 I. PAYS ET A. VALETTE

— Les automorphismes qui fixent au moins un sommet. Il s'agit des

automorphismes elliptiques, ou rotations. Si g est un tel automorphisme, on
note Xs l'ensemble des points fixes de g; c'est un sous-arbre de X.

— Les automorphismes qui ne fixent aucun sommet, mais fixent une arête

(nécessairement unique). Il s'agit des inversions.

— Les automorphismes qui ne fixent ni sommet, ni arête de X. Il s'agit
des automorphismes hyperboliques, ou translations. Si g est un tel automorphisme,

il existe une unique droite de Xinvariante par g; cette droite s'appelle
Vaxe de g, et g agit par translation le long de son axe.

Si g est une translation, la distance de translation 1(g) de g est l'entier

1(g) min d(gx,x)
xeX

Il s'agit donc de l'amplitude de la translation induite par g sur son axe.

Le lemme suivant, qui aide à construire des automorphismes
hyperboliques, a été remarqué par plusieurs personnes ([CM], 1.5; [PI], lemme 5.5;
[Se], 1.6.5, Corollaire 1; [Ti], Corollaire 2.3; voir aussi le lemme 35 du

chapitre 8 de [GH] pour une généralisation aux isométries des espaces

hyperboliques à la Gromov):

Lemme 2. Soient g, h deux rotations de l'arbre X. Si Xs n Xh est

videy alors gh est une translation.

Preuve. Soit [p, q] le pont qui joint Xs à Xh. On voit alors, en

considérant successivement les trois classes de la partition de X associée à

[P>Q\> Que pour tout sommet x de X, on a d(ghx,x) ^ 2 .d(p}q); donc gh

est une translation.
Muni de la topologie de la convergence simple sur les sommets de X,

le groupe AutX des automorphismes de l'arbre X s'érige en groupe
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topologique. Supposons Xlocalement fini; pour tout sommet a, le stabilisateur

(AutA)x de x dans Aut X est alors un sous-groupe compact ouvert; et Aut A
est un groupe localement compact totalement discontinu.

Lemme 3. Soient X un arbre localement fini, et G un sous-groupe
de Aut X. S'il existe un sommet x de X dont le stabilisateur dans G

soit réduit au neutre, alors G est discret dans Aut X.

Preuve. L'intersection de G et du sous-groupe ouvert (Aut A)* est

réduite au neutre, donc G est discret.

Deux demi-droites d'un arbre X sont équivalentes si leur intersection est

encore une demi-droite (on voit immédiatement que cette relation sur
l'ensemble des demi-droites est bien une relation d'équivalence). Un bout de

X est une classe d'équivalence de demi-droites de X; on note Q(A) l'ensemble
des bouts de X. L'action de Aut X sur les demi-droites de X passe aux classes

d'équivalence, et fournit une action de Aut X sur Q(A). On note (Aut A)w le

stabilisateur du bout co dans Aut A, qu'on munit de la topologie de la

convergence simple sur X.
Si x est un sommet et co un bout de X, il existe une unique demi-droite

d'origine x qui représente co; on la note [x, co[. En particulier, Q(A) s'identifie
à l'ensemble des demi-droites d'origine x.

Si x, y sont des sommets, co un bout de X, et t un sommet sur la demi-droite
[x, co[ n [y, co[, la quantité d(x, t) - d(y, t) est indépendante de t; on la note
da(x,y). On a la relation immédiate mais importante (voir [Cl], §1):

(*) d^{x, z) d^{x,y) + da(y, z) quels que soient x, y, z e X

X

y

œ

z

Si g e (Aut X)a, et si x est un sommet de X, on pose

lco(g) dœ(x, gx)
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Le lemme suivant montrera entre autres que cette définition ne dépend pas du
choix du sommet x.

Lemme 4. Soient X un arbre, et eo un bout de X. Alors

i) (AutX)co ne contient pas d'inversion;

..x x
f 0 si g est elliptique

ii) L(g) i
± 1(g) si g est hyperbolique

iii) /w: (Aut X)w -> Z est un homomorphisme continu.

Preuve, i) Si g est une inversion et x un sommet de X, l'intersection de

[x, co[ et g[x, co[ est finie. Donc gco =£ co.

ii) Soit x le sommet apparaissant dans la définition de l(0. Soit d'abord
g un élément elliptique de (AutA)^; si y est un sommet dans Xg, la
demi-droite [y, co[ est fixée ponctuellement par g. Notons [t, co[ la demi-droite
[y, co[ n [x,<ù[ n [gx,co[. En calculant dw(gxyx) par rapport à t, on a:

/cote) ^te*. 0 - </(*, 0
gf) - </(*, t) car g/1 t

0

Soit maintenant g un élément hyperbolique de (Aut X)a ; si y est un sommet

sur l'axe de g, la demi-droite [y, co[ est contenue dans l'axe de g. Notons à

nouveau [t, co[ la demi-droite [y, co[ n [x, co[ n [gx, co[. En calculant d^igx, x)
par rapport à t, on a:

4te) d(gx, t) - d(x, t)

1(g) si g pointe vers co

J(g) si g-1 pointe vers co
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y
—•-

gx

00

iii) La continuité de /œ est claire. Si g, h e (Aut A)w, on a pour tout
sommet x de A:

L(gh) da(ghx,x) dw(ghx,hx) + da(hx,x) (par la relation (*))

k(g) + Uh)

puisque /Q(g) peut se calculer grâce à n'importe quel sommet de X. Ceci

termine la preuve du lemme 4.

Si a et co sont deux bouts distincts de l'arbre X, il existe une unique droite
de X, notée ]a,co[, telle que pour tout sommet x sur cette droite, on ait:

]a, co[ [x, a[ u [x, co[

On note (AutA){a)(û} le stabilisateur de la paire {a,co} dans Aut A, qu'on
munit toujours de la topologie de la convergence simple. Le groupe
(Aut A){tt)C0} laisse invariant la droite ]a,co[. On a donc un homomorphisme
de restriction ra(0 de (AutA){a;Co} dans le groupe des automorphismes de la
droite ]a,co[, qui est le groupe diédral infini Dœ. Cet automorphisme

^aco* (Aut A) | a # w
^ Dca

est évidemment continu.
On note A la réunion disjointe de A et de Q(A):

X= x]lQ(X)
Pour x, y sommets distincts de A, on pose:

Vxy {zeX:y e[x,z]} u {cû e Q(X):y e [x, co[}

On munit X de la topologie dont une base est formée des Vxy ainsi que des

parties finies de A; l'espace A devient ainsi un espace topologique séparé,
dans lequel A est une partie discrète, ouverte, et dense. En fait, si T est un
sous-arbre de A, son adhérence T dans Ä est la réunion de T et des bouts
de T. Les Vxy sont à la fois ouverts et fermés dans Ä, qui est totalement
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discontinu. Si X est localement fini, l'espace X est compact, et fournit ainsi

une compactification de l'arbre X. Enfin, les actions de AutX sur X et Q(X)
se «recollent» en une action par homéomorphismes sur X. Le lemme suivant
est encore dû à Tits ([T3], Lemma 1.6).

Lemme 5. Soit (7))/e/ une famille de sous-arbres de l'arbre X, qui
se rencontrent deux à deux. Alors nieITi est non vide.

Preuve. Supposons d'abord l'arbre A localement fini. Le lemme 1 montre
alors que la famille (T})/e/ de fermés de X a la propriété d'intersection finie
non vide, et la compacité de X permet de conclure. Pour ramener le cas

général au cas localement fini, nous utilisons un argument de la preuve
originale de Tits. Soit x un sommet fixé dans X. Notons [x, tt] le pont qui
joint {x} à f. Pour i, j e I, on voit facilement qu'on a [x, tj\ ç [.x3tj] ou
[x, ti] D [x, tj], car 7}n 7} est non vide. Donc S vieI[x, tt\ est un segment
géodésique ou une demi-droite, et de plus les sous-arbres de la famille
(S n Ti)ieI se rencontrent deux à deux. Comme S est localement fini, on
conclut.

2. Preuve de l'implication (i) => (ii) du Théorème

Nous scindons la preuve de l'implication (i) => (ii) en trois propositions qui,
ensemble, la démontrent.

Proposition 1. Soient X un arbre, et G un sous-groupe de Aut X.
Si G ne fixe aucun sommet, aucune arête, et aucun bout de X, alors G

contient une translation.

Proposition 2. Soient X un arbre, et G un sous-groupe de Aut A
contenant une translation. Si G ne fixe aucun bout et aucune paire de bouts
de X, alors G contient deux translations d'axes disjoints.

Proposition 3. Soient a, b deux translations d'axes disjoints dans un

arbre X. Le sous-groupe H <a,b> engendré par a et b est libre

sur les deux générateurs a, b; de plus H agit librement sur X.

Remarques. 1) Les trois propositions ci-dessus montrent que l'implication

(i) => (ii) du Théorème est en fait vraie pour tout arbre, sans hypothèse
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de locale finitude. Nous verrons au §6 qu'il en est de même pour l'implication

réciproque.

2) La proposition 1 est due à Tits ([Tl], Proposition 3.4; voir aussi [Ti],

Proposition 2.4, pour le cas des arbres réels). La proposition 2 est de Culler

et Morgan ([CM], Lemma 2.1). La première partie de la proposition 3 est due

à Hausmann ([Ha], Proposition 3.5); elle apparaît aussi, comme d'ailleurs la

proposition 2, dans une preuve de Nebbia ([N2], p. 373). La seconde partie
de la proposition 3 a été obtenue par Culler et Morgan ([CM], Lemma 2.6)

avec une preuve très différente de la nôtre.

2.a. Preuve de la proposition 1

Nous allons montrer que, si le sous-groupe G de Aut A ne contient pas de

translation, alors G agit sur l'arbre X en fixant ou un sommet, ou une arête,

ou un bout de X.
Nous commençons par utiliser une astuce standard pour pouvoir supposer

que G ne contient pas d'inversion: pour cela, nous considérons le premier
subdivisé barycentrique Y de X, c'est-à-dire l'arbre Y obtenu en ajoutant un
sommet en chaque milieu d'arête de X. Il est clair que G peut être vu comme

sous-groupe de Aut Y, et que G ne contient pas d'inversion de Y. Notre
hypothèse entraîne donc que G consiste exclusivement en rotations de Y. Le
lemme 2 montre que, quels que soient les éléments g, h de G, les sous-arbres
Y8 et Yh se rencontrent. Considérons l'action de G sur Y YII Q(7)> et

remarquons que Q(T) s'identifie canoniquement à Q(A). Le lemme 5 montre
alors que ngeGY8 ^ 0. En d'autres termes, G possède un point fixe
dans Y; ce point fixe correspond soit à un sommet de X, soit à une arête
de X, soit à un bout de X. La preuve est donc terminée.

Remarque. Jointe au lemme 1, la première partie du raisonnement
ci-dessus permet de retrouver le fait que, si G est un sous-groupe finiment
engendré de Aut A ne contenant pas de translation, alors G fixe un sommet
ou une arête de X (voir [Se], Corollaire 3 de 1.6.5; [T3], 2.2.3).

2.b. Preuve de la proposition 2

Nous dirons que deux translations d'un arbre sont transverses si l'intersection

de leurs axes est finie.

Lemme 6. Soient g\,g2 deux translations transverses; le sous-groupe
<gugi> de Aut A engendré par gl et g2 contient alors deux
translations d'axes disjoints.
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Preuve. Si les axes de g1 et g2 sont disjoints, il n'y a rien à démontrer.

Supposons donc que l'intersection de ces deux axes soit une géodésique [x,y].
Pour | n | assez grand, [x,y] et [g"x, g"y] sont disjoints.

Donc g2 et g"g2g^n sont des translations d'axes disjoints. Ceci termine la

preuve du lemme 6.

Passons maintenant à la preuve de la proposition 2. Soit g une translation
dans G; notons ]a,co[ son axe. Nous utiliserons constamment le fait que, si

h e G, alors hgh~l est une translation d'axe ]/z(a),/z(co)[. Comme G ne fixe

aucune paire de bouts de X, il existe h e G tel que {/z(a), /z(co)} ^ {a,co}.
Quitte à permuter les rôles de a et co, on peut supposer h(co) ${a,co}.

a* • 0)
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On distingue alors trois cas:

1) /!(a)«t{a,co}. Dans ce cas, get hgh'1 sont transverses, et on applique

le lemme 6.

2) h (a)(û. Posons h' gh; donc h (a) h'(a) co. En utilisant le fait

que a et or sont les seuls points fixes de g dans £2(^0, on, voit que les bouts

a, co, h((o), /î'(co) sont deux à deux distincts, et qu'on ne peut avoir simultanément

h2{co)a et h'2{co)a. Donc l'une au moins des intersections

{a,co} n {/î2(a),/)2(cû)} et {a,co} n {h'2(a),h'2estvide. En d'autres

termes, ou bien g et h2gh~2sonttransverses, ou bien g et sont

transverses.

3) h(a) a. Posons alors co' h(co), et g' hgh~l. Nous voulons

considérer g et g' de manière symétrique.

Comme G ne fixe aucun bout de Xil existe k e G tel que k(a) a. En faisant
quelques dessins, il est facile de voir que, parmi les quatre droites

]a,co[, ]a,co'[, ]k{a), /:(co)[, ]&(a), &(©')[> on peut en trouver deux dont
l'intersection est finie. Cela veut dire que, parmi les quatre translations
g, g', kgk~{, kg'k~\ deux au moins sont transverses. Le lemme 6 permet
une dernière fois de conclure.

2.c. Preuve de la proposition 3

0)

Nous commençons par un raffinement du «lemme du ping-pong » (voir
[T2], Proposition 1.1; [Hl], p. 130; [Ha], Proposition 3.1).
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Lemme 1. Soit E un ensemble dans lequel on s'est donné deux
sous-ensembles disjoints A et B; soient a, b deux permutations de E.
Notons A' (resp. Bj l'ensemble des éléments de E dont l'orbite sous

<a> (resp. <b>) est contenue dans A (resp. B); notons encore Y le

complémentaire de A u B dans E, et F la plus petite partie de E
invariante sous H < a,b >, et contenant A' \j B' u Y. On fait les

hypothèses suivantes:

a) A' et B' sont non vides, et l'action de <a> (resp. <b>)
sur A' (resp. B') est libre;

ß) Pour tout m e Z\{0} \ am(B u Y) ç A et bm(A u Y) ç B.

Alors le groupe H est libre sur les deux générateurs a et b; de plus H
agit librement sur F.

Preuve du lemme 7. Nous allons démontrer simultanément les deux

assertions, en remarquant pour la seconde qu'il suffit de montrer que tout
élément x de^' u u Y a un stabilisateur trivial dans H. Soit donc w un
élément de H qui s'écrit comme un mot non trivial en a ± 1, b ± 1. Il y a trois
cas à considérer.

1) x e A': on peut supposer vu l'hypothèse (a) que w n'est pas une puissance
de a; on considère alors quatre sous-cas:

a) w commence et finit par une puissance de b; du fait de l'hypothèse
(ß) : wx e B, et en particulier wx 4 x.

b) w commence par une puissance de b et finit par une puissance de a.

On peut donc écrire w ham, où h est comme en a). Comme
amx e A', on a wx - hamx e B, donc wx 4 x.

c) w commence par une puissance de a et finit par une puissance de b.

Alors w-1 est comme en b), et par conséquent w~lx4x, donc

wx 4 x.

d) w commence et finit par une puissance de a. On peut écrire w ang,

avec g comme en b). Si on avait wx x, on aurait gx a ~nx, ce qui
est absurde puisque gx e B et a ~ nx e A '.

On a en particulier montré que w 1 si w est un mot non trivial en

a ± 1, b ± 1

; donc H est libre sur les deux générateurs a et b.

2) x e B'\ ce cas est symétrique du cas 1).

3) x e Y: on a wx e A (resp. wxeB) si w commence par une puissance
de a (resp. b); a fortiori wx 4=- x. Ceci termine la preuve du lemme 7.

Pour démontrer la proposition 3, considérons le pont [p} q] qui joint l'axe
de a à l'axe de b, et considérons la partition de X associée à \p, q] :
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A fpq{p}\ B fpg{q}\ Y X — (A u B)

(où fpq est définie comme au § 1). Nous allons appliquer le lemme 7 à cette

partition de X. Remarquons que A' est non vide, puisque A' contient l'axe

de a; il en va symétriquement pour B. Les autres hypothèses du lemme 7 se

vérifient immédiatement, et le lemme 7 s'applique donc pour montrer que
FL - <a,b> est un groupe libre sur les deux générateurs a et b, agissant

librement sur la partie F qui est le saturé par H de A' u B' v Y. Il reste à

montrer que F X.

Choisissons pour cela un réel r tel que 0 < r ^ min{/(#), 1(b)}. Pour

ne N, appelons Cn l'ensemble des sommets de X dont la distance à

Lu [p, q] est inférieure ou égale à nr, et montrons par récurrence sur n que
Cn est contenu dans F, le cas n 0 étant clair. Soient donc n > 0, et i un
sommet dans Cn; vu la symétrie entre A et B, on peut supposer que x est

dans A. Soit [x, x'] le pont qui joint {x} à l'axe de a. Si x' n'est pas dans l'orbite
de p sous < a >, ou si x' p, alors x est dans A', donc dans F. Supposons
donc x' akp, avec k e Z\{0}, et considérons le sommet a~kxs qui est dans

A ' u B u Y. Si a ~ kx e A ' u F, alors x e F; si a~kx e B (cas illustré
ci-dessous), alors la distance de a~kx à Fu [p,q] est la distance de a~kx
à q, et

d(a~kx,q) < d{xyp) - d(x\p) d(xfp) - \k\.l(a) l)r
Ainsi a~kx est dans C„_ j, et l'hypothèse de récurrence permet de conclure.

X
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Remarque. Si l'arbre X est localement fini, on peut donner une preuve
différente du fait que H agit librement sur X. Grâce au lemme 7, on sait déjà

que H est libre et qu'il existe au moins un sommet dont le stabilisateur dans

H soit trivial (prendre par exemple un sommet sur l'axe de a). Par le lemme 3,

//est un sous-groupe discret de Aut X. Si x est un sommet quelconque, le sous-

groupe H n (AutX)x est discret dans le groupe compact (AutX)xw donc

H n (AutX)x est fini. Comme H est libre, H n (Aut X)x est trivial.

3. Preuves des implications (ii) => (iii) et (iii) =» (iv) du Théorème

Moyennabilité

L'implication (ii) => (iii) résulte immédiatement du lemme 3. Nous donnons
maintenant quelques rappels sur la moyennabilité qui rendront évidente

l'implication (iii) => (iv).
Soit G un groupe localement compact. On dit que G est moyennable si,

chaque fois que G opère de manière affine et continue sur un convexe compact
non vide C dans un espace vectoriel topologique localement convexe, il existe

dans C un point fixe pour l'action de G. Comme références sur la

moyennabilité, nous recommandons la petite monographie de Greenleaf [Gl],
le livre de Paterson [Pa], et l'article remarquable d'efficacité d'Eymard [Ey];
à propos de la moyennabilité des groupes discrets, l'article original de

von Neumann [vN] vaut la peine d'être lu; pour l'évolution historique de la

notion, on consultera avec profit le livre de Pier ([Pi], Chapitre 9). Nous
rasssemblons maintenant sans démonstration quelques faits classiques sur la

moyennabilité.

MOY A: Un groupe abélien est moyennable (c'est le théorème de Markoff-
Kakutani, voir [Bo], Appendice du Chapitre IV).

MOY B: La moyennabilité est préservée par extensions; en d'autres termes,
si 1 - N -> G -+ G/N -+ 1 est une suite exacte courte de groupes
localement compacts avec N et G/N moyennables, alors G est

moyennable (voir [Ey], II.1; [Gl], Theorem 2.3.3).

MOY C: La moyennabilité est préservée par limites inductives (voir [Gl],
Theorem 2.3.4).

MOY D: Un groupe compact est moyennable.

MOY E: Un sous-groupe fermé d'un groupe moyennable est moyennable

(voir [Ey], IV; [Gl], Theorem 2.3.2).
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MOY F: Un groupe libre non abélien (avec la topologie discrète) n'est pas

moyennable (voir [Ey], II.4; [Gl], exemple 1.2.3; [vN], §5 de

l'Introduction).

L'implication (iii) => (iv) du théorème est alors une conséquence immédiate de

MOY E et MOY F.

4. Preuve de l'implication (iv) => (i) du Théorème

Nous allons montrer que, si X est un arbre localement fini, les stabilisateurs

dans AutX d'un sommet, d'une arête, d'un bout, ou d'une paire de bouts

de X, sont des sous-groupes fermés moyennables.

— Stabilisateur d'un sommet: Si x est un sommet, (AutX)x est un sous-

groupe compact, donc moyennable par MOY D.

— Stabilisateur d'une arête: Si [xfy] est une arête, nous notons (AutX)[x,y]
son stabilisateur dans AutJY. Le sous-groupe compact ouvert (AutAQ*
n (AutX)y est d'indice 2 ou 1 dans (AutJY)^^ (selon qu'il existe une
inversion conservant [x, y] ou pas). Par conséquent (Aut X)[x>y] est lui-même

compact, donc moyennable.

— Stabilisateur d'un bout: Soit co un bout de X; considérons l'homomor-
phisme /œ: (AutX)w Z fourni par le lemme 4 (iii); comme Z est

moyennable ainsi que ses sous-groupes (par MOY A), il suffit par MOY B de

vérifier que le noyau Ker/W est moyennable. Pour cela, observons que la
famille de sous-groupes compacts ((AutX)^ n (AutA)x)X6^ forme un
système dirigé: si x, y sont des sommets quelconques de X, et z un sommet
sur [x, co[ n [y, co[, on a:

((AutA% n (AutAO*) u ((AutX)w n (AutAT),) ç (AutX)^ n (Aut A3 Ä

puisque (Aut A3© n (Aut AT)* fixe ponctuellement la demi-droite [x, co[. La
limite inductive de ce système est l'ensemble des rotations dans (Aut A3 œ, qui
coïncide avec Ker/W par le lemme 4 (ii). Le groupe Ker/W est limite inductive
de groupes compacts, il est donc moyennable par MOY C.

— Stabilisateur d'une paire de bouts: Soit {a,co} une paire de bouts de X;
considérons l'homomorphisme ra(ù: (AutA){a,w} -> Dœ introduit vers la fin du
§1. Comme Dœ est un groupe résoluble, tous ses sous-groupes sont
moyennables, et il suffit par MOY B de vérifier que le noyau Ker ra(ù est
moyennable; mais ce noyau est nxe]aM((A\xtX){aj(ù} n (AutX)x), qui est
compact.
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5. Quelques corollaires du Théorème

Les trois premiers corollaires sont quasiment immédiats. Le premier est un
résultat assez connu de Tits ([T3], 3.4 et 2.3.6); les deux suivants sont dûs à

Nebbia ([N2], Théorème 2 et Remarque 3, p. 375).

Corollaire 1. Soient X un arbre; et G un sous-groupe de Aut X
contenant un sous-groupe résoluble d'indice fini. Alors G fixe un sommet,
ou une arête, ou un bout, ou une paire de bouts de X.

Preuve. Vu les hypothèses, G ne peut contenir de sous-groupe libre non
abélien. Le résultat provient alors de l'implication (i) => (ii) du Théorème, vraie

sans hypothèse de locale finitude de X (voir la remarque 1 du §2).

Corollaire 2. Soit XN l'arbre homogène de degré N, où tout
sommet a exactement N voisins (3 < TV < oo); soit G un sous-groupe de

Aut XN agissant transitivement sur XN. Les propriétés suivantes sont
équivalentes:

(i) G fixe un bout de XN;

(ii) L'adhérence G de G dans AutXN est moyennable.

Preuve. Comme G agit transitivement, G ne peut fixer aucun sommet,
aucune arête, et aucune paire de bouts de XN (on utilise N ^ 3 pour ce

dernier point). L'équivalence (i) & (iv) du Théorème permet de conclure.

Corollaire 3. Soient X un arbre localement fini, et G un sous-

groupe fermé de Aut X. Les propriétés suivantes sont équivalentes:

(i) G n'est pas moyennable;

(ii) G contient un sous-groupe discret qui est libre non abélien.

Preuve. Immédiate.

Nous mentionnons le corollaire 3 du fait de ses liens avec un problème
classique: si est une classe de groupes localement compacts, la non-
moyennabilité d'un groupe G de 9" est-elle due à la présence dans G d'un sous-

groupe discret qui est libre non abélien? Une conjecture fort répandue sous

le nom de «conjecture de von Neumann»6) affirmait que la réponse devait
être affirmative pour la classe des groupes discrets: rappelons que
Ol'shanskii [Ol] a donné les premiers exemples de groupes discrets qui

6) Nous n'avons trouvé dans l'article «Zur allgemeinen Theorie des Masses» de

von Neumann [vN], qu'un seul passage qui semble se rapporter au problème qui nous occupe.
Au § 4 de son Einleitung, von Neumann énonce quatre principes générateurs pour la classe
des groupes moyennables discrets: il s'agit de la version discrète des principes MOYA,
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montrent que la réponse est négative pour cette classe; plus récemment

Gromov a construit une infinité non dénombrable de tels exemples (voir [Gr],
Corollary 5.5.E; [GH], Théorème 7 du Chapitre 12). Par contre, la réponse

au problème est affirmative pour la classe ^ des groupes discrets linéaires:

c'est une conséquence banale du théorème de Tits mentionné tout au début

du présent article. Comme autre résultat positif, citons la réponse affirmative
au problème pour la classe des groupes localement compacts presque
connexes (c'est-à-dire dont le quotient par la composante connexe du neutre
est compact): c'est un résultat de Rickert [Ri] (voir aussi la page 132 de [Hl]
pour le cas des groupes de Lie presque connexes). Le corollaire 3 ci-dessus

montre que la réponse au problème est encore affirmative pour la classe X des

sous-groupes fermés des groupes d'automorphismes d'arbres localement finis.

Corollaire 4. Soient X un arbre, et G un sous-groupe de AutX.
On suppose que G n'a qu'un nombre fini d'orbites sur les sommets de X,
et que tout sommet de X a un stabilisateur fini dans G. On a alors l'alternative

suivante: ou bien G est fini, ou bien G contient un sous-groupe
cyclique infini d'indice fini, ou bien G contient un sous-groupe libre non
abélien.

Preuve. Supposons que G ne contienne pas de sous-groupe libre non
abélien. L'implication (i) =» (ii) du Théorème (vraie sans hypothèse de locale
finitude de X) conduit à considérer quatre cas, comme au §4 ci-dessus.

— G fixe un sommet x: Alors le groupe G et l'arbre X sont finis, comme
conséquences immédiates des hypothèses.

— G fixe une arête [x,y]: Le sous-groupe G n (Aut2Qx n (AutX)y est alors
d'indice 1 ou 2 dans G, et est justiciable du cas précédent. A nouveau, G et
X sont finis.

— G fixe un bout oo: Le raisonnement fait au §4 montre que G n Ker/W est
la limite inductive du système dirigé de groupes finis (G n (AutX)x)xeX, dont
les ordres sont uniformément bornés sur X, vu les hypothèses. Donc

MOY B, MOY C, MOY D que nous avons énoncés dans notre § 3. Au §6 de son introduction
von Neumann a ce commentaire: «Jetzt dürfen wir wohl sagen: es kommt nur auf die
Eigenschaften der (abstrakten) Gruppe G an. Denn der gewünschte allgemeine Maßbegriffist (unter den betrachteten Verhältnissen) sicher vorhanden, wenn sie mit Hilfe der
Erzeugungs-Prinzipien A.-D. in §4 gewonnen werden kann, und er existiert bestimmt nichtwenn G eine freie Untergruppe mit zwei Erzeugenden o, t enthält [...].» Ceci suggère quevon Neumann avait L problème en tête, sans qu'il prenne la peine de l'expliciter; mais il nousm ftnbuer une conjecture allant dans un sens ou l'autre. D'après [Pi]

y CSt 16 Premier à av0ir posé le Problème Pour la classe des groupes discretset en effet, 1 énoncé apparaît explicitement à la dernière ligne du §4 de [Da]; mais Day n'enlait pas non plus une conjecture.

1^.
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GnKer/co est un groupe fini. On ne peut avoir G - G n Ker/W, qui
impliquerait que G soit fini, et contredirait la finitude du nombre d'orbites
de G sur les sommets. Donc /«(G) est un groupe cyclique infini, et G contient
un sous-groupe cyclique infini d'indice fini. On voit facilement que, dans ce

cas, l'arbre Xpossède une unique droite ]a, co[ le long de laquelle sont attachés
des arbres finis qui se répètent périodiquement (avec une période n si

L (G) nZ).

< >

n

— G fixe une paire de bouts {a,co}: Comme G n'a qu'un nombre fini
d'orbites sur les sommets de la droite ]a,co[, on voit que ra(ù(G) est un
sous-groupe infini du groupe Dœ. Donc racù(G) contient un sous-

groupe infini cyclique d'indice fini. D'autre part, G n Kerra(ù coïncide avec

^xe]a,co[(G n (AutX)x), qui est un groupe fini par hypothèse. Donc G

lui-même contient un sous-groupe infini cyclique d'indice fini. L'allure de

l'arbre X est la même qu'au cas précédent.

Remarques. 1) On peut démontrer différemment le corollaire 4 quand
l'arbre est localement fini. En effet, du fait des hypothèses, G est alors un

groupe finiment engendré, et si ds désigne la métrique sur G associée à une

partie génératrice finie S de G, l'espace métrique (G, ds) est quasi-isométrique
à l'espace métrique (X, d) (pour ces assertions, voir [GH], Proposition 19 du

Chapitre 4). L'espace (X, d) est un espace hyperbolique au sens de Gromov,
et l'hyperbolicité est invariante par quasi-isométrie ([GH]), Théorème 12 du

Chapitre 5); donc G est un groupe hyperbolique au sens de Gromov, et la

trichotomie annoncée est valable pour ces groupes ([Gr], §3.1; [GH],
Théorème 37 du Chapitre 8).

2) En utilisant la théorie de Bass-Serre des groupes fondamentaux de

graphes de groupes, Scott et Wall puis Bass et Kulkarni ont obtenu un résultat

plus précis que le corollaire 4: sous les mêmes hypothèses, le groupe G contient
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un sous-groupe libre d'indice fini sur zéro, un ou plusieurs générateurs

(voir [SW], Theorem 7.3 et [BK], Corollary 2.8)7).

6. Le cas des arbres réels

Un arbre réel est un espace métrique entre deux points duquel passe un arc

unique, qui est de plus isométrique à un intervalle de R. Ces objets ont été

introduits par Tits [T3], sous le nom d'«arbres». Nous renvoyons à l'article

original de Tits pour le rôle des arbres réels en algèbre, et aux travaux de

Morgan-Shalen [MS], Culler-Morgan [CM] et Paulin [PI] pour leur rôle en

topologie. Notons qu'un arbre ordinaire peut être vu comme un arbre réel, en

remplaçant chaque arête par une copie isométrique de l'intervalle [0,1], et en

prolongeant la métrique d de manière évidente.

Une demi-droite (resp. droite) d'un arbre réel X est une image isométrique
de la demi-droite [0, oo[ (resp. la droite R).

On note Isom X le groupe des isométries de l'arbre réel X. La classification
des isométries est encore plus simple que pour un arbre ordinaire (voir [T3],
3.1; [MS], Theorem II.2.3). Les isométries sont de deux types:

— Les isométries qui fixent au moins un point. Il s'agit des isométries

elliptiques, ou rotations.

— Les isométries qui ne fixent aucun point. Il s'agit des isométries
hyperboliquesy ou translations. Comme dans le cas des arbres ordinaires, une
telle isométrie g possède une unique droite invariante, appelée axe de g, et le

long de laquelle g agit par translation.
Un bout de l'arbre réel X est un élément de la limite projective

lim n0(X- B)

où B parcourt les parties bornées fermées de X, et n0(X - B) désigne l'espace
des composantes connexes de X - B (voir [CM], §2; [Cl], §1). Lorsque
l'arbre réel X est complet, cette définition équivaut à celle de Tits ([T3], 1.1)
analogue à celle que nous avons donnée au § 1 en termes de classes
d'équivalence de demi-droites8). Si on le désire, on peut avec Tits ne considérer que
des arbres réels complets: en effet la complétion d'un arbre réel est encore un
arbre réel ([MS], Corollary II. 1.10).

Notons l'arbre homogène de degré infini, où tout sommet a une infinité
dénombrable de voisins. Soit G un groupe discret opérant transitivement avec stabilisateurs
finis sur X^. Dans [VI], le second auteur construit des représentations uniformément
bornées non unitarisables de G. L'existence de telles représentations implique la non-
moyennabilité de G. Le corollaire 4 ou le résultat de Bass-Kulkarni donnent la raison de cette
non-moyennabilité.
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Proposition 4. Soient X un arbre réel, et G un sous-groupe de

Isom X. Les propriétés suivantes sont équivalentes:

(i) G ne fixe aucun point, aucun bout, et aucune paire de bouts de X;
(ii) G contient un sous-groupe libre non abélien qui agit librement et

proprement discontinûment sur X.

Preuve, (i) =» (ii) Nous avons pris soin, aux §§1-2, d'écrire la preuve de

l'implication (i) => (ii) du Théorème de manière à ce qu'elle s'adapte mutatis
mutandis au cas des arbres réels. De plus, il est facile de vérifier à la proposition

3 que le groupe libre engendré par deux translations d'axes disjoints agit

proprement discontinûment (voir la preuve de la proposition 3, ou le

lemme 2.6 de [CM]).

(ii) => (i) Montrons que, si G fixe un point, un bout ou une paire de bouts
de X, alors G ne peut contenir de groupe libre non abélien agissant librement

sur X. C'est clair si G fixe un point. Si G fixe un bout co, on fait la remarque
suivante: si gi, g2 sont deux translations dans G, l'intersection de leurs axes

contient une demi-droite [x, co[. Quitte à remplacer gt par g,"1, on peut

supposer g,[x,co[ ç [x, co[(i1,2);alorsg:g2x donc

fixe x. Cette remarque montre que les seuls sous-groupes libres de G agissant

librement sur X sont sur zéro ou un générateur. Enfin, si G fixe une paire de

bouts {a,co}, une translation dans G a pour axe la droite ]a,co[, donc deux

translations dans G commutent. A nouveau, on voit que les seuls sous-groupes
libres de G agissant librement sur X sont sur zéro ou un générateur.

Grâce à la proposition 4, on déduit immédiatement l'analogue pour les

arbres réels du corollaire 1 du §5: si A est un arbre réel, et G un sous-groupe
de Isom X qui contient un sous-groupe résoluble d'indice fini, alors G fixe un

point, un bout ou une paire de bouts de X. Rappelons que ce résultat est dû

à Tits ([T3], 3.4 et 2.3.6).

Ajouté sur épreuves: Identifions PSL2(R) avec le groupe des isométries orientées du

disque de Poincaré D. Il résulte des preuves de la Proposition et du Théorème

1 de [Hl] que l'alternative de Tits pour PSL2(R) prend la forme suivante: un
sous-groupe G de PSL2{R) contient un sous-groupe libre non abélien si et seulement
si G ne fixe aucun point de D, aucun point au bord de D, et aucune paire de points
au bord de D. L'analogie entre cet énoncé et l'équivalence (i) (ii) de notre théorème
est évidemment frappante.

8) Ces deux définitions ne sont pas équivalentes pour un arbre réel non complet, comme
le montre l'exemple banal de l'intervalle semi-ouvert ]0,1].



AUTOMORPHISMES D'ARBRES 173

RÉFÉRENCES

[BK] Bass, H. and R. Kulkarni. Uniform tree lattices. Journal Amer. Math.

Soc. 3 (1990), 843-902.

[Bo] Bourbaki, N. Espaces vectoriels topologiques. Chapitres 1 à 5, Masson,

1981.

[Cl] Cartier, P. Géométrie et analyse sur les arbres. Séminaire Bourbaki, Exposé

407, Février 1972; dans Lect. Notes in Math. 317, Springer 1973,

123-140.

[C2] Harmonie analysis on trees. Proc. Amer. Math. Soc. Sympos. in Pure

Math. 26 (1972), 419-424.

[CM] Culler, M. and J.W. Morgan. Group actions on R-trees. Proc. London
Math. Soc. (3) 55 (1987), 571-604.

[Da] Day, M. M. Amenable semigroups. Illinois J. Math. 1 (1957), 509-544.

[Ey] Eymard, P. Initiation à la théorie des groupes moyennables. Dans «Analyse
harmonique sur les groupes de Lie», Séminaire Nancy-Strasbourg
1973-75, Lecture Notes in Math. 497, Springer 1975, 89-107.

[FLR] Fine, B., F. Levin and G. Rosenberger. Free subgroups and decompo¬

sitions of one-relator products of cyclics. Part I: The Tits alternative.
Arch. Math. 50 (1988), 97-109.

[GH] Sur les groupes hyperboliques d'après Mikhael Gromov. Ouvrage collectif
édité par E. Ghys et P. de la Harpe, Birkhäuser 1990.

[GI] Greenleaf, F. P. Invariant means on topological groups. Van Nostrand,
1969*

[Gr] Gromov, M. Hyperbolic groups. Dans «Essays in group theory», édité par
S.M. Gersten, M.S.R.I. Publ. 8, Springer 1987, 75-263.

[GS] Gupta, N. and S. Sidki. On the Burnside problem for periodic groups. Math.
Z. 182 (1983), 385-388.

[HI] de la Harpe, P. Free groups in linear groups. L'Enseignement Math. 29

(1983), 129-144.

[H2] Groupes de Coxeter infinis non affines. Expo. Math. 5 (1987), 91-96.

[Ha] Hausmann, J.-C. Sur l'usage de critères pour reconnaître un groupe libre, un
produit amalgamé ou une //ATV-extension. L'Enseignement Math. 27
(1981), 221-242.

[Me] McCarthy, J. A «Tits-alternative» for subgroups of surface mapping class

groups. Trans. Amer. Math. Soc. 291 (1985), 583-612.
[MS] Morgan, J.W. and P.B. Shalen. Valuations, trees, and degenerations of

hyperbolic structures. I. Ann. of Math. 120 (1984), 401-476.
[NI] Nebbia, C. Groups of isometries of a tree and the Kunze-Stein phenomenon.

Pacific J. Math. 133 (1988), 141-149.
[N2] Amenability and Kunze-Stein property for groups acting on a tree.

Pacific J. Math. 135 (1988), 371-380.
[vN] von Neumann, J. Zur allgemeinen Theorie des Masses. Fund. Math. 13

(1929), 73-116 Collected works, Vol. 1, Pergamon Press 1961,
599-642).

[Ol] Ol'shanskii, A. Ju. On the problem of the existence of an invariant mean on
a group. Russian Math. Surveys 35 (1980), 180-181.

[Pa] Paterson, A. L. Amenability. Math. Surveys & Monographs 29, Amer.
Math. Soc. 1988.



174 I. PAYS ET A. VALETTE

[PI] Paulin, F. Topologie de Gromov équivariante, structures hyperboliques et
arbres réels. Invent. Math. 94 (1988), 53-80.

[Pi] Pier, J.-P. L'analyse harmonique: son développement historique. Masson
1990.

[Ri] Rickert, N. W. Some properties of locally compact groups. J. Austr. Math.
Soc. 7 (1967), 433-454.

[SW] Scott, P. and T. Wall. Topological methods in group theory. In Homo-
logical group theory, édité par C.T.C. Wall, London Math. Soc.
Lecture Notes Series 36, Cambridge Univ. Press (1979), 137-203.

[Se] Serre, J.-P. Arbres, amalgames, SL2. Astérisque 46, Soc. Math. France,
1977.

[Sz] Szwarc, R. Groups acting on trees and approximation properties of the
Fourier algebra. J. Funct. Anal. 95 (1991), 320-343.

[Ti] Tignol, J.-P. Remarque sur le groupe des automorphismes d'un arbre.
Annales Soc. Sei. de Bruxelles, 93 (1979), 196-202.

[Tl] Tits, J. Sur le groupe des automorphismes d'un arbre. Dans «Essays in
topology and related topics (Mémoires dédiés à G. de Rham)», Springer
1970, 188-211.

[T2] Free subgroups in linear groups. J. Algebra 20 (1972), 250-270.
[T3] A «theorem of Lie-Kolchin» for trees. Dans «Contributions to Algebra:

a collection ofpapers dedicated to Ellis Kolchin», Academic Press 1977,
377-388.

[VI] Valette, A. Cocycles d'arbres et représentations uniformément bornées.
C.R. Acad. Sei. Paris, Série I, 310 (1990), 703-708.

[V2] Short proofs for some residual properties free groups. Pré-publication
(1990), Expo. Math., sous presse.

[Wa] Wang, S.P. A note on free subgroups in linear groups. J. of Algebra 71

(1981), 232-234.
[Wo] Woess, W. Amenable group actions on infinite graphs. Math. Ann. 284

(1989), 251-265.

(Reçu le 3 octobre 1990)

Isabelle Pays

Département de Mathématiques
Université de l'Etat à Möns
15, Av. Maistriau
B-7000 Möns (Belgique)

Alain Valette

Institut de Mathématiques
Université de Neuchâtel
Chantemerle 20
CH-2007 Neuchâtel (Suisse)


	SOUS-GROUPES LIBRES DANS LES GROUPES D'AUTOMORPHISMES D'ARBRES
	0. Introduction
	1. Rappels sur les arbres
	2. Preuve de l'implication (i) => (ii) du Théorème
	3. Preuves des implications (ii) => (iii) et (iii) => (iv) du Théorème Moyennabilité
	4. Preuve de l'implication (iv) => (i) du Théorème
	5. Quelques corollaires du Théorème
	6. Le cas des arbres réels
	...


