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130 C. BAVARD

3. Longueur stable et cohomologie bornée

Comme préliminaire on étudie l'espace des bords i?i(r,R). Ceci est

justifié par le fait qu'il relie longueur stable et cohomologie bornée: d'une part
J5i(r,R) est muni d'une norme comparable à la longueur stable (proposition

3.2), et d'autre part cet espace s'interprète par dualité à partir de la

cohomologie bornée (3.4).

3.1. L'espace des bords

On rappelle la définition de Phomologie, ici à valeurs réelles, d'un groupe
discret par la «bar-résolution». Soit Cn(r,R) l'espace vectoriel réel de base

Tn(n ^ 1) et soit l'opérateur bord 8: C„ + i(r,R) C„(r,R) donné par

0(*i, ...,xn+i)
n

=(x2>...,x„+1) + £ (- l)i(xl,...,xixi+i,...,xn + d+ (-
i= 1

L'homologie //*(r,R) est alors celle du complexe

••• - C2(T,R) - Cl (r,R) - R - 0 m
L'espace des 1-bords, noté Bi(T,K), est l'ensemble des combinaisons

finies de la forme

£ a, (X/ - X/J; + yd a, e R, x,- j/eT.
/

Soit Z2(r,R) le noyau de 8: C2(r,R) -> Ci(r,R) (espace des 2-cycles).

L'isomorphisme Bi(T, R) ~ C2(r,R)/Z2(r,R) induit sur ß^R) une norme

simpliciale quotient:

Il b|U« inf{D| a,\i0(£a;(x;,yd)
i

borne inférieure sur les 2-chaînes de bord b.

Par ailleurs, les bords entiers b e Bi(T,Z) ont aussi une «norme» entière:

|ö|z*= inf{£|«/|;0(X|H;(x/,.y/)) bet «, e Z}
/

et la norme réelle de b est donnée par

Il b||filim ((Ö6ß,(r,Z))
k-+co k
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3.2. Longueur stable et norme sur l'espace des bords

Remarquons d'abord que le groupe dérivé r' est inclus dans l espace des

bords Bi(T,R) car

(8) [x,y] d{([x,y],y) + (xyx~\x) - (x,y)} (x;yeT)

Il est donc naturel de comparer la longueur stable || y || d'un élément y de F

avec sa norme || y ||5 dans

Proposition 3.2. 4 || y || - 1 < || y 1U ^ 4 |jy [| + 1 (y e r')

Avant d'aborder la preuve de la proposition, voyons comment la combi-

natoire d'une relation

b « 6(Zzi(xi9yij) s, ± 1

/

peut être décrite au moyen d'une surface. On pense à chaque z(x, y) qui

intervient ci-dessus comme à un simplexe géométrique orienté (fig. 8):

y

Figure 8

Choisissons une façon de grouper par paires {x, - x] les arêtes qui s'annulent
dans la relation; il suffit alors d'identifier 2 à 2 les arêtes ainsi sélectionnées

pour construire une surface à bord (abstraite) Z orientée et triangulée, a priori
non connexe et non unique. Noter que si on pose

b YénjZj ZjeT)
j

le nombre de composantes connexes du bord de Z est au plus égal à Y, I nj I
•

j
On dira que Z borde b. Une surface bordant b et formée de | b |z Simplexes

sera appelée minimisante pour b. Ainsi le fait qu'un commutateur soit le bord
de 3 simplexes s'illumine (fig. 9):



La longueur des commutateurs c(y) est le genre minimal d'une telle surface

connexe bordant y (yef). Voici encore un exemple: 2[x,y] bordé par une

surface de genre 1 ayant 2 composantes du bord:

(y= [x,y])

Figure 10

Preuve de la proposition. Comme || y ||fi lim (| ky \z/k) (voir 3.1), la
k~* oo

preuve consiste à relier | ky |z avec c(yk){k e N*). Il faut bien distinguer les

éléments yk et ky qui sont, par définition, linéairement indépendants dans

£i(r,R).



LONGUEUR STABLE DES COMMUTATEURS 133

D'après la relation (8) tout produit de N commutateurs est le bord de

4N- 1 Simplexes, d'où | yk |z ^ 4c(yk) - 1. En remplaçant le simplexe qui

contient yk par k simplexes contenant y (fig. 11), on voit que

I ky |z < 4c(y^) + k - 2

Il reste à établir une inégalité dans l'autre sens:

Affirmation. 4c(yk) - k ^ | ky |z (y e T').
Une fois que l'affirmation sera démontrée, la proposition résultera de

l'encadrement:

4c(yk) - k < | ky \z ^ 4c{yk) + k - 2

Preuve de l'affirmation. Supposons d'abord que ky est bordé par une
surface E minimisante connexe. Soit g le genre de E et r le nombre de

composantes connexes de son bord. Un petit calcul de caractéristique d'Euler-
Poincaré permet de minorer \ky |z. En effet considérons une triangulation
de E qui comprend 5 sommets, a arêtes, / faces et exactement k arêtes sur
le bord; on a les relations

2-2g-r s- a + f et 3/ 2a - k

D'où / 4g - 4 + 2r + 2s - k. Sachant qu'une telle triangulation doit
comprendre au moins k sommets (ceux qui sont sur le bord) on en déduit
l'inégalité

(9) / ^ 4g - 4 + 2r + k

Notons par ailleurs kfi 1, ...,r) le nombre d'arêtes sur la i-ème composante
du bord Ç£,ki k). L'hypothèse signifie algébriquement qu'un certain

i
produit
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ai(y^i) ar-i(ykr-i)ykr e f, / 1, ...,# — 1)

est produit de g commutateurs de T (on rappelle la notation xyx-1).
L'identité

üuciß2x2... [^i,Xi]xi[ör2,x2] xn

montre alors que g ^ c(yk) - r + 1. Compte tenu de (9), il en résulte que

\ky\z^ 4c(yk) - 2r + k

Mais comme le nombre r de composantes connexes du bord de E est par
construction au plus égal à k, on obtient finalement l'inégalité souhaitée.

Dans le cas général, une surface minimisante E se décompose en

composantes connexes Eß (ß 1, ...,a) et l'on a

I kylzI I ^ßY lz É k)
P=1 P 1

où chaque terme correspond à une composante, minimisante elle aussi. En

appliquant ce qui précède, on trouve donc

a

I kylz^ S 4c(y*ï>) - k
p t

a

L'inégalité évidente X c(y^ß) ^ c(y*) permet alors de conclure la preuve
ß i

de l'affirmation.

3.3. Quasi-morphismes et cohomologie bornée

Après avoir rappelé la définition de la cohomologie bornée, on étudie le

rapport entre les quasi-morphismes et le deuxième groupe de cohomologie
bornée.

L'espace vectoriel C„(r,R) (voir 3.1) est muni de la norme simpliciale, de

type Z1. Son dual, noté C£(r,R), qui est l'espace des applications bornées

F.Tn R, hérite donc d'une norme Z00 :

Il FII sup{|F(xi,..„x„) I; eT"}

Le complexe (^) de 3.1 donne ainsi par dualité topologique un complexe dont
l'homologie, avec sa semi-norme quotient, est par définition la

cohomologie bornée de T. Le dual algébrique de (^) définit quant à lui la

cohomologie usuelle //*(r,R) de T.
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On a appelé quasi-morphisme toute application f:V~* R dont le

cobord df est borné:

I df(x, y)!| f(x)-f(xy) + f(y) |< || || yeT)

Avec ce langage, le noyau de H2b(T,R)^ //2(r, R) est naturellement l'espace
des quasi-morphismes définis à l'addition d'un morphisme et d'une application
bornée près. En fait chaque classe de ce noyau contient un élément privilégié:
elle se représente de façon unique comme cobord d(p d'un quasi-morphisme
homogène (p(cp(x") «(p(x),xer, neZ).

Proposition 3.3.1 ([Be]).

1) Le noyau de H2b{T, R) -> H2(T, R) est isomorphe par le cobord à

l'espace des quasi-morphismes homogènes définis à l'addition d'un
morphisme près.

2) Tout quasi-morphisme homogène (p est constant sur les classes de
conjugaison (cp (xyx ~1

(p (x) ; x, y e T) et vérifie la formule
asymptotique:

dg>(x,y) lim - g>((xny"(xy) ~")) (xjer)
00 n

Preuve (voir [Be]). Si / est un quasi-morphisme, la suite (/(x"))„6n est
presque sous-additive:

I f(xm +")-f{xm) - f(x|^ H 1 (x e T ; m, n e N)

§duit (voir [P-S]) c

notée (p(x), vérifie l'inégalité

f(xn)On en déduit (voir [P-S]) que converge et sa limite (homogène!),

i <p(x) - Txi | <; ijyxji („ ^ i)
n n

En particulier,

(10) I <P(*) - /(*) | < 1 dId'où il résulte que d(.pet g?/représentent la même classe de H2b(F, R).
On remarque ensuite que xy"x~>-Z)est le bord de 2 simplexes

(fig. 12):
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(cylindre)

Figure 12

Ceci montre que g>(xynx~l) - cpO") est borné par 21| dq ||, donc

(p(xyx~ *) - (p(y) (homogène en y) est nul.
La formule asymptotique est aussi une conséquence de l'homogénéité.

Ecrivons d'abord la relation

dq>(x,y) lim - {(p(x") + <p{y") - (p((xy)")}
n-+ oo n

Comme xn + yn - (xy)n - xnyn(xy)~n est le bord de 3 simplexes, cette

limite est égale à lim - {(p(xnyn(xy)~n)}
n -* oo n

Les quasi-morphismes décrivent, par définition, le noyau de

H2b(T, R) ^//2(r,R), qui n'est qu'une partie de i/^(r,R). Cependant, dans

beaucoup de cas intéressants, tels que les groupes fondamentaux de polyèdres
finis, ce noyau est de codimension finie dans H\(r, R). De toutes façons, on

peut toujours décrire H2b(T, R) au moyen des quasi-morphismes définis sur un

groupe ad hoc:

Proposition 3.3.2. Tout groupe T admet une extension centrale

E^T qui induit une isométrie: H2b{V, R) ~ Ker (H2b(E, R) H2(E, R))
(en fait ce noyau est égal à H2b(E, R) tout entier).

Preuve. Ecrivons T comme quotient d'un groupe libre L par un sous-

groupe normal i?. On a alors une suite exacte

0 R/[L} R] -> L/[L} R] L/R T^l
Cette suite définit une extension centralep:E L/[L, R] -+ T, qui dépend du

choix de la présentation de T.
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Comme le noyau de l'extension E est abélien (donc moyennable) on sait

d'après un théorème général sur la cohomologie bornée ([Iv]), qutp induit une

isométrie i/^(r,R) « H2b(E, R). Pour établir la proposition, il suffit donc de

prouver que l'application p*: H2(Y,R) - H2(E, R) induite par p en

cohomologie usuelle est nulle.
Soit c un 2-cocycle normalisé sur T, à valeurs réelles; le cocyclep*c définit

une extension centrale n: % -* E. Plus précisément, est l'ensemble R X E
muni de la loi de groupe:

(a,X)(Ç>,Y) (a + $ + c(p(X),p(Y)),XY) (a,ßeR et AT, YeE)

et n est la projection R x E ^ E. Il est facile de vérifier que l'extension

pon: r est centrale. Comme L est un groupe libre, il existe un

morphisme de groupes L -> E au-dessus de Y ; puisque l'extension pon est

centrale, ce morphisme induit un morphisme u: E au-dessus de T. On a

donc

u(X) (a(X),a(X)X) a(X) e R, a(X) e Kerp

En explicitant le fait que u est un morphisme de groupes, on trouve la relation

a (AT) a(X) + a (Y) + c(p(X),p(Y)) (X, YeE)

c'est-à-dire p*c - da.
Il est intéressant de noter que dans notre situation, l'isométrie p% : H2b(T, R)

« H2b{E, R) admet un inverse explicite. Cela est dû au fait que le noyau A de

l'extension E est central. En effet si cp est quasi-morphisme homogène E R,
on a d'après la formule asymptotique (Prop. 3.3.1-2)):

dy(X, a) 0 X e E, a e A

On en déduit que dq>(aX, bY) dq>(X,Y) pour X, Y e E et a, b e A. Cette
propriété permet d'associer à tout quasi-morphisme homogène (p sur E un
2-cocycle borné sur Y en posant

(11) c{x,y) dq>{X, Y) xjeT,
où X et Y sont des relevés quelconques de x et y dans E. D'où une application
H2b(E, R) /f^(r,R) qui est visiblement inverse à droite de p%.

Remarque. Le fait que la semi-norme sur H2b(Y, R) est une vraie norme
([M-M], [Mit]) apparaît clairement dans notre contexte. Pour une classe c
représentable par le cobord df d'un quasi-morphisme, la relation (10) implique
Il <*<P II < 4 II df I, indépendamment du choix de / (rappel: cp(jc) lim f(xn)/n);
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donc, si la semi-norme de c est nulle, cp est un morphisme et c est nulle. Le cas

général résulte ensuite de la proposition 3.3.2.

3.4. Longueur stable et quasi-morphismes

Dans ce paragraphe, le dual de l'espace des bords 2?i(r,R) est décrit au

moyen des quasi-morphismes : le théorème de Hahn-Banach permet alors (avec

la proposition 3.2) d'exprimer la longueur stable par une formule de dualité:

Proposition 3.4. Pour tout élément y de Y' on a la relation

AII II
I I

4 II yII sup J-ttî/ \\df\\

où fdécrit l'ensemble des quasi-morphismes et tp(y) lim -/(y")-
n~* co n

Ce résultat montre en particulier que la minoration de la longueur des

commutateurs par les quasi-morphismes (lemme 1.1) est optimale pour la

longueur stable.

Preuve. L'espace des bords Bi(Y,R) a été considéré comme

C2(r,R)/Z2(r,R) avec la norme quotient: son dual est l'espace des quasi-

morphismes / modulo les morphismes, muni de la norme || df\. D'après le

théorème de Hahn-Banach, la norme d'un élément quelconque b de Bi(Y,R)
est donnée par

m t m

I m i

b \\B sup
/ \df\

Considérons maintenant un élément y de F'. La relation entre || y || et || y ||fi

n n
I 9 (Y) I

(prop. 3.2) et l'inégalité (10) montrent alors que 4 || y || - sup est

f II df\
borné par une constante, donc nul par homogénéité.

il
seulement si la longueur stable est nulle sur Y'.

Corollaire 1. L'application Hb(Y,R) -> 7L2(r,R) est injective si et

En effet, la longueur stable est nulle si et seulement si tout quasi-morphisme

homogène (p est nul sur Y', ce qui équivaut, d'après la formule asymptotique,
à ûf(p 0.
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Corollaire 2. La longueur stable d'un groupe moyennable est nulle.

On pourrait invoquer le fait que la cohomologie bornée d'un tel groupe
est triviale ([Gr 2] ou [Iv]). Cependant il est facile de vérifier (voir [Be]) à l'aide

d'une moyenne que tout quasi-morphisme sur un groupe moyennable est

somme d'un morphisme et d'une application bornée.

Remarque. Il existe d'autres groupes ayant || || 0; ainsi SL3(Z) n'est

pas moyennable et vérifie c < oo ([Ne]).

3.5. Longueur stable et genre des classes de H2(r,Z)

La formule de Hopf (voir ci-dessous) donne une description géométrique
des classes de H2(T, Z) au moyen des surfaces fermées: pour tout élément a
de H2ÇT9Z), il existe une surface fermée Sg de genre g et un morphisme de

n\(Sg) dans Y qui envoie la classe fondamentale de Sg sur a. Le genre de a
est le genre minimal d'une telle surface; on le note g(a).

Il se trouve que le genre d'une classe s'interprète comme nombre minimal
de commutateurs grâce à l'extension de Hopf (12); je remercie Etienne Ghys
qui m'a expliqué ce fait. Cela permet d'illustrer la formule de dualité du

paragraphe 3.4 en retrouvant l'égalité suivante, qui relie le genre des classes

et la norme simpliciale || \\H de H2(Y, R):

Proposition 3.5. ([B-G] prop. 1-9). Pour toute classe a e H2(Y,Z),
on a la relation

n -* oo n

Preuve. Si r est égal à L/R, où L est libre, on a une extension centrale

(12) O^Rn[L,L]/[L,R] -> [R]*= r -* 1

dont le noyau est isomorphe à H2(T, Z) (c'est la formule de Hopf). Noter que
pour un groupe parfait, l'extension ci-dessus est l'extension centrale universelle
de r ([Mil 2] §5). L'isomorphisme R n [. ]« H2(T,Z) peut s'expliciter

comme suit (voir [Brw] p. 46). Considérons la 2-chaîne du groupe libre
L définie par

z(AuBu—,Ag,Bg)
g

E {(Q_I,Ni) + (C,_1^/,5/) - (C,-_ r1,5,) - (C,,Bf)}
i 1

ou g e N*,A,,Bi e L et C, [Al,Bl]... [A,.B,] i 1, ...,g (fig. 13).
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Figure 13

(g 2)

Le bord de z(AuBu ...,Ag,Bg) est égal à 1 - [AUB{] [Ag,Bg]. On obtient
l'isomorphisme de Hopf en associant à tout élément [Al9Bx] [Ag,Bg] de

[L, L] n R le 2-cycle z(ax, b\,ag, bg) sur r, at et bt étant les projections de

Ai et Bi dans T.

Ainsi le second groupe d'homologie H2(T, Z) apparaît comme sous-

groupe du groupe dérivé E' de E L/[L,R], et le genre d'une 2-classe a
(resp. lim (g(na)/n)) est exactement sa longueur des commutateurs (resp. sa

longueur stable) dans E, quand on la considère comme élément de E'.
La (semi-)norme simpliciale de H2(T,R) s'exprime par dualité grâce au

théorème de Hahn-Banach:

où c décrit H2b(T, R). D'après 3.4, il en est de même pour la longueur stable

de a, vue comme élément de E' :

où O décrit Ker (H2b(E, R) H2(E, R))(= H2b{E3 R)), || O || désigne la norme
naturelle de O dans H2b(T, R), et dip son représentant canonique (prop. 3.3.1).
Pour établir la proposition, il suffira d'identifier les éléments respectifs de ces

deux formules de dualité. On a vu en 3.3 que O et c se correspondaient par
isométrie. De plus si l'élément y [A\,B\\ [Ag,Bg] de E' correspond à la

c(a)
(a e//2(r, Z))

4 I a I sup
q>(a)

Il <E) Il



LONGUEUR STABLE DES COMMUTATEURS 141

classe a z(aubu ...,ag,bg) (#/,£, sont les projections de At,Bi dans F et

[aubi] [ag,bg] 1), alors d'après 3.3 (rel. (11)):

c(a) dip(z(AuBu ...,Ag,Bg)) (p(8{z(^4i ,BX, ...,Ag,Bg)}) ~ (p(y)

On en conclut que 4 || [Ai,B{] \Ag,Bg\ || =* J a \\H, ce qu'il fallait
démontrer.

3.6. LE THÉORÈME DE DUALITÉ

Rappelons que chaque classe c du nqyau de //^(r,R) -» //2(T,R) possède

un représentant privilégié d(p où (p est un quasi-morphisme homogène; on peut

se demander s'il existe un rapport entre || dip || et la norme || c ||ö de c dans

//^(r,R). Pour cela considérons l'espace K des quasi-morphismes homogènes

définis à l'addition d'un morphisme près. L'identification de K avec

Ker(//^(r,R)->//2(r,R)) provient de la décomposition en somme directe

(lire quasi-morphismes pour q-m):
{q - m) {q - m homogènes} © {q - m bornés}

On voit ainsi que || dip || est une norme induite, tandis que || c ||^ est une norme
quotient. Comme le montrent la définition de || c \\b et la relation (10), ces

deux normes sont comparables:

Il c lié ^ Il dtp II 4 II r lié •

Mais en estimant la longueur des commutateurs de l'élément xnyn{xy)~n qui
intervient dans la formule asymptotique (lemme 3.6), on trouve une inégalité
plus fine:

Il dip II ^ 2 [I e \\b

On verra des exemples où || dip || 2 J c |& (3.8).
Cependant il y a une autre norme sur K, définie par

I cp ||r sup{| cp|X y]\;x,jeT}((peAT).

L'intérêt de cette norme naturelle réside dans le fait qu'elle est reliée à la
longueur stable par dualité:

Théorème de dualité. Pour tout élément y de T' on a la relation

h H

1 I<p(Y)I
Il y II - sup -——-.

2 cpeK II (p ||r

Nous commençons par établir le résultat suivant qui est le point clé de la
démonstration:
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Lemme 3.6. Dans le groupe libre L(u,v) on a

c(unvn(uv) ~n) E* |———j (n ^ 1)

où E* est la partie entière supérieure.

Preuve. L'élément un + lun + l(uu)~n~l se réduit cycliquement à

unun(uu)~n. Tout symbole associé à ce dernier élément aura au plus 1 classe

à 2 sommets et 2 classes à 3 sommets, les autres classes comprenant au moins
4 sommets. Cela conduit à l'estimation:

c(unvn(vu)~n) ^ n/2

Pour établir une inégalité dans l'autre sens, il suffit d'examiner le cas où n

est pair puisque

u2k+ \v2k* l(uu) ~2k~ 1 u(u2kU2k(uu)~2k)[ü~l ,(vu)2k+l]

Posons n 2k et considérons le symbole ok:

ABGXG2... G21C-3CDH1H2... H21C-3EF/ (milieu du mot)
U U U U U U V V V U V V

a ~ lE~1 G-u'_ ,H-kl_41Gr -1 c - 1//2V_ 3G2V_ 4... Gï1h; 1b -1 F-*
u~l v~l u~l u~{

1

u~lu~lu~l u~l u~l u~l
I

u~l v~l u~l v~l

(le bloc I I est formé de k fois u~lu~l). Ou encore, géométriquement:

F - 1 .A
u °S^B

U A,

\G/v"1 U \
CW -1ru 1 U ^

dIjv1 V ]

V"1
G1 \ -1v 1

u"1

V êLr i
v

V

-WE

(k - 2)

D

Hi

Figure 14
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On identifie deux à deux toutes les arêtes possibles (i.e. de façon compatible

avec le mot unvn(vu)n) par la symétrie centrale; les autres arêtes sont

identifiées par la symétrie d'axe vertical (fig. 14). Ce symbole ok comprend

une classe (x) de 2 sommets (CD, D~xC~l), 2 classes O et • de 3 sommets

(AB, B~lF~1,FA ~1 et F~XA,A ~XE~X ,EF) et 2k-2 classes de 4 sommets.

Son genre est donc égal à k.

Le lemme permet de comparer la norme || cp ||r avec

Il d(p ||r sup{| dcp(x,y) |;x,yeT}

et même avec la norme de d(p restreint au groupe dérivé:

Proposition (égalité des normes). Pour tout cp e K:
Il d(p llr — Il (p ||r — Il dip ||r'

Preuve. Sachant que (p est homogène et constant sur les classes de

conjugaison, on a

(PfeLD - d($>(xyx~l ,y~l) (x,yeT)

d'où II (p ||r ^ 1 dip ||r. D'après le lemme 3.6, l'élément x2k+l y2k+l(xy)~2k~x
est le produit de k commutateurs; il suit que

ip(x2k+ly2k+l(xy)-2k~l) ^ k || (p ||r + (k- 1) || c/(p ||F'

La formule asymptotique montre alors que

I dq>{x,y)|^ 1
(1 (p ||r + Il dip ||r'

Comme || cp ||r et ] c/ip j;-. sont majorés par j| c?cp ]|r. on en déduit l'égalité
cherchée.

Preuve du théorème. Dans la formule asymptotique on peut remplacer cp

par / car (p - / est borné:

cfcp (x,y)lim -
n oo ïl

Si / est antisymétrique, la quantité f{xnsemajore comme en 1.1

Par II df\(Ac{xny"(xy)-n)- 1), et on voit d'après le lemme 3.6 que

I d(p||r ^ 2 I c?/||.

Rappelons maintenant que la longueur stable s'exprime par dualité (Prop. 3.4):
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m H (D(Y) I

4 y sup (y e rr)1 " f unj

Grâce à la remarque 2) de 1.1, cette égalité est encore valable quand / décrit
seulement l'espace des quasi-morphismes antisymétriques. Mais on a vu que
Il (p|r ^ ||cftp ||r ^ 2 I df\% d'où

h H ^
1 MY)!

H Y II ^ - sup
2 q,eK II cp ||r

D'autre part, on a clairement:

I <P(y) I -1 (p(Y") I ^ - {c(y") I (p ||r + (c(yn) - 1) I d(p ||r}
n n

dont on déduit l'inégalité

I <P(Y) I ^ 2 y I H (p ||r (<$ eK,y eT')

qui permet d'achever la preuve du théorème de dualité.

Remarques.

1) Soit Qy le quotient de par l'adhérence du sous-espace
engendré par {yn - ny; y eT', n eZ}. Comme Kr est naturellement le dual
de Qt, on peut reformuler le théorème de dualité: || y \\Q 2 || y ||.

2) La proposition «égalité des normes» montre que || (p ||r ne dépend que
des valeurs de cp sur le ft-ième groupe dérivé T(Aî) de T, n aussi grand que l'on
veut; en d'autres termes, l'espace Qr est engendré par les images des

commutateurs d'éléments de r(rt), n aussi grand que l'on veut. On retrouve
en particulier le fait que la longueur stable des groupes résolubles est nulle.

3) D'après cette même proposition, la restriction définit une injection
isométrique (ÄTr, Il 9 ||r) (Kv >

Il 9 IrO- C'est l'analogue d'une propriété
générale de la cohomologie bornée: si le quotient de F par un sous-groupe
normal est moyennable, alors H2b(T, R) -» H2b(Ti, R) est une injection
isométrique ([Gr 2]).

3.7. Propriétés de la longueur stable

On a regroupé dans ce paragraphe quelques propriétés générales de la
longueur stable. La première découle du lemme 3.6:
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Proposition 3.7.1. Pour tout groupe r on a l'inégalité:

II Y1Y2 II < Il Yi II + II Y2 II + - (Yi »Y2er')

Preuve. Elle est immédiate à partir du lemme 3.6.

Cette inégalité est optimale; pour le voir il suffit de prendre

T L(u,v9w,t), Yi Y2 [w,t] et d'appliquer le théorème 1 de la

partie 1. Plus généralement, on a le résultat suivant:

Proposition 3.7.2. Soit Tx et T2 deux groupes et r ri*r2 leur

somme libre. Alors pour tout yx ^ 1 dans Tx et tout y2 1 dans T2

on a l'égalité

„
1

II Y1Y2 ||r Il Yi llrj + II Y2 Ilr2 + ~ •

Commentaire. Les éléments (Y1Y2)" ef Y1Y2 diffèrent par n/2 commutateurs

environ (lemme 3.6); la proposition signifie que ces commutateurs sont

nécessaires à cause de l'indépendance des deux facteurs Tx et F2.

Preuve. D'après l'inégalité évidente || y, ||r ^ || Y/ |r; (qui est d'ailleurs une

égalité) et la proposition 3.7.1, on a la relation

il Y1Y2 ||r ^ Il Yi llr-t + II Y2 ||r2 + ~ •

Il reste à établir l'inégalité inverse. Pour cela, on s'appuiera sur l'interprétation

de l'espace Kr comme dual de Qr (voir 3.6, remarque 1) et sur le

théorème de dualité. Rappelons que Qr est le quotient de Bi(T, R) par
l'adhérence du sous-espace engendré par {yn - ny;y eTf, n eZ}. On observe

que Qr, et Qr2 s'injectent dans Qr et sont en somme directe dans cet espace.
On aura besoin d'un résultat préliminaire:

Affirmation. L'image de 9(yi,Y2) n'appartient pas à la somme directe

ôr, © Qr2 dans Qr.
Pour prouver ce fait, il suffit de construire une forme linéaire sur Qr, i.e.

un quasi-morphisme homogène sur T, qui s'annule sur QTl © QTl et de

valeur non nulle sur 6(yi ,y2). Tout élément x de T s'écrit de manière unique

x xxyx x2y2...xnyn

où xi et fi sont des éléments distincts de 1, sauf peut-être xx ou yn, appar-
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tenant respectivement äT{ et r2. On pose alors, en s'inspirant de la définition
des quasi-morphismes de Brooks (voir 1.1):

f(x) 0{x) -
où $(x) est le nombre d'occurences de yxy2 dans l'écriture canonique de x.
Par la même vérification formelle qu'en 1.1, / est un quasi-morphisme. Le

quasi-morphisme homogène associé cp(x) lim (f{xn)/n) fait l'affaire car il
n-> <x>

s'annule sur Iù et r2 et 9(6(71,72)) <^9(71,72) ~ - 1.

Revenons à la démonstration de la proposition. Soit s un réel > 0. D'après
le théorème de dualité, il existe un quasi-morphisme homogène 9/ sur Tt de

norme 1 tel que

9/(7/) ^ 2 I 7/ flr,- - s (/= 1,2)

Notons D la droite de Qr engendrée par l'image de 6(71,72). On définit une

forme linéaire de norme 1 sur QTl © QYl © D en posant

<P(<7;) si q, e Qr.(/=1,2) et cp(ô(y,,y2)) - 1
•

Grâce au théorème de Hahn-Banach, 9 se prolonge en un élément 9 de Kr de

norme 1. Par suite

„„Ii- 1 1
II T1Y2 ||r ^ - I 9(7i72) I - I 91 (71 + 92(72) + 1 I ^ Il 7i Hr, + Il 72 ||r2 + ~ - £

On termine en faisant tendre e vers 0.

Exemple. Dans le groupe libre L(ux, Uy,..., uk,uk) on a:

k 1 k jç J

Il II vi\Pi II - H I PiI+ —r~ 6 z> •

/ 1 2 / 1 2

Ce résultat pourrait aussi s'établir en utilisant la méthode des symboles de la

partie 2.

Voici une autre propriété de la longueur stable:

Proposition 3.7.3 (d'annulation). Supposons qu'il existe s > 0 avec

pour tout (x,y) e T2

h
1

lx,y] K - ~ £ •

2

Alors la longueur stable de T est nulle.
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Preuve. Soit (p e Ket(x„), (y„) deux suites d'éléments de T telles que

1 (p I lim | (p I
•

ce

Si (p est non nul, l'inégalité | cp(y) | ^ 2 || y || || (p ||r impose

h H
1

lim II [x„,yn\ Il <= -
n -* oo Z

ce qui est exclu par hypothèse. Ainsi || (p ||r 0, et par dualité la longueur
stable de T est nulle.

3.8. Exemples de calcul de longueur stable

Comme les morphismes de groupes <\>: -> r2 diminuent la longueur des

commutateurs et la longueur stable:

<t2(<Ky)) < cTl(y) et I 0(y) ||r2 ^ Il Y ||r, (Y eTi)

il est important de disposer de groupes où la longueur des commutateurs est

connue. C'est le cas du groupe H des homéomorphismes h de R vérifiant
h(x + 1) h(x) + l(xeR), pour lequel les produits de commutateurs ont été

bien étudiés dans [Wo] et [E-H-N]. Par exemple ([Wo], [E-H-N]) la translation

d'amplitude t est produit de p commutateurs si et seulement si:

| 11 < 2p - 1

Plus généralement, un produit h de p commutateurs de H est caractérisé dans

[E-H-N] par la propriété suivante:

inf (h(x) - x) < 2p - 1 et sup (h(x) - x) > 1 - 2p
xeR xeR

Le groupe H possède un quasi-morphisme célèbre, le nombre de translation
x, défini indépendamment du réel x par:

x(h) lim - —
~ *

n -* oo n

Le nombre de translation est homogène, et il détermine la longueur stable du
groupe H:

Proposition 3.8. Pour tout élément h de H: j h ||^ i] x{h) |.
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Preuve. Le nombre de translation est l'unique quasi-morphisme
homogène de H (à morphisme et homothétie près), puisque H2b(H, R) est égal
à R(é/t) ([M-M]). On applique alors le théorème de dualité.

Une autre preuve plus directe consisterait à utiliser le critère de [E-H-N]
cité plus haut.

Revenons au cas du groupe libre L L(u, v) et calculons la longueur
stable de [u,[u,v]\. Pour cela considérons la combinaison de quasi-
morphismes de Brooks de L(u,v] définie par

./ fuvu~\ ~t~ fu ~ 1 y - 1
m - 1 fu~lvu fuv~lu •

On vérifie comme en 1.1 que || df\\ 2. L'élément [u, [u, v]\n est conjugué à

0uvu-lv~lu-luuv~l)n et f ((uvu~iu~lu~lvuu~l)n) 4n - 1; d'où
(lemme 1.1) c([u, [u,v]]n) ^ E(n/2) + 1. Finalement, on conclut que

Il k [uM IL i/2

Voici un exemple de calcul de longueur stable par dualité. Soit / fuu le

quasi-morphisme de Brooks associé à uv dans L L(u,v). Alors || J/|k 1>

donc I dip I J cp ||l ^ 2. Mais (p([uu2,u~lu]) 2, et comme

| (pOw2, u~lv]) k 2 II (P ||L|| [uu2,u~lu] \\L

on voit que || [vu2,u~lv] ||L -
De plus la norme de la classe c de d(p dans H\(L, R) est égale à 1. Pour

cet exemple, on a donc || dq J — 2 || c ||ö.

On a constaté que la longueur stable peut prendre des valeurs arbitraires

(dans H par exemple). Il est également facile de construire un groupe
dénombrable Y avec un élément y de longueur stable rationnelle donnée:

1

r <u,v,w,t\[u,v]p= [w, t] > [u, u] r — (pe N*)
2p

(pour la minoration prendre un morphisme de Y dans H). Cependant, pour
les groupes libres, elle est minorée par 1/6 (2.6); les résultats précédents

suggèrent la question suivante, laissée au lecteur comme conclusion:

Question: la longueur stable d'un groupe libre est-elle à valeurs demi-

entières?


	3. Longueur stable et cohomologie bornée

