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130 C. BAVARD
3. LONGUEUR STABLE ET COHOMOLOGIE BORNEE

Comme préliminaire on étudie 1’espace des bords B;(I',R). Ceci est
justifié par le fait qu’il relie longueur stable et cohomologie bornée: d’une part
B,;(I',R) est muni d’une norme comparable a la longueur stable (propo-
sition 3.2), et d’autre part cet espace s’interpréte par dualité a partir de la
cohomologie bornée (3.4).

3.1. L’ESPACE DES BORDS

On rappelle la définition de I’homologie, ici a valeurs réelles, d’un groupe
discret par la «bar-résolution». Soit C,(I', R) ’espace vectoriel réel de base
I'"(n>1) et soit opérateur bord 9: C,,, (I', R) = C,(I', R) donné par

O(X1, .oy Xn41)

n
= (XZ,---,xn+l) + Z (_I)i(xls'-'axixi+l7"'9xn+l) + (_1)n+1(xl"-°’xn) .
i=1

L’homologie H.(I',R) est alors celle du complexe
d d 0 0
- > GIT,R—->CIT,R)-R—->0 (¥).

L’espace des 1-bords, noté B;(I',R), est I’ensemble des combinaisons
finies de la forme

Yo, (xi—xyi+y) weR,x,yel.

Soit Z,(I', R) le noyau de 9: C,(I',R) = Ci(I',R) (espace des 2-cycles).
L’isomorphisme B;(I',R) = C,(I', R)/Z,(T', R) induit sur B;(I', R) une norme
simpliciale quotient:

“ b “B = inf{ Zl di ‘§ 8(2 (li(xi,J’i)) = b} (b e B (T, R)) '
borne inférieure sur les 2-chaines de bord b.

Par ailleurs, les bords entiers b € B;(I', Z) ont aussi une «norme» entiére:

|blz=mf{ Y[ n[;8(Lnta,y) =b et neZ)

et la norme réelle de b est donnée par

| kb |z

” b ”B = lim

k—

((beB\(I,Z)) .
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3.2. LONGUEUR STABLE ET NORME SUR L’ESPACE DES BORDS

Remarquons d’abord que le groupe dérivé 1'" est inclus dans ’espace des
bords B;(I',R) car

(8) [x, ] = 8{([x, »],») + Cyx 1, x) — (6 »)} (xsyel).
1l est donc naturel de comparer la longueur stable ||y || d’un élément y de I'’
avec sa norme |y |5 dans B;(T,R):

PROPOSITION 3.2. 4|y|l-1<|yvls<4|vll+1 @Gel).

Avant d’aborder la preuve de la proposition, voyons comment la combi-
natoire d’une relation

b = B(E g(xi, ) &= =x1

peut étre décrite au moyen d’une surface. On pense a chaque e(x, y) qui
intervient ci-dessus comme & un simplexe géométrique orienté (fig. 8):

FIGURE 8

Choisissons une facon de grouper par paires {x, — x} les arétes qui s’annulent
dans la relation; il suffit alors d’identifier 2 a 2 les arétes ainsi sélectionnées
pour construire une surface a bord (abstraite) X orientée et triangulée, a priori
non connexe et non unique. Noter que si on pose

b=Ynz (neZ, zel)
J

le nombre de composantes connexes du bord de ¥ est au plus égal a ), | n;|.

J
On dira que ¥ borde b. Une surface bordant b et formée de | b |, simplexes

sera appelée minimisante pour b. Ainsi le fait qu’un commutateur soit le bord
de 3 simplexes s’illumine (fig. 9):
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(surface de genre 1)

FIGURE 9

La longueur des commutateurs c(y) est le genre minimal d’une telle surface
connexe bordant y (yeI'’). Voici encore un exemple: 2[x, y] bordé par une
surface de genre 1 ayant 2 composantes du bord:

(y=0DyD

FIGURE 10

Preuve de la proposition. Comme |y |z = lim (| ky |z/k) (voir 3.1), la
k— oo

zpreuve consiste a relier | ky |z avec c(y*)(k € N*). Il faut bien distinguer les
éléments y* et ky qui sont, par définition, linéairement indépendants dans .
Bi(T',R).
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D’aprés la relation (8) tout produit de N commutateurs est le bord de
4N — 1 simplexes, d’ou |y¥ |z < 4c(y¥) — 1. En remplacant le simplexe qui
contient y* par k simplexes contenant y (fig. 11), on voit que

| ky |z < de(y¥) + k- 2.

AYL_’ xY A'Y

FIGURE 11

Il reste & établir une inégalité dans I’autre sens:

Affirmation. 4c(y¥) — k<lkylz (yveI).

Une fois que P’affirmation sera démontrée, la proposition résultera de
I’encadrement:

de(y ) — k <|kylz <dcyd) + k— 2.

Preuve de ’affirmation. Supposons d’abord que ky est bordé par une
surface X minimisante connexe. Soit g le genre de X et r le nombre de
composantes connexes de son bord. Un petit calcul de caractéristique d’Euler-
Poincaré permet de minorer | ky |z. En effet considérons une triangulation
de ¥ qui comprend s sommets, a arétes, f faces et exactement k arétes sur
le bord; on a les relations

2-2g—r=s—a+f e 3f=2a-%k.

D’ou f =4g — 4 + 2r + 25 — k. Sachant qu’une telle triangulation doit
comprendre au moins k£ sommets (ceux qui sont sur le bord) on en déduit
I’'inégalité

© f>4g—-4+2r+k.

Notons par ailleurs k;(i = 1, ...,r) le nombre d’arétes sur la i-éme composante
du bord (Zk,- = k). L’hypothese signifie algébriquement qu’un certain
produit
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a(ykr)y ... ar-1(yk-tyyk (q;eT,i=1,...,r—1)

-est produit de g commutateurs de I" (on rappelle la notation *y = xyx~1).
L’identité

“x %2, ..., = [ay,x 1% az,x;] ... B2 x-Da,, x,] X1 ... X,

montre alors que g > c(y*¥) — r + 1. Compte tenu de (9), il en résulte que
| ky |z = 4c(y%) — 2r + k.

Mais comme le nombre r de composantes connexes du bord de X est par
construction au plus égal a k, on obtient finalement 1’inégalité souhaitée.

Dans le cas général, une surface minimisante X se décompose en
composantes connexes g (B=1,...,0) et I’on a

|kY|z= Z|kBY|Z (E kB:k),
B=1 B=1

ou chaque terme correspond a une composante, minimisante elle aussi. En
appliquant ce qui précéde, on trouve donc

=

|kY lz Z de(yke) — k

a

L’inégalité évidente Z c(y*s) > c(y*) permet alors de conclure la preuve
B=1
de I’affirmation.

' 3.3. QUASI-MORPHISMES ET COHOMOLOGIE BORNEE

Apreés avoir rappelé la définition de la cohomologie bornée, on étudie le
| rapport entre les quasi-morphismes et le deuxiéme groupe de cohomologie
bornée.

L’espace vectoriel C,(I', R) (voir 3.1) est muni de la norme simpliciale, de
type /'. Son dual, noté C,(I',R), qui est I’espace des applications bornées
F:T"— R, hérite donc d’une norme /*:

| F | = sup{| Fx1,y..0r ) |; X1y ennyX0) €7}

' Le complexe (%) de 3.1 donne ainsi par dualité topologique un complexe dont
' I’homologie, avec sa semi-norme quotient, est par définition H}(I',R), la
gcohomologze bornée de T'. Le dual algébrique de (%) définit quant a lui la
%cohomologie usuelle H*(I', R) de T".

i
i
i
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On a appelé quasi-morphisme toute application f:IT = R dont le
cobord df est borné:

| dfey)| =) - fe) + f ] <df| xyeD).

Avec ce langage, le noyau de H> »(I,R) = H*(I', R) est naturellement ’espace
des quasi-morphismes définis a I’addition d’un morphisme et d’une application
bornée prés. En fait chaque classe de ce noyau contient un élément privilégié:
elle se représente de facon unique comme cobord d¢ d’un quasi-morphisme
homogeéne (¢ (x") = no(x),xel,neZ).

PROPOSITION 3.3.1 ([Be]).

1) Le noyau de H?,(F,R)HHZ(F,R) est isomorphe par le cobord a
I’espace des quasi-morphismes homogenes définis a [’addition d’un
morphisme pres.

2) Tout quasi-morphisme homogéne ¢ est constant sur les classes de
conjugaison (PGyx—Y = ox);x,yel) et vérifie la formule
asymptotique:

1
do(x,y) = lim — cp((xy »)™m) (xyel).

n— o

Preuve (voir [Be]). Si f est un quasi-morphisme, la suite (f(x™) nen €5t
presque sous-additive:

| fxmmy — fxm) — fxmy |<|ldf | (xel;m,neN) .

n

On en déduit (voir [P-S]) que L&

converge et sa limite (homogéne!),

notée @(x), vérifie ’inégalité

n d
|cp(x)~f(x)|<“ /1 (n>1) .
n n
En particulier,
(10) e - feI<dr

d’ou il résulte que do et df représentent la méme classe de HZ(F R).

On remarque ensuite que xy"x-! — Y"(neZ) est le bord de 2 simplexes
(fig. 12):
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(cylindre)

FiGURE 12

Ceci montre que @(p"x~!) — @(y") est borné par 2|del, donc
@(xyx~1) — @(y) (homogeéne en y) est nul.

' La formule asymptotique est aussi une conséquence de I’homogénéité.
Ecrivons d’abord la relation

1
do(x,y) = lim — {o(x") + o(¥y™") — o((xy)")} .

n—-o A
Comme x" + y" — (xy)" — x"y"(xy)~" est le bord de 3 simplexes, cette
1
limite est égale a lim — {@(x"y"(xy) ")} .
n— o n
Les quasi-morphismes décrivent, par définition, le noyau de
H,(I',R) » HXI',R), qui n’est qu’une partie de H-(I',R). Cependant, dans
beaucoup de cas intéressants, tels que les groupes fondamentaux de polyédres
' finis, ce noyau est de codimension finie dans Hﬁ(l“, R). De toutes facons, on
peut toujours décrire Hi(F, R) au moyen des quasi-morphismes définis sur un
- groupe ad hoc:

PROPOSITION 3.3.2. Tout groupe I admet une extension centrale
E—T qui induit une isométrie: H,([T',R) = Ker(H,(E,R) — H*(E,R))
(en fait ce noyau est égal @ H,(E,R) tout entier).

Preuve. Ecrivons I' comme quotient d’un groupe libre L par un sous-
‘groupe normal R. On a alors une suite exacte

0—-R/[L,R]—=L/[IL,LR]>L/R=T-1.

i

 Cette suite définit une extension centrale p: E = L/[L, R] — I', qui dépend du
. choix de la présentation de I'.
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Comme le noyau de I’extension E est abélien (donc moyennable) on sait
d’aprés un théoréme général sur la cohomologie bornée ([Iv]), que p induit une
isométrie H2(I', R) = H,(E,R). Pour établir la proposition, il suffit donc de
prouver que [’application p*:H*(I',R) > H?*(E,R) induite par p en
cohomologie usuelle est nulle.

Soit ¢ un 2-cocycle normalisé sur I', & valeurs réelles; le cocycle p*c définit
une extension centrale n: € — E. Plus précisément, % est ’ensemble R X FE
muni de la loi de groupe:

(@, X)(B, Y) = (¢ +B+c(p(X),p(Y)),XY) (a,peR et X,Y€EE),

et m est la projection R x E— E. Il est facile de vérifier que 1’extension
pomn: € =T est centrale. Comme L est un groupe libre, il existe un
morphisme de groupes L — E au-dessus de I'; puisque I’extension p o 1 est
centrale, ce morphisme induit un morphisme u: E > % au-dessus de I'. On a
donc

u(X) = (a(X),a(X)X) o(X)e€eR, a(X) € Kerp.

En explicitant le fait que « est un morphisme de groupes, on trouve la relation

a(XY) = a(X) + a(Y) + c(p(X),p(Y)) (X,YE€E),

c’est-a-dire p*c = — da.

Il est intéressant de noter que dans notre situation, I’isométrie p#: H,(T', R)
~ H.(E,R) admet un inverse explicite. Cela est di au fait que le noyau 4 de
I’extension E est central. En effet si ¢ est quasi-morphisme homogéne E — R,
on a d’apres la formule asymptotique (Prop. 3.3.1-2)):

dp(X,a) =0 XeE,acA.

On en déduit que do(aX, bY) = do(X,Y) pour X, Ye E et a, b € A. Cette
proprieté permet d’associer & tout quasi-morphisme homogéne ¢ sur E un
2-cocycle borné sur I" en posant

(11) c(x,y) =do(X,Y) x,yel,

ou X et Y sont des relevés quelconques de x et y dans E. D’ol une application
Hf,(E, R) — Hf,(l“ ,R) qui est visiblement inverse a droite de pE.

Remarque. Le fait que la semi-norme sur Hf,(l“, R) est une vraie norme
(IM-M], [Mit]) apparait clairement dans notre contexte. Pour une classe c
representable par le cobord df d’un quasi-morphisme, la relation (10) implique
| do | < 4| df|, indépendamment du choix de £ (rappel: ¢(x) = lim f(x")/n);

n— o
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donc, si la semi-norme de c est nulle, ¢ est un morphisme et ¢ est nulle. Le cas
général résulte ensuite de la proposition 3.3.2.

3.4. LONGUEUR STABLE ET QUASI-MORPHISMES

Dans ce paragraphe, le dual de I’espace des bords B;(I',R) est décrit au
moyen des quasi-morphismes: le théoréme de Hahn-Banach permet alors (avec
la proposition 3.2) d’exprimer la longueur stable par une formule de dualité:

PROPOSITION 3.4. Pour tout élément vy de I’ on a la relation

Ay o) |

= sup ——
s larsl

. .y : . .1
ou [ décrit ensemble des quasi-morphismes et ¢(y) = lim — f(y").
n— oo n
Ce résultat montre en particulier que la minoration de la longueur des
commutateurs par les quasi-morphismes (lemme 1.1) est optimale pour la
longueur stable.

Preuve. L’espace des bords B;(I,R) a ¢été considéré comme
C,(I,R)/Z,(I',R) avec la norme quotient: son dual est I’espace des quasi-
morphismes f modulo les morphismes, muni de la norme | df|. D’aprés le
théoréme de Hahn-Banach, la norme d’un élément quelconque b de B;(I', R)
est donnée par

| f®)|
| s = sup ——-.
s ldrl
Considérons maintenant un élément y de I'’. La relation entre ||y | et | v |5
(prop. 3.2) et I’inégalité (10) montrent alors que 4|7 || — sup‘“(p asj‘)ll\ est
S

' borné par une constante, donc nul par homogénéité.

COROLLAIRE 1. L’application Hy(IT,R) = H*(T,R) est injective si et
seulement si la longueur stable est nulle sur 1.

En effet, la longueur stable est nulle si et seulement si tout quasi-morphisme
' homogeéne ¢ est nul sur I'’, ce qui équivaut, d’apres la formule asymptotique,
ado =0.

-~
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COROLLAIRE 2. La longueur stable d’un groupe moyennable est nulle.

On pourrait invoquer le fait que la cohomologie bornée d’un tel groupe
est triviale ([Gr 2] ou [Iv]). Cependant il est facile de vérifier (voir [Be]) a I’aide
d’une moyenne que tout quasi-morphisme sur un groupe moyennable est
somme d’un morphisme et d’une application bornée.

Remarque. 1l existe d’autres groupes ayant || | = 0; ainsi SL3;(Z) n’est
pas moyennable et vérifie ¢ < oo ([Ne]).

3.5. LONGUEUR STABLE ET GENRE DES CLASSES DE H,(I',Z)

La formule de Hopf (voir ci-dessous) donne une description géométrique
des classes de H,(I', Z) au moyen des surfaces fermées: pour tout ¢lément o
de H,(I', Z), il existe une surface fermée S, de genre g et un morphisme de
n1(S,) dans I' qui envoie la classe fondamentale de S, sur a. Le genre de a
est le genre minimal d’une telle surface; on le note g(a).

Il se trouve que le genre d’une classe s’interpréte comme nombre minimal
de commutateurs grace a I’extension de Hopf (12); je remercie Etienne Ghys
qui m’a expliqué ce fait. Cela permet d’illustrer la formule de dualité du
paragraphe 3.4 en retrouvant ’égalité suivante, qui relie le genre des classes
et la norme simpliciale || | de H,(T, R):

PROPOSITION 3.5. ([B-G] prop. 1-9). Pour toute classe ae H,(I',Z),
on a la relation
no
laly=4 lim £9Y

n— o

Preuve. SiT est égal a L/R, ou L est libre, on a une extension centrale
(12) O->RnNI[LLY/[L,RI>[L,L1/[L,LRI>L/R=T-1

dont le noyau est isomorphe a H,(I", Z) (c’est la formule de Hopf). Noter que
pour un groupe parfait, I’extension ci-dessus est I’extension centrale universelle
de I' ([Mil 2] §5). L’isomorphisme R n [L, L1/[L, R] = H,(I', Z) peut s’expli-
citer comme suit (voir [Brw] p. 46). Considérons la 2-chaine du groupe libre
L définie par

2(Ay, By, ..., Ag, By)

I
I Do

{(Ciz1,A) + (Ci_1A4;,B) — (Ci-1A:BA ', B) — (Ci, B)}

1

ougeN* A;,,BieLetC =[A4,,B]... [A;,Bi] i=1,..., ¢ (fig. 13).

!
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(g=2)

FIGURE 13

Le bord de z(A4,, B, ...,A,,B,) est égal a 1 — [4,,B] ... [4,, B,]. On obtient
I'isomorphisme de Hopf en associant a tout élément [4;, B,] ... [4,, B,] de
[L,L] N R le 2-cycle z(a;, by, ...,a,,b,) sur I, a; et b; étant les projections de
A; et B; dans T".

Ainsi le second groupe d’homologie H,(I',Z) apparait comme sous-
groupe du groupe dérivé E' de E = L/[L,R], et le genre d’une 2-classe o
(resp. lim (g(no)/n)) est exactement sa longueur des commutateurs (resp. sa

n— o

longueur stable) dans E, quand on la considéere comme élément de E’.
La (semi-)norme simpliciale de H,(I',R) s’exprime par dualité grice au
théoréme de Hahn-Banach:

| c(a) |
|| = sup

¢ el

ou ¢ décrit Hﬁ(l“, R). D’apres 3.4, il en est de méme pour la longueur stable
de a, vue comme élément de E’:

(0 e Hy(T', Z))

4] al = sup
0]

ou @ décrit Ker(H5(E,R) = H*(E,R)) (= H,(E,R)),| ® | désigne la norme
naturelle de ® dans H‘,’;(F, R), et do son représentant canonique (prop. 3.3.1).
Pour établir la proposition, il suffira d’identifier les éléments respectifs de ces
- deux formules de dualité. On a vu en 3.3 que ® et ¢ se correspondaient par
-isométrie. De plus si I’élément y = [4,,B] ... [4,, B,] de E’ correspond & la
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classe a = z(ai, by, ...,a,,b,) (a;,b; sont les projections de A;, B; dans I et
[a;,b1] ... [a,,b,] = 1), alors d’apres 3.3 (rel. (11)):
C((l) = d(p(Z(Al’Bla -~'9Ag>Bg)) = (D(G{Z(AlsBla -“’AgaBg)}) = - (p(’Y) d

On en conclut que 4|[A4;,B]...[4., B, =]z, ce quil fallait
démontrer.

3.6. LE THEOREME DE DUALITE

Rappelons que chaque classe ¢ du nqQyau de Hi(r, R) —» H*(I', R) possede
un représentant privilégié do ou ¢ est un quasi-morphisme homogéne; on peut
se demander s’il existe un rapport entre || do || et la norme || c |, de ¢ dans
H 12,(1“, R). Pour cela considérons I’espace K des quasi-morphismes homogenes
définis a l’addition d’un morphisme prés. L’identification de K avec
Ker (H,(,R) — H(T,R)) provient de la décomposition en somme directe
(lire quasi-morphismes pour g — m):

{q — m} ={qg — mhomogeénes} ® {q — mbornés} .

On voit ainsi que | do || est une norme induite, tandis que | ¢ ||, est une norme
quotient. Comme le montrent la définition de | ¢ |, et la relation (10), ces
deux normes sont comparables:

lelle<ldel<4lcls.

Mais en estimant la longueur des commutateurs de I’élément x"y”(xy) " qui
intervient dans la formule asymptotique (lemme 3.6), on trouve une inégalité
plus fine:

ldoll<2lels.

On verra des exemples ou || do | = 2| c||, (3.8).
Cependant il y a une autre norme sur K, définie par

lolc = sup{|olx, y1;x,yel} (pekK).

L’intérét de cette norme naturelle réside dans le fait qu’elle est reliée a la
longueur stable par dualité:

THEOREME DE DUALITE. Pour tout élément v de T’ on a la relation

1 o]
|y | == sup

20k ol

Nous commengons par établir le résultat suivant qui est le point clé de la
démonstration:
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LEMME 3.6. Dans le groupe libre L(u,v) on a

c(umvr(uv)-") = E* (n; 1) n=1)

ou E* est la partie entiere supérieure.

Preuve. L’¢lément wu”*lv"+Y(uw)-"-1 se réduit cycliquement a
u"v"(vu) ~". Tout symbole associé a ce dernier élément aura au plus 1 classe
a 2 sommets et 2 classes a 3 sommets, les autres classes comprenant au moins
4 sommets. Cela conduit a ’estimation:

c(u™v™(vu)~")y = n/2 .

Pour établir une inégalité dans 1’autre sens, il suffit d’examiner le cas ou n
est pair puisque

u2k+102k+1(uu)—2k—1 — u(u2kU2k(Uu)—2k) [U_l,(Uu)2k+l] .
Posons n = 2k et considérons le symbole o,:

ABGI G2 GZk__3CDH1H2 o sz_3EF/ (mllleu du mot)

‘ uuuuu ... uuvvovv ... v 0LV

-1~ -1 -1 -l =1yt —1pr-1 -1 -lrr-lp_-1p-1
A-'E-\G;l Hy' ,...H;'G;'D-'C-'H}' ,G5,...G; 'H'B~'F
u-lv-tu-1tp-1 L0ty y -yl ou o ly-1p-1

I J

(Ie bloc | est formé de k fois u~'v~1). Ou encore, géométriquement:

(k=2)

FIGURE 14
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On identifie deux & deux toutes les arétes possibles (i.e. de fagcon compatible
avec le mot u"v"(vu)") par la symétrie centrale; les autres ar€tes sont
identifiées par la symétrie d’axe vertical (fig. 14). Ce symbole 6, comprend
une classe ® de 2 sommets (CD, D-1C-1), 2 classes O et @ de 3 sommets
(AB,B-'F~-',FA-' et F-'A,A-'E-',EF) et 2k-2 classes de 4 sommets.
Son genre est donc égal a k.

Le lemme permet de comparer la norme | ¢ ||r avec

| do |- = sup{|do(x, ) |;x,yeT},

et méme avec la norme de d¢ restreint au groupe dérive:

PROPOSITION (égalité des normes). Pour tout ¢ € K:

I dolr=1lol:=1dolr .

Preuve. Sachant que ¢ est homogéne et constant sur les classes de
conjugaison, on a

o(lx,y]) = —doxyx~1,y~") (xyel),

dou | ¢ |r < | do|r. D’aprés le lemme 3.6, 1’élément x2k+1y2k+1(xy)-2k-1
est le produit de & commutateurs; il suit que

QY2+ 1) =2k-1y < ko |r + (k=1) | do | .

La formule asymptotique montre alors que
1
| do(x, ) | < 5 o le+1dolr) .
Comme | ¢ | et |do |- sont majorés par | do |-, on en déduit I’égalité
cherchée.
Preuve du théoréeme. Dans la formule asymptotique on peut remplacer ¢

par f car ¢ — f est borné:

1
do(x,y) = lim — (f(x"y"(xy)~")) .

n— o

Si f est antisymétrique, la quantité f(x"y"(xy) ~") se majore comme en 1.1
par || df ||(4c(x"y"(xy)=") — 1), et on voit d’apreés le lemme 3.6 que

ldole<2arl.

Rappelons maintenant que la longueur stable s’exprime par dualité (Prop. 3.4):
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o) | ,
llvll—sp (Yel’).
lafl
Gréce a la remarque 2) de 1.1, cette égalité est encore valable quand f décrit
seulement I’espace des quasi-morphismes antisymétriques. Mais on a vu que

lolr <|de |- < d’ou

L o) |
!|v||\ —

<peK ” ) “r

D’autre part, on a clairement:

] 1
loy) | = ;Icp(v”)K ;{C(v”) lolle + (ctyny—1D | do |},

dont on déduit I’inégalité

lom [<2]vllol (peK ver)

qui permet d’achever la preuve du théoréme de dualité.
Remarques.

1) Soit Qr le quotient de B;(I',R) par D’adhérence du sous-espace .
engendré par {y” — ny;yeI'’,neZ}. Comme K est naturellement le dual
de QOr, on peut reformuler le théoréme de dualité: |y [lo = 2| v ||.

2) La proposition «égalité des normes» montre que | ¢ |- ne dépend que
des valeurs de ¢ sur le n-iéme groupe dérivé I'™ de I', n aussi grand que [’on
veut; en d’autres termes, ’espace QOr est engendré par les images des
commutateurs d’éléments de I', n aussi grand que ’on veut. On retrouve
en particulier le fait que la longueur stable des groupes résolubles est nulle.

3) D’apres cette méme proposition, la restriction définit une injection
isométrique (Kr,| ¢ ) = (K-, || @ |r7). C’est I’analogue d’une propriété
générale de la cohomologie bornée: si le quotient de I" par un sous-groupe
normal I'; est moyennable, alors HZ(F R) — H* »(I'1,R) est une injection
isométrique ([Gr 2]).

3.7. PROPRIETES DE LA LONGUEUR STABLE

On a regroupé dans ce paragraphe quelques propriétés générales de la
longueur stable. La premieére découle du lemme 3.6:
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PROPOSITION 3.7.1. Pour tout groupe T on a l’inégalité:

1 4
l|Yl'Yz“<“Y1 ||+”Y2||+£ (Y1,72€T7) .

Preuve. Elle est immédiate a partir du lemme 3.6.

Cette inégalité est optimale; pour le voir il suffit de prendre
[ = L(u,v,w,t), vi = [u,0], v, = [w, t] et d’appliquer le théoreme 1 de la
partie 1. Plus généralement, on a le résultat suivant:

PROPOSITION 3.7.2. Soit I, et T, deux groupeset I =T *1, leur
somme libre. Alors pour tout vy, #1 dans T, et tout vy, # 1 dans I,
on a l’égalité

1
” Y1Y2 ”F = “ Y1 ||rl + “ Y2 Hrz + —.

2
Commentaire. Les éléments (y;y,)" et y]y, difféerent par n/2 commu-
tateurs environ (lemme 3.6); la proposition signifie que ces commutateurs sont
nécessaires & cause de 1’indépendance des deux facteurs Iy et I';.

Preuve. D’aprés Iinégalité évidente || v; [r < v: |, (qui est d’ailleurs une

égalité) et la proposition 3.7.1, on a la relation

1
vz e < v “F1 + | v2 “Fz + 5 )

Il reste a établir I’inégalité inverse. Pour cela, on s’appuiera sur ’interpré-
tation de 1’espace Kr comme dual de Or (voir 3.6, remarque 1) et sur le
théoréeme de dualité. Rappelons que QOr est le quotient de B;(I',R) par
I’adhérence du sous-espace engendré par {y” — ny;yeI'’,neZ}. On observe

que QOr, et Or, s’injectent dans Qr et sont en somme directe dans cet espace.
On aura besoin d’un résultat préliminaire:

Affirmation. L’image de 9(y,,y,) n’appartient pas a la somme directe
Or, @ QOr, dans Qr.

Pour prouver ce fait, il suffit de construire une forme linéaire sur Qr, i.e.
un quasi-morphisme homogéne sur I', qui s’annule sur Qr, @ Qr, et de
valeur non nulle sur d(y;,y,). Tout élément x de I s’écrit de maniére unique

X = X1 1X2Y2 «oo XpYn

ou x; et y; sont des éléments distincts de 1, sauf peut-&tre x; ou y,, appar-
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tenant respectivement a I'; et I',. On pose alors, en s’jnspirant de la définition
des quasi-morphismes de Brooks (voir 1.1):

f)y=20x) - 1),

ou Z(x) est le nombre d’occurences de vy,y, dans I’écriture canonique de Xx.
Par la méme vérification formelle qu’en 1.1, f est un quasi-morphisme. Le
quasi-morphisme homogene associé ¢(x) = lim (f(x")/n) fait affaire car il

n— o

s’annule sur 'y et T, et @(3(y1,v2)) = do(y,,72) = — 1.

Revenons a la démonstration de la proposition. Soit € un réel > 0. D’apres
le théoréme de dualité, il existe un quasi-morphisme homogéne ¢; sur I'; de
norme 1 tel que

iy =2 | v ||r,- -t (=12).

Notons D la droite de Or engendrée par I’image de d(y;,vy,). On définit une
forme linéaire de norme 1 sur Qr, @ Qr, @ D en posant

0(q) = 0i(q) si g€ Or,(i=1,2) et @@, y))=—-1.

Gréce au théoreme de Hahn-Banach, ¢ se prolonge en un élément ¢ de Kr de
norme 1. Par suite

1, _ 1 1
lviv2 llr > 5|(P(Y172) | = -2-|q)1(yl) +02(v2) + 1| = [ville, + | vale, + 5 £ .

On termine en faisant tendre € vers O.

Exemple. Dans le groupe libre L(u;,0;,...,Ux, V) On a:

k 1k k-1
T i, 07l == Y |pil+ ——  (pi€Z).
i=1 2i=1 2

Ce résultat pourrait aussi s’établir en utilisant la méthode des symboles de la
partie 2.

Voici une autre propriété de la longueur stable:

PROPOSITION 3.7.3 (d’annulation). Supposons qu’il existe € > 0 avec
pour tout (x,y) € I'?

1
||[x,y]||<£—8.

Alors la longueur stable de T est nulle.
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Preuve. Soit ¢ € K et (x,), (¥,) deux suites d’éléments de I' telles que

Lo = tim|@(x.,».D 1.

. Si ¢ est non nul, inégalité | o(y) | < 2] v | ¢ |- impose

. 1
lim || [x,, 3.1 | = =,

n— o 2

ce qui est exclu par hypothése. Ainsi || @ || = 0, et par dualité la longueur
stable de T est nulle.

3.8. EXEMPLES DE CALCUL DE LONGUEUR STABLE

Comme les morphismes de groupes ¢: I'; = I'; diminuent la longueur des
commutateurs et la longueur stable:

cr,(0M) <o) et oW, <lvl, el),

il est important de disposer de groupes ou la longueur des commutateurs est
connue. C’est le cas du groupe H des homéomorphismes # de R vérifiant
h(x+ 1) = h(x) + 1(xeR), pour lequel les produits de commutateurs ont €té
bien étudiés dans [Wo] et [E-H-N]. Par exemple ([Wo], [E-H-N]) la translation
d’amplitude ¢ est produit de p commutateurs si et seulement si:

|t|l<2p—1.

Plus généralement, un produit # de p commutateurs de H est caractérisé dans
[E-H-N] par la propriété suivante:

inf (A(x)—x)<2p -1 et sup(h(x)—x)>1-2p.

xeR xeR

Le groupe H posséde un quasi-morphisme célébre, le nombre de translation
7, défini indépendamment du réel x par:

) = lim T X ey
n

n— oo

Le nomb~re de translation est homogene, et il détermine la longueur stable du
groupe H:

PROPOSITION 3.8.  Pour tout élément h de H: || h|z= ! | T(h)|.
7
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Preuve. Le nombre de translation est Iunique quasi-morphisme
homogéne de H (3 morphisme et homothétie prés), puisque Hf,(ﬁ, R) est égal
a R(dt) (IM-M]). On applique alors le théoréme de dualité. .

Une autre preuve plus directe consisterait & utiliser le critére de [E-H-N]
cité¢ plus haut.

Revenons au cas du groupe libre L = L(u,v) et calculons la longueur
stable de [u, [u,v]]. Pour cela considérons la combinaison de quasi-
morphismes de Brooks de L(u,v] définie par

f = fuuu-l + fu—lu—lu—l + fu*luu + qu‘lu .

On vérifie comme en 1.1 que | df|| = 2. L’élément [u, [, v]]” est conjugué a
(wou-tv~'u-touww-YH" et fwwu-'vo'u-tvuw-")") =4n - 1; d’ou
(lemme 1.1) c([u, [u,v]]") > E(n/2) + 1. Finalement, on conclut que

| [, G, 011 = 172
Voici un exemple de calcul de longueur stable par dualité. Soit f = f,, le

quasi-morphisme de Brooks associé & uv dans L = L(u,v). Alors || df| < 1,
donc || do | =1l o |, < 2. Mais ¢([vu?,u~'v]) = 2, et comme

(a2, u-w) | <2 o] e, w101, ,

1
on voit que | [vu?,u-"w]|, = 5
De plus la norme de la classe ¢ de d¢ dans HE(L,R) est égale a 1. Pour
cet exemple, on a donc || do | =2 c|,.

On a constaté que la longueur stable peut prendre des valeurs arbitraires
(dans H par exemple). Il est également facile de construire un groupe
dénombrable I' avec un élément y de longueur stable rationnelle donnée:

T'=<uo,wt|[uv]?=I[wit]l>, ||[u,v]||r=2i (p e N¥) .
D

(pour la minoration prendre un morphisme de I' dans f{) Cependant, pour
les groupes libres, elle est minorée par 1/6 (2.6); les résultats précédents
suggérent la question suivante, laissée au lecteur comme conclusion:

Question: la longueur stable d’un groupe libre est-elle & valeurs demi-
entieres?
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