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PERIODIC KNOTS, SMITH THEORY,
AND MURASUGI’S CONGRUENCE

by James F. DAvis and Charles LIVINGSTON

A knot K in a homology 3-sphere ¥ has period n if it is invariant
under a homeomorphism #: X — X of order exactly n with fixed set B, a
circle disjoint from K. The quotient space Y = Y/h is a homology sphere
containing K, the quotient knot. Kunio Murasugi [Mu] discovered the
following congruence involving the Alexander polynomials of the two knots.
(See also the proof by J. Hillman [H].)

THEOREM A. Let K be a knot of prime power period p’ in a
homology 3-sphere Y with fixed set B and quotient knot K. Let
Ax(t) and Ag(t) be their Alexander polynomials and let X be the

linking number of K and B. Then

Ax(®) = AP +t+ ...+ 2~ HP -1 (modp),

where = means congruent up to multiplication by ut’ where u and i
are integers and u is relatively prime to p.

In another direction it is easily shown that if G = Z/p acts cellularly on
a finite CW complex X, then x(X) + (p — Dy (X°) = px(X/G). Using
Smith theory, E. Floyd [F] gave a proof of this when X is a finite-dimensional
CW complex with rk H4(X;Z/p) < o. The proof can be generalized easily to
the case of semifree actions of a p-group G on X. (An action is semifree if
every point in X is either freely permuted by G or fixed by all of G. An action
of Z/p is automatically semifree.) We will prove a multiplicative analogue of
Floyd’s theorem and use it to deduce Murasugi’s congruence.

If X is a space with an action of the infinite cyclic group C, = <1t >

and F is a field with rk H (X;F) < o, we define a multiplicative Euler
characteristic

Xm(X; F) € F(t)*/F[t, ¢t~ 1]*

to be the alternating product of the generator of the order ideals of H;(X; F).
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;'j(See [Mi] or §1 for definitions). We will be most interested in the case
F = F,, the finite field with p elements.

é

- THEOREM B. Let G be a p-group. Suppose C. X G act on a finite-
dimensional CW complex X with tkH.(X;F,) < oo, so that G acts

i

kemifreely and cellularly. Then

G i

%om (X Fp) tm(X O F )01 = 4, (X/G; F,)l0) .

Applying this to the case where X is the infinite cyclic cover of ¥ — K will
Eimmediately yield Murasugi’s congruence. One advantage of our approach is
that it generalizes to the case of high-dimensional periodic knots.

~In §1 we prove Theorem B and derive Theorem A. In §2 we discuss the
high-dimensional case and in §3 give the following application of Murasugi’s
%congruence to links.

PropoSITION C. Let L be a two-component link in a homology
3-sphere. If the Z/2 X Z/2— cover branched over the link is also a
‘homology 3-sphere, then the linking number of the two components is
congruent to =+ 1 modulo 8.

§1. MURASUGI’S CONGRUENCE

' We will derive Theorem A from Theorem B and then prove Theorem B,
gbut we first give some homological preliminaries. If R is a commutative
' Noetherian UFD with quotient field K and M is a finitely generated torsion
| R-module then we define the order of M to be [M] = E°(M) € R/R*. Here
we take an exact sequence '

RES RS M—0,

'and we let E O(M) be a greatest common divisor of the determinants of the
m X m-submatrices of A. If M is a torsion f.g. R-module then [M] # 0, and
we consider the order [M] as an element of K*/R*. If

0O-M->M->-M’"-0

is an exact sequence of torsion f.g. R-modules, then J. Levine [L, lemma 5]
i shows [M] = [M'][M"”]. It follows for formal reasons that if
 C. = {C,— ... Cp} is a chain complex of torsion f.g. R-modules then
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Xm(c*) = H[Ci](—l)i

equals y,,(Hx(Cs)). In particular if Cy is exact, then %,(Cs) = 1.

Next we turn to Alexander polynomials. By Alexander duality
H((Z-K)=1Z. Let n: X = X — K be the infinite cyclic cover of the knot
complement. The infinite cyelic group C,, = <> acts on X and H,(X;Z) is
a f.g. torsion module over the group ring Z[C.] = Z[¢t, ¢t ~!']. The Alexander
polynomial Ag(7) is its associated order. (Note that Z[t,#~']* consists of
+ t'and the quotient field of Z[z, r ~!] is the field of rational functions Q(%).)
As usual we normalize so that Ag(¢) is a polynomial with integer coefficients
and non-zero constant term.

If K has period p’, let T: X = ¥ — K be the infinite cyclic cover of the
quotient knot. The G = Z/p"-action on X — K lifts to a G-action on X with
quotient X and fixed set B = n~1(B). Indeed, let g be a generator of G.
Then gcmn: X — X — K induces the trivial map on H; and so lifts to
g: X — X. Since g has a non-empty, path-connected fixed-point set there is a
unique lift g with fixed points and the fixed point set is B. Since gr is a
lift of the identity which has fixed points, it itself is the identity and hence
g is a map of period p”. This gives an action of C.. X G on X. It further
follows that X/G — £ — K is an abelian cover inducing the trivial map on
H,, so that we can identify this cover with ® and X/G with X,

The cover n is classified by a map c: ¥ — K— S! = K(Z,1) inducing
an isomorphism on A, . The inclusion map B = ¥ — K induces multiplication
by the linking number X on H,. Thus by considering c|z which classifies
n:B — B, we see B is homeomorphic to A disjoint copies of R, cyclically
permuted by the action of C...

Now H;(X) and H:(X) are zero for i > 1 and Hy(X) and Hy(X) are
isom_orphic to ¥, = F,[t, 17']/(t = DF,[t, t '], s0 %n(X) = (t = 1)/Ak(?) and
% (X) = (¢ = 1)/A%(¢). Since XS = B consists of A arcs cyclically permuted

by Co = <1>,x(X°) =1¢*— 1. Putting this together with Theorem B
we see

(£ = D/Ax@O] [17 = 117"~ = [(¢ = 1)/A ()] 7

or Ax(t) = AP (1 + ¢+ ...+~ 1)P -1 with the equality taking place in
F,(¢)/F,[t, t ~1]*. This gives Murasugi’s congruence.

Proof of Theorem B. We prove the theorem by induction on the order
of G. Let G be a group of prime order p with generator g. Let




4 J. F. DAVIS AND C. LIVINGSTON

c=1+g+g>+..+gr!
d=1-¢

be elements of the group ring F,[G]. Note that 8¢ = 0 = 68 and 67! = ©.
' We consider the following chain complexes of F,[z, ¢~ !]-modules (all
ﬁ homology is with F,-coefficients).
L0 = Cu(X) > CulX) > 6Cs(X) = 0

0 = 3C4(X) ® Cu(X9) = Cu(X) = 6Ci(X) = 0

0 = 0Cy(X) > 8Cx(X) = 82C4(X) — 0

0 = 6Cx(X) = 82-2C4(X) = 87-1Cx(X) — 0.

| These induce long exact sequences in homology. All homology is finitely
generated and torsion over the PID F,[¢, #~!]. We use shorthand notation
— if peF,[G], we write x°(X) instead of y(H:(pC«(X)). The above
homological considerations show

| X(X) = 1 (X X)

f X(X) = x¥X) A (XC)x°(X)

X3 = 12X )

137X = 1 (XDx°X)
Multiplying all equations but the first together and cancelling terms we see
%(X) = x(X°) - x°(X)P .
Using the first equation to substitute for % °(X) one finds
10 = x(X)?/1(XC)P-1.

Finally suppose G has order p”. Let G, be a normal subgroup of index p.
By the exact sequences above rk H,(X/G,;F,) < . By applying inductively
the result for the G,-action on X and the G/G; action on X/G;, Theorem B
follows.

§2. HIGH-DIMENSIONAL PERIODIC KNOTS

One advantage of our approach to Murasugi’s congruence is that it applies
equally well to a more general situation. Higher-dimensional periodic knots
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were introduced in the thesis of R. Cruz [C]. He showed that if there is a
semifree Z/g-action on S” with non-empty fixed set and an invariant knot
Kn-2 disjoint from the fixed set, then the fixed set is S! if ¢ # 2, and is S!
or S°if g = 2.

For our purposes a knot K in a homology n-sphere ¥ is an embedded
(n — 2)-dimensional homology sphere. Let G be a finite group. The knot K is
G-periodic if it is invariant under a semifree G-action on X with fixed set
B = S! disjoint from K. To simplify technicalities we assume the action is
smooth. Several complications arise: the group need not be cyclic, the action
need not be linear and the quotient £ = £/G will not be a manifold. (Even
in the linear case the quotient looks like a double suspension of a spherical
space form.) However we can still make sense of Alexander polynomials.

PROPOSITION 2.1. Hy(Z -~ K) = H,(SY).

First we need a lemma.

LEMMA 2.2. The linking number X = 1k(B, K) is relatively prime to the
order of G.

Proof. (See also [C,2.1.1]). By restricting the action to a subgroup Z/p
of G, we will assume G = Z/p, and show (A, p) = 1. By applying the Lefschetz
Fixed-Point Theorem to a generator g of Z/p, we see that if # is odd, the action
on K is orientation-preserving, while if z is even, then p = 2 and the action
is orientation-reversing. For local coefficients we will use Z‘, the integers
with the Z[Z/p]-module structure given by (Za;g?) - k = 2a;(— 1)in+ Dk,

Let T — B—-K (Z/p, 1) classify the G-cover. We will consider the
commutative diagram:

H, o(K;Z) = H,,(K;ZY) — H, ,(KZ/p,1);Z7)
(*) l R I
Hy, »(X~B;Z) > H, ,(Z-B;Z%) - H, ,(K(Z/p,1);Z") .

The two groups on the left are infinite cyclic and the left vertical map is
multiplication by A. A diagram chase shows we will be done if we can show
both horizontal exact sequences are isomorphic to the short exact sequence
0-2—-7Z—-27Z/p—0.

The map o is isomorphic to Z =+ Z because it comes from a p-fold cover
of (n — 2)-dimensional closed manifolds. The map

H, ,(K;Z") — H,_,(Z/p; 1%
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we compute algebraically by using a free ZG-resolution of Z as a substitute
for the Eilenberg-MacLane space. By lifting a CW structure on K to K,

OB = {Ch 2 = o)

with the i-chains C; free ZG-modules. By mapping a free ZG-module
onto ker(C,_,—C,_3) and continuing inductively, one constructs a free
Z.G-resolution of Z

| Dy={..»D,»D,_ ,>C,_,—..>Co}.
It follows that
H,_(K;Z) = Hy_,(Cs(K) Q262"

maps onto H, ,(Dy&KzcZ") = H,_,(Z/p;Z"). Furthermore by using the
standard ZG-resolution of Z (see e.g. [Mac]), one easily computes that
H, ,(Z/p;Z") = Z/p.

Choose a G-invariant normal disk to B in ¥ and let $”~2 be its boundary.
Then the inclusion S"-2— X — B is a homology equivalence. By the
comparison theorem applied to the spectral sequence of the G-coverings (see
[Mac]), the bottom row of (*) is isomorphic to

H, 2(S""%2) > H, »(S"~*/G;Z") = H,_2(G;Z7)

and hence by the previous paragraph to 0 >Z —Z — Z/p — 0. Thus
. p) = 1.

Proof of 2.1. Let N be an equivariant tubular neighborhood of B. Then
0=H,X—-K,N;Z[1/\]) = H, (X —K—-B,N—B;Z[1/\])

where the first equality holds by the definition of linking number and the
second by excision. Then

0 = Hy((X - K- B)/G, (N- B)/G; Z[1/\]) = H«((Z - K)/G, N/G; Z[1/])
= H.(£-K)/G, B;Z[1/1]) ,

where the first equality follows from the spectral sequence of a covering, the
second by excision and the third by the homotopy equivalence B - N/G. Thus
H, (i —IZ) looks like H4(S!) except possibly for some A-torsion. But by 2.1,
A is prime to the order of G, so for all primes g dividing A, the transfer
map tr: He(E— K;Z/q) » Hy(E — K;Z/q) is injective so there is no extra
A-torsion. \

To state Murasugi’s congruence in higher dimensions is it necessary to find
a substitute for the Alexander polynomial. Let X and X be the infinite cyclic
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covers of ¥ — K and ¥ — K respectively. Let Ag(f) = I, o [H:(X)] (- D!
and Ag(f) = 1. [H:(X)](-D*'. The Wang sequence shows that multi-
plication by # — 1 induces an isomorphism on H;(X) for i > 0, so that if we
take the polynomial represented by [H;(X)] and plug in ¢ = 1 we get + 1.
(Indeed if we consider the ring homomorphism ¢:Z[, t =11 — Z defined by
o) = 1, then ¢([H(X)]) is a divisor of [H{(X) ®zp,-1Z] = [0] =1€Z/Z*)
Thus [H;(X)] represented a non-zero element in F,[z, t~1], and hence Ak(?)
and A z(7) give well-defined elements of F,(¢)*/F,[¢t, £ ~']*. Then the conside-
rations of §1 show:

THEOREM 2.3. Let K be a G-periodic knot in a homology g-sphere XL
with fixed set B, where G is a group of prime power order p’. Let )\
be the linking number of K and B. Then

Ag(t) = Ag@®)P (A +t+ ...+ t*1H)?P"" (modp) .

§3. AN APPLICATION OF MURASUGI’S CONGRUENCE

For any A = + 1 (mod 8), T. tom Dieck and J. Davis [D-D] constructed
a 2-component link with linking number A in a homology 3-sphere 2 whose
C, X C,-cover branched over the link is a homology 3-sphere ¥. We will
show that this congruence condition is necessary. Equivalently, we show

THEOREM 3.1. Suppose the Klein 4-group G X H= C, X C, actson a
homology 3-sphere ¥ so that the fixed sets X° and XH are disjoint
circles. Then their linking number A\ is congruent to =+ 1 modulo 8.

Proof. We have

Y - %/G
l l
X/H -~ X/(Gx H) .

All four of these manifolds are homology 3-spheres and each has two disjoint

circles given by the images of the fixed sets. The linking numbers of each pair
of circles are all equal.

Let K = £6/G C /G and K = K/H C /(G X H). Then K is a knot of
period 2. Renormalize A(f) and Ag(t) € Z[t, 1] so that Ag(t) = Ag(t—1),
Ag(t) = Ag(t~1), and Ag(l) =1 = Ag(l). Murasugi’s congruence shows
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(**) Ag(t) = Ag@)2@O-M2+ .+ 1+ ... +t*-DD)y 4+ 2f1(0),
where f(¢) € Z][t, t '] satisfies f(t) = f(t~'). Writing
f@) =at-"+ ... +ap+ ... + apt™,

we see f(1) = f(— 1) (mod 4). Since £ = X/G is a 2-fold cover branched over
K |Ax(=1)|=|H((Z)]| =1.S01=Ax(1) = Ag(— 1) (mod 4), and we see
Ak(—1) = 1. Take equation (**) and pluginf=1and f = - 1:
1=1-A+2-f1)
I1=1-(-DA-D242-. f(-1).

Thus A = (- 1)*=Y/2 (mod 8) so}» = =+ 1 (mod 8).

Applying the high-dimensional version of Murasugi’s congruence ones sees
that if G X H= C, X C, acts on a homology g-sphere ¥ so that ¢ is a
homology g — 2 sphere and X# is a circle disjoint from X ¢, then their linking
number A is congruent to = 1 modulo 8. This and considerations from
L-theory lead us to conjecture that if G X H = C, X C, acts on a homology
g-sphere ¥ so that X¢ is a homology k-sphere and X# is a homology
q — k — 1-sphere disjoint from X ¢, then their linking number A is congruent
to = 1 modulo 8.
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