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Passons au cas ou 7 est impair (n =2k + 1). La relation (R) s’écrit aussi

[C,u][u",v] = CD(l,n—-3)(1,n—4)...(1,1)(1,0)

avec C=(1,n-2)2,n-3)3,n—4)...(n—1,0)

et D=(-n+1,1)...(-4n-49H(-3,n-3)(-1,n-2).

Compte tenu de ’identité

[y, x1[x, z] = [yz ', zxz ']

on voit que I’élément

A =(=2k1)...(—4,2k—3)(—1,2k-2)(3,2k - 3)
|(2/{,0)(1,2/{—2)l‘(_1,2k—3)...(1,0)l

est le produit de 2 commutateurs. La transposition des blocs L_Jet L _ |
diminue la valeur maximale de ¢ de 2 unités, au prix d’'un commutateur; au
bout de k — 1 opérations analogues il vient

1

k —
A" = @2k, 0) [] [4;,B1(1,0) (A;,BieL,i=1...k—1).

i=1
On termine en conjuguant par (1,0).
Exemple (n =3).

[, 01° = [“[o, ulu ", [u, 0] ([, 01?)] 13, 0] -

2. LONGUEUR DES COMMUTATEURS DANS LES GROUPES LIBRES

Cette partie est consacrée a I’étude des produits de commutateurs et de
carrés dans les groupes libres. On y retrouve les résultats de [G-T] et [Cu] en
utilisant directement 1’algorithme de classification des surfaces.

2.1. Il convient avant tout de faire une petite remarque. Soit U un
ensemble et L(U) le groupe libre de base U. Si U est inclus dans V, on a pour
tout ¢lément y de L'(U):

crn(y) = cron(y) -

En effet toute relation dans L(V) se projette dans L(U) grice a la rétraction
évidente L (V) — L(U).

Donc, pour calculer ¢(y), on peut se restreindre au sous-groupe engendré
par ceux des générateurs qui interviennent dans [l’écriture réduite de 1.
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2.2. Afin de fixer le vocabulaire pour la suite, on rappelle quelques faits
¢lémentaires concernant les surfaces fermées.

Considérons tout d’abord un polygone a 2n c6tés, ou arétes (n e N*); la
donnée d’un recollement par paires des arétes, avec des orientations spécifiées,
définit une surface fermée. Les identifications d’arétes peuvent étre codées par
un mot, appelé symbole, de la forme

?3) AP APy, e ed{l, .. 0}, =1 0u — 1,

VY
ou chacune des n lettres A.... A, apparalt exactement deux fois, avec
exposant 1 ou — 1; on écrit alors ce mot cycliquement, dans le sens direct,
autour du polygone et on identifie les arétes qui portent la méme lettre,
I’orientation étant dictée par les exposants g;.

Exemple.

Symbole: ABCA ~'B~-1C~!

FIGURE 1

1l sera important de penser qu’un symbole définit un élément du groupe
 libre L(A,,...,A,). Les surfaces considérées ici seront orientables (sauf
en 2.8) de sorte que chaque lettre A4; dans (3) apparait une fois avec exposant
+ 1 et une fois avec exposant — 1. En particulier le symbole (3) appartient au
groupe dérivé de L(A,...,A,).

| On appellera genre d’un symbole celui de la surface qu’il définit. L’identifi-
~ cation des arétes induit une partition des sommets du polygone en classes;
sl p désigne le nombre de ces classes, le genre g est donné par

: 1
-4 ’ g=£(ﬂ+1—p)-

 Ainsi dans ’exemple ci-dessus (voir fig. 1), on dénombre deux classes de
= sommets, figurées par O et ®, et le genre est égal a 1.



LONGUEUR STABLE DES COMMUTATEURS 119

Deux symboles sont équivalents s’ils définissent la méme surface. On
montre, dans la preuve du théoréme de classification des surfaces, que tout
symbole (orientable) de genre g > 1 est équivalent au symbole canonique

XXX YX, Y,
par découpages et recollements sur le polygone (voir [Ma 1]).

Exemple. ABCA-'B-'C-! (genre 1)

(a): On coupe suivant X et on recolle suivant A4.

(b): On observe que C et B forment une seule aréte Y.

FIGURE 2

2.3. SYMBOLES ASSOCIES ET LONGUEUR DES COMMUTATEURS

Fixons un produit de commutateurs y d’un groupe libre L = L(u;,u,,...).
Puisque la longueur des commutateurs est invariante par conjugaison, on peut
supposer que y admet une écriture cycliquement réduite, disons de longueur
usuelle 2n. Un symbole 6 = A} ... A7?" de longueur 2n est dit associé a vy
si une substitution convenable de certains des générateurs de L (ou de leurs
inverses) aux A; définit un morphisme de L(A;, A,,...) dans L qui envoie ¢
sur y. Voici par exemple deux symboles associés a [u, v]3:

ABA-'B-'CDC-'D-'EFE-'F~-! par A,B,C,D,E,F > u,0,u,0,u,v
ABA - 'CDEFB-'F-'C-'D-'E-! par A,B,C,D,E,F — u,v,0~ ', u,0,u-"'.

Le nombre de symboles associés & un élément donné est évidemment fini. Les
algorithmes de [G-T] et [Cu] peuvent alors se formuler ainsi:
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| THEOREME 2. La longueur des commutateurs c(y) dans un groupe
libre est égale au genre minimal des symboles associés @ .

Exemples.

1) La longueur des commutateurs d’un symbole est égale & son genre: par
exemple c([u;, 0] ... [uk,0¢]) = k dans L(uy,v;, ..., u;,0¢) ([L-S] p. 55).

2) Eléments de petite longueur.

3 Quand la longueur usuelle (notée 2n) de v est petite, il est facile d’estimer le
- nombre de classes de sommets et leurs cardinaux. On en déduit les résultats
- suivants:

Si2n = 6, y est toujours un commutateur puisqu’un symbole de longueur
6 est de genre 1; par exemple wowu~'v-'w=! = [uv, w] et [u,v][v, w]
= [uw =1, wow~1].

Si2n = 8, alors c¢(y) = 1 ou 2, et c(y) = 1 si et seulement si y contient un
sous-mot xy de longueur 2 et son inverse y ~!x 1.

Si 2n = 10, alors c(y) = 1 ou 2, et c(y) = 1 si et seulement si y contient
- deux sous-mots de longueur 2 (ayant peut-étre une lettre commune) et leurs
inverses.

2.4. DEMONSTRATION DU THEOREME 2
Soit m le genre minimal des symboles associés a v.

- Démonstration de c(y) < m.

Pour tout symbole ¢ associé a v, il existe par définition un morphisme qui
envoie o sur v. Il suffit donc de montrer qu’un symbole (orientable)
ocelL(,,...,A,) de genre g est le produit de g commutateurs de
- L(A,,...,A,). On observe pour cela que les opérations géométriques
- effectuées sur les polygones pour réduire le symbole se traduisent algé-
 briquement. Ces opérations sont de deux types (voir [Ma 1]): éliminer une paire
 d’arétes adjacentes AA !, et couper puis recoller. La premiére revient a
 simplifier le symbole comme mot en les A4;; couper revient a remplacer une
- portion du symbole par une nouvelle lettre, et recoller suivant 1’aréte étiquetée
A, revient a éliminer A;. Le nouveau symbole défini par chacune de ces trans-
~ formations s’envoie donc sur I’ancien par un morphisme de groupes. Et en
mémorisant ces changements de variables au cours de la réduction du symbole,
on peut exprimer le symbole canonique [X,, Yi] ... [X,, Y,] au moyen des
- lettres 4; du symbole intial o, ce qui explicite ¢ comme produit de g
commutateurs.
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Exemple (voir 2.2 fig. 2). o = ABCA-'B-!C~!
(a): on pose X = AB et on élimine A par A -1=BX"!
(b): on pose Y = CB.
D’ot ABCA-'B-!C-!= XCBX-'B-1C-!=XYX~'Y~! = [AB, CB].

Démonstration de m < c(y).

Supposons y écrit comme produit de £ commutateurs:

k
(5) Y = H [ai, bi] (ai,biEL(ubUz,---)) .
i=1

Il s’agit de construire un symbole associé a y de genre au plus k. Pour cela,
on va définir une opération sur les symboles. Etant donné un symbole ¢, on
sélectionne deux lettres consécutives de o, que I'on appelle W et X, puis on
remplace W et X par deux nouvelles lettres Y et Z selon la régle suivante:
changer respectivement W en Y, X en Y-!, W-'en Z et X ! en Z!
(voir fig. 3). Soit @ (o) le nouveau symbole obtenu. Noter que & (c) n’est pas
défini comme image de ¢ par un morphisme. Cependant:

Affirmation. La transformation @ n’augmente pas le genre.

Il revient au méme de voir que © ne diminue pas le nombre de classes de
sommets. Vérifions-le avec la description géométrique de & sur les polygones
correspondants:

remplacer ... O—p@Q—Pp@ - —€4—O - @—€—O ---
X

W X W
par e O—p—0—<4—90 - 0——0 ... O—44—9 ...
Y Y Z Z
FIGURE 3

Il y a au plus trois classes de sommets de ¢ impliquées dans cette opération;
ces classes se transforment en au moins deux classes car @ (o) comprend une
nouvelle classe, notée @, formée d’un seul sommet entre les deux arétes Y
(fig. 3). On peut donc supposer que les trois classes initiales O, @ et & sont
distinctes. Alors dans # (o) les classes O et @ restent distinctes, puisqu’elles
ne peuvent s’identifier que par des arétes ne figurant pas sur le dessin, ce qui

est exclu par hypothese (les classes O et &, quant a elles, sont identifiées).
L’affirmation est ainsi démontrée.
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| Considérons maintenant la décomposition (5) de y en produit de k
commutateurs, et remplacons dans 1’écriture réduite de chaque a; (resp. b;)
toutes les u; et les u j‘l par des lettres deux & deux distinctes: |

a — AB... EF, bl - GH ... KL, a, — MN ... QR, etc.
En développant les commutateurs, on obtient le symbole suivant:

6 = [AB...EF, GH...KL]1[MN...OR, ...] ...
~ AB...EFGH...KLF-'E-'...B-'A-'L-'K-!'...H-'G-'MN...OR ...

qui est de genre k (penser chaque segment. AB ... EF provenant d’un a; ou
d’un b; comme une aréte 4; ou B;). Evidemment, la longueur usuelle de ¢ est
a priori bien plus grande que celle de y; en effet, a chaque lettre de o
correspond un générateur u; ou son inverse dans la formule (5) développée,
mais celle-ci n’est pas en général une écriture réduite de y. Appliquons alors
% en choisissant pour W et X deux lettres successives de ¢ qui correspondent
a une simplification (u;u j"l ou u j‘luj) du mot sous-jacent. On peut ensuite
effacer la paire YY ! créée dans ©(c) sans changer le genre (dans la
~ formule (4), n et p diminuent chacun d’une unité): cela donne un nouveau
symbole qui comprend deux lettres de moins que 6. En épuisant par ce procédé
les simplifications successives qui apparaissent dans la réduction de (5), on finit
par obtenir un symbole de genre inférieur ou égal a k, et associé a .

2.5. Pour compléter le théoréme 2, il faut signaler que I’algorithme de
réduction des symboles (aux symboles canoniques) donne des formules
explicites. Par exemple on sait que c([u,v]?) =2 (voir 1 ou 2.7); voici
comment décomposer [u,v]? en produit de deux commutateurs a partir du
symbole ABA"'CDEFB-'F-'C-'D-'E-1:

ABA - 'CDEFB-'F-1Cc-1p-1g-1

FIGURE 4
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Couper suivant X, recoller suivant B [poser X = ABA !, €liminer B par
B-1=A-1X-14] (fig. 4).

XCDEFA ' x-4F-1c-'p-1g-1

FIGURE 5

Couper suivant Y, recoller suivant A [poser Y = CDEFA —!, éliminer A par
A = Y- ICDEF] (fig. 5).

A ce stade, on se trouve avec le symbole XYX 'Y ICDEC-'D-'E-!, On
réduit ensuite la partie CDEC-'D-!'E -1 comme a la figure 2, ce qui donne
(voir 2.3):

ABA - 'CDEFB-'F-'C-'D-'E-! = [ABA -',CDEFA '] [CD, ED] .
D’ou P’identité:
[, 013 = [wou =1, 0 " Yuvu =] [v ~'u, vu] .
2.6. CONSEQUENCES DU THEOREME 2

COROLLAIRE 1 ([G-T]). Pour tout élément vy de L', on a
1
c(y) < 2 (longvy),
ou longy est la longueur usuelle de .

En effet, tout symbole a au moins une classe de sommets! Ce corollaire

résulte donc de la formule du genre (4) avec p > 1 et n = l long vy.
2
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On peut aussi exploiter une majoration du nombre de classes de sommets,
moyennant quelques définitions. Remarquons d’abord qu’un symbole ¢ admet
une classe a deux sommets si et seulement si il contient un sous-mot XY et
son inverse Y ~' X ~!; ¢ sera dit simple s’il ne vérifie pas cette condition. Un
. symbole (orientable) simple est appelé mot simple alterné dans la terminologie
de [Cu].

Soit M(A,,A,,...) un mot réduit en les A;(i=1,2,...). On dit qu’un
élément y de L(u;,u,,...) est obtenu par substitution sans simplification a
partir de M s’il existe des mots réduits non vides m;(i =1,2,...) en les
ui(j=1,2,...) tels que M(m,,m,,...) soit une écriture réduite de v.

Enfin, on dira que 7y est cycliqguement réduit s’il admet une écriture
cycliquement réduite.

COROLLAIRE 2 ([Ed], [Cu]). Tout élément cycliquement réduit y de L’
est obtenu par substitution sans simplification a partir d’un mot simple alterné
de longueur usuelle inférieure ou égale a 12c(y) — 6.

Preuve. Un symbole ¢ associé a y de genre minimal c(y) se laisse
- «simplifier» sans changement du genre: il suffit de remplacer autant de fois
que c’est nécessaire XY par une nouvelle lettre Z et Y-'X-! par Z-!. On
produit ainsi un symbole simple 1, et 6 (donc y) est obtenu par substitution
sans simplification a partir de 1. Mais T n’a pas de classe a un seul ¢lément
(t est réduit), ni de classe a 2 éléments puisqu’il est simple. Le nombre de

classes de sommets de T est donc au plus égal a 5— (long 1); d’ou, d’apres (4):
2
longt < 4c(y) — 2 + g (long 1) .

On en conclut que longt < 12c¢(y) — 6.

Exemple ([Wi]). Un commutateur cycliquement réduit s’obtient par subs-
titution sans simplification & partir de ABA ~'B~! ou de ABCA-'B-1C-1.

Le corollaire 2 a une application intéressante:
. , n 1
PROPOSITION ([Cu]). Soit ye L’ et ne N*. Alors c(y") > g + 5 .

'En particulier, la longueur stable des groupes libres est minorée par 1/6.

Preuve. On peut supposer que y est cycliquement réduit. Tout sous-mot
'm de y" dont I’inverse m ~! apparait aussi dans y” doit vérifier 1’inégalité

-
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long m < — (longy). Sinon, par périodicité cyclique de y”, il existerait un
P

sous-mot non vide m’ constituant la fin de m et le début de m ~!, ce qui est
absurde. D’aprés le corollaire 2, y” est de la forme M(m,m,,...) avec

1 . r b r F
long m; < 5 (longy)(i=1,2,...), et ’on a 'inégalité cherchee:
1
n(longy) = longy” < 5 long y(12¢(y™) — 6) .

2.7. OU L’ON RETROUVE c([u,v]V) = E(N/2) + 1

Pour illustrer encore le théoréme 2, appliquons I’algorithme a notre
exemple favori: [u, V]V (N € N*).

Soit ¢ un symbole de la forme (3); une classe comprenant k sommets
(k e N*) est repérée dans ¢ par

XX, XX L X X!

(non forcément dans cet ordre) ou les X;(i=1,...,k) appartiennent a
I’ensemble {Al,Afl,...,A,,,A,,‘l}. Ainsi, en examinant la succession des
lettres dans [u, v]?", on voit que toute classe de sommets d’un symbole associé
a [u, 0]V doit avoir au moins 4 éléments. Un tel symbole admet donc au
plus N classes de sommets; compte tenu de la formule du genre (4), on en
déduit I’'inégalité:

c([u, v]N) > E(N/2) + 1.

Par ailleurs on construit facilement un symbole de genre E(N/2) + 1
associé a [u, v]V. 1l suffit de le faire pour N impair. Considérons le polygone
a 4N cotés disposé comme suit (fig. 6):

FIGURE 6

2N+1
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| Les cOtés étant numérotés comme sur la figure 6, identifions ceux qui sont
impairs (resp. pairs) au moyen de la symétrie s (resp. ¢) d’axe horizontal (resp.
vertical). Les classes de sommets sont les orbites de ’action des symétries s
et ¢ sur les sommets: elles ont toutes 4 éléments. Le genre du symbole ainsi

1 .
défini est donc 5 (N +1). De plus, il est associé a [u, v]" comme on le vérifie

en écrivant ce mot autour du polygone.

2.8. LE NOMBRE MINIMAL DE CARRES

On s’intéresse ici aux produits de carrés, ce qui est naturel puisqu’ils
admettent la méme interprétation topologique que les produits de commu-
tateurs (voir 1.2), au moyen de surfaces non orientables.

Soit L = L(u;,u,,...) un groupe libre et L? le sous-groupe de L engendré
par les carrés. Il convient de remarquer que L? contient L’ car tout commu-
tateur est un produit de carrés:

(6) [X, Y] = XX(X-'Y)2Y-2.

Un élément y de L appartient donc a L? si et seulement si pour chaque
générateur u;, la somme des exposants de u; dans I’écriture de vy est paire.

Les symboles considérés dans ce paragraphe seront quelconques:
orientables ou non orientables. La caractéristique d’Euler-Poincaré d’un

symbole A;'... A7>" est par définition celle de la surface associée, i.e.:

x=1+p—n
ou p désigne comme d’habitude le nombre de classes de sommets.
Pour tout élément y de L2, notons [1(y) le nombre minimal de carrés

nécessaires pour exprimer y. La méthode des paragraphes précédents permet
de retrouver simplement le résultat ci-dessous ([Cu]; voir aussi [G-T]):

THEOREME 2’. Soit Yy un élément de L* et vy(y) la caractéristique
d’Euler-Poincaré maximale des symboles associés a vy. Deux éventualités
sont possibles:

1) S’il existe un symbole associé c non orientable avec (o) = y(y), alors

L) =2 - %) .
' 2) Sinon [(y) =3 — x(y) = 2c(y) + 1.
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Exemples.

1) Quand y appartient 4 L?> — L', on est toujours dans le premier cas; par
exemple (I (u3...u}) = k (ke N*)([L-N)).

2) Au contraire, si y est un symbole orientable, alors Ll (y) = 2¢(y) + 1;
ainsi [ ([ug,01] ... [te,06]) = 2k + 1 dans L(uy,01, ..., Uy, Ux) ([L-S] p. 56).

Preuve du théoreme 2.

Tout symbole non orientable 6 = A;'... 42" est équivalent, par décou-
page et recollement, au symbole X; X ... X; X, ou k = 2 — y(o) (Ma 1]). On
en déduit (voir 2.4) que o est le produit de k carrés dans L(4,,...,A4,).

Considérons maintenant un symbole ¢ € L(4,,...,A,) orientable de
genre g(o), et posons 6 = Ap4,0 € L(Ap,A;,...,A,). On constate que
v(0) = x(c) — 1 =1 — 2g(c). D’apres ce qui précéde et en faisant Ay = 1,
on voit que le symbole ¢ est le produit de 2g(c) + 1 carrés de L(Ay, ..., An).

Exemple. AABCB-'C-! = (A?BA-"1)2(AB~'A-'CA-1)*(AC~")?

C’est le célebre homéomorphisme P#T=P#P#P ou P est le
plan projectif, T le tore et # la somme connexe. On a en particulier la
formule (6) en faisant A = 1. Inversement, le méme homéomorphisme permet
de réécrire un produit de 3 carrés comme produit d’un carré et d’un
commutateur:

X2Y?Z? = (X*Y?ZY ' X)) XY, Z 'Y 1].

On a clairement les majorations cherchées: [](y) est majoré par 2 — x(y)
dans le premier cas du théoreme 2’, et par 3 — % (y) dans le second. Il faut
maintenant construire un symbole associé a y a partir d’une décomposition en
carrés: Y = a; ... a: (e L(ay,a,...)).

Comme a la preuve du théoréme 2, on commence par remplacer tous les
u; et les u; ' de Iécriture réduite de chaque a; par des lettres deux a deux
distinctes:

a, > AB...EF,a, > GH... KL, etc.
Puis en développant les carrés, on obtient un symbole
(7 AB...EFAB... EFGH...KLGH...KL ...

dont la caractéristique d’Euler-Poincaré est égale 4 2 — k. On doit ensuite
etendre la transformation # de 2.4 aux symboles non orientables, mais cette

fois-ci il faut tenir compte du mot sous-jacent et il y a trois cas possibles
(u = u; ou uj_l):
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e W X \%% X
| c  O—Pp—o—pbQ® - 0—eq—O0 —<4—0

() u u-l u-l u
“(©) ... O—p—D—4—O - &—p-O O—4—@

— Y Y Z Z

— WY X Y% X
o o— ——rQ - 0—b——0 - 40

(b) u u-l u u
@ (o) ... o—b—o—<—0 -+ O—p—e - O—b—@9

— Y Y Z Z

B \WY% X \\Y% X
G o—r——r— - O—b—0 - —p0B

(©) u u-l u u-l

% (o)

| v+ O—P—0—<4—0 - O—p—e .- —4—0

Y Y Z Z

FIGURE 7

Le premier cas est celui de la figure 3: c’est le seul qui intervient quand les
symboles sont orientables. En examinant la figure 7, on voit que & ne diminue
pas le nombre de classes de sommets (méme démonstration que pour 1’affir-
mation de 2.4), donc

1(Z(0)) = (o) .

Cependant, la transformation @ posséde une propriété supplémentaire qui sera
cruciale pour la suite de la démonstration:

Affirmation. Si o est non orientable et si @ (o) est orientable, alors
(7 (@) = x(0) + 1.

Le passage de non orientable a orientable n’est possible que dans le cas (c) de
la figure 7. L’identification des deux sommets & de la figure 7-(c) nécessite
deux arétes orientées dans le méme sens (autres que les X). Comme par
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hypothése # (c) est orientable, les arétes W doivent donc intervenir pour
identifier les sommets &) : on constate alors que les classes @ et O sont
forcément confondues. Finalement, & (6) comprend une classe de plus que ¢
(que les classes O et @ soient distinctes ou non).

Achevons maintenant la preuve du théoréme 2’. A partir du symbole (7)
ci-dessus on trouve (par le méme procédé qu’en 2.4) un symbole ¢ associé
a y et vérifiant

x() =2 x(c) =22 -k,

d’ou k£ =2 — x(y).

Cela prouve le théoréme dans I’éventualité ou 7y (y) est réalis€ par un
symbole non orientable, puisqu’on a déja L1(y) < 2 — x(y) dans ce cas. Dans
’autre cas, ou bien ¢ est non orientable et on a I’inégalité stricte y(y) > (o),
ou bien ¢ est orientable et d’aprés ’affirmation précédente (o) > 2 — k;
donc finalement k£ > 3 — y(y), et le théoréme 2’ est démontré.

Pour terminer, il faut mentionner les analogues des corollaires 1 et 2 (§2.6).

COROLLAIRE 17 ([G-T]). Pour tout élément y de L2, ona

L1(v) <~;— (longy) + 1

1
(et méme [1(y) < 5 (ongy) si yeL2?-1L’).

Un symbole est simple s’il ne contient pas deux exemplaires d’un sous-mot
XY, ni XY et son inverse. A I’exception du symbole 44, les classes de sommets
d’un symbole simple ont au moins 3 éléments. Un mot simple quadratique est
un symbole simple.

COROLLAIRE 2’ ([Ed], [Cu]). Tout élément cycliquement réduit Y de
L% tel que [(y) >2 est obtenu par substitution sans simplification a
partir d’un mot simple quadratique de longueur usuelle inférieure ou égale a

6L](y) — 6.

Les preuves des corollaires 1’ et 2’ sont identiques a celles des corol-
laires 1 et 2 (§2.6).

Remarque sur [’identité (6). Certains commutateurs sont produits de
2 carrés seulement (exemple: [u, v2] = (uvu ~1)2v ~2). Mais on peut montrer a

I’aide du corollaire 2 (2.6) qu’un commutateur non trivial n’est jamais un carré
dans un groupe libre.
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