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Passons au cas où n est impair {n 2k + 1). La relation (R) s'écrit aussi

[C,u][u",u] CD(l,n-3)(1,« -4)... (1,1)(1,0)

avec C (1,n — 2)(2, n —3)(3, 4)... — 1,0)

et D(-« + l,l)...(-4,n —4)(—3,/j —3)(— l,w~2)

Compte tenu de l'identité

[. y,x][x,z][yz~',zxz~']

on voit que l'élément

A' — 2k, 1) ...(— A, 2k — 3) — 1,2k - 2

(2k,0)(l,2k-2)(1,2k-3)...(1,0)
I Jl J

est le produit de 2 commutateurs. La transposition des blocs I J et I 1

diminue la valeur maximale de qde2 unités, au prix d'un commutateur; au

bout de k -1 opérations analogues il vient

k- 1

A' (2k,0)I] ,£;](!,0) (Ai,BieL,i=l 1)

/= 1

On termine en conjuguant par (1,0).

Exemple (n 3).

[u,v]3 [u[u, u]u~x, ul\u, l>] U([u,u]2)] [u3, v]

2. Longueur des commutateurs dans les groupes libres
Cette partie est consacrée à l'étude des produits de commutateurs et de

carrés dans les groupes libres. On y retrouve les résultats de [G-T] et [Cu] en

utilisant directement l'algorithme de classification des surfaces.

2.1. Il convient avant tout de faire une petite remarque. Soit U un
ensemble et L(U) le groupe libre de base U. Si U est inclus dans K, on a pour
tout élément y de L'(U)\

Cl(U)(ï) Q,(F)(Y) •

En effet toute relation dans L{V) se projette dans L{U) grâce à la rétraction
évidente L{V) L(U).

Donc, pour calculer c(y), on peut se restreindre au sous-groupe engendré

par ceux des générateurs qui interviennent dans récriture réduite de y.
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2.2. Afin de fixer le vocabulaire pour la suite, on rappelle quelques faits
élémentaires concernant les surfaces fermées.

Considérons tout d'abord un polygone à 2n côtés, ou arêtes {n e N*); la
donnée d'un recollement par paires des arêtes, avec des orientations spécifiées,
définit une surface fermée. Les identifications d'arêtes peuvent être codées par
un mot, appelé symbole, de la forme

(3) A-l...A^"nh,...,i2„e{1,e,- 1 ou - 1

où chacune des n lettres A:...An apparaît exactement deux fois, avec

exposant 1 ou - 1; on écrit alors ce mot cycliquement, dans le sens direct,
autour du polygone et on identifie les arêtes qui portent la même lettre,
l'orientation étant dictée par les exposants 8/.

Exemple.

Symbole: ABCA~lB-lC~l

Figure 1

Il sera important de penser qu'un symbole définit un élément du groupe
libre L(AX, ...,An). Les surfaces considérées ici seront orientables (sauf

en 2.8) de sorte que chaque lettre At dans (3) apparaît une fois avec exposant

+ 1 et une fois avec exposant — 1. En particulier le symbole (3) appartient au

groupe dérivé de L(A\,..., An).
On appellera genre d'un symbole celui de la surface qu'il définit. L'identification

des arêtes induit une partition des sommets du polygone en classes ;

si p désigne le nombre de ces classes, le genre g est donné par

1

(4) - g -(*+ 1 -p)

Ainsi dans l'exemple ci-dessus (voir fig. 1), on dénombre deux classes de

sommets, figurées par O et (x), et le genre est égal à 1.
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Deux symboles sont équivalents s'ils définissent la même surface. On

montre, dans la preuve du théorème de classification des surfaces, que tout

symbole (orientable) de genre g ^ 1 est équivalent au symbole canonique

xmxï'y;1 ...xgYgx;lY;1

par découpages et recollements sur le polygone (voir [Ma 1]).

Exemple. ABCA xB~lC~x (genre 1)

(a): On coupe suivant X et on recolle suivant A.

(b): On observe que C et B forment une seule arête Y.

Figure 2

2.3. Symboles associés et longueur des commutateurs

Fixons un produit de commutateurs y d'un groupe libre L L(u{, u2, ...)•

Puisque la longueur des commutateurs est invariante par conjugaison, on peut

supposer que y admet une écriture cycliquement réduite, disons de longueur
usuelle 2n. Un symbole g - A)\ ...Ade longueur 2n est dit associé à y
si une substitution convenable de certains des générateurs de L (ou de leurs

inverses) aux Ai définit un morphisme de L(A{ ,A2,...) dans L qui envoie g

sur y. Voici par exemple deux symboles associés à [u,v]3:

ABA ~ lB~lCDC~lD ~ lEFE~lF~1 par A,B,C,D,E,F-> u,o9u,v,u,v
ABA lCDEFB~lF~lC~lD~lE~l par A3BsCyDsEsF -> u,ü,v~l ,u,v,u~l.

Le nombre de symboles associés à un élément donné est évidemment fini. Les

algorithmes de [G-T] et [Cu] peuvent alors se formuler ainsi:
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Théorème 2. La longueur des commutateurs c(y) dans un groupe
libre est égale au genre minimal des symboles associés à y.

Exemples.

1) La longueur des commutateurs d'un symbole est égale à son genre: par
exemple c{[uuvx] [uk>uk]) k dans L(uuvu.,.,uk,vk) ([L-S] p. 55).

2) Eléments de petite longueur.

Quand la longueur usuelle (notée 2n) de y est petite, il est facile d'estimer le

nombre de classes de sommets et leurs cardinaux. On en déduit les résultats
suivants :

Si 2n 6, y est toujours un commutateur puisqu'un symbole de longueur
6 est de genre 1; par exemple uuwu ~ lv ~1 w ~1 [uu, wv] et [u, v] [u, w]

[uw~l, wuw~1].

Si 2/7 8, alors c(y) 1 ou 2, et c (y) 1 si et seulement si y contient un
sous-mot xy de longueur 2 et son inverse y~lx~l.

Si 2n 10, alors c(y) 1 ou 2, et c(y) 1 si et seulement si y contient
deux sous-mots de longueur 2 (ayant peut-être une lettre commune) et leurs
inverses.

2.4. Démonstration du théorème 2

Soit m le genre minimal des symboles associés à y.

Démonstration de c(y) ^ m.

Pour tout symbole o associé à y, il existe par définition un morphisme qui
envoie o sur y. Il suffit donc de montrer qu'un symbole (orientable)
g e L(Ai, ...,A„) de genre g est le produit de g commutateurs de

L(A{, ...,An). On observe pour cela que les opérations géométriques
effectuées sur les polygones pour réduire le symbole se traduisent
algébriquement. Ces opérations sont de deux types (voir [Ma 1]): éliminer une paire
d'arêtes adjacentes AA~l, et couper puis recoller. La première revient à

simplifier le symbole comme mot en les At\ couper revient à remplacer une

portion du symbole par une nouvelle lettre, et recoller suivant l'arête étiquetée

Ai revient à éliminer At. Le nouveau symbole défini par chacune de ces

transformations s'envoie donc sur l'ancien par un morphisme de groupes. Et en

mémorisant ces changements de variables au cours de la réduction du symbole,

on peut exprimer le symbole canonique [Xi9 Yj] [.Xg, Yg] au moyen des

lettres At du symbole intial g, ce qui explicite g comme produit de g

commutateurs.
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Exemple (voir 2.2 fig. 2). o ABCA ~ XB ~ XC~1

(a): on pose X AB et on élimine A par A ~x BXX

(b): on pose Y CB.

D'où ABCA~lB-lC~l XCBXXB-XCX XYXxYl [AB, CB].

Démonstration de m ^ c(y).

Supposons y écrit comme produit de k commutateurs:

k

(5) Y n fo,M (a;,ô,eL(M1;m2,...))•
/= 1

Il s'agit de construire un symbole associé à y de genre au plus k. Pour cela,

on va définir une opération sur les symboles. Etant donné un symbole o, on

sélectionne deux lettres consécutives de o, que l'on appelle W et X, puis on

remplace W et X par deux nouvelles lettres Y et Z selon la règle suivante:

changer respectivement W en Y, X en L_1, W~x en Z et X~x en Z-1
(voir fig. 3). Soit §?(o) le nouveau symbole obtenu. Noter que §?(o) n'est pas

défini comme image de o par un morphisme. Cependant:

Affirmation. La transformation W n'augmente pas le genre.

Il revient au même de voir que W ne diminue pas le nombre de classes de

sommets. Vérifions-le avec la description géométrique de W sur les polygones

correspondants :

remplacer q > g » « Q »
W x w x

Figure 3

Il y a au plus trois classes de sommets de o impliquées dans cette opération;
ces classes se transforment en au moins deux classes car W (o) comprend une
nouvelle classe, notée ®, formée d'un seul sommet entre les deux arêtes Y
(fig. 3). On peut donc supposer que les trois classes initiales O, • et® sont
distinctes. Alors dans §?(o) les classes O et • restent distinctes, puisqu'elles
ne peuvent s'identifier que par des arêtes ne figurant pas sur le dessin, ce qui
est exclu par hypothèse (les classes O et ®, quant à elles, sont identifiées).
L'affirmation est ainsi démontrée.
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Considérons maintenant la décomposition (5) de y en produit de k
commutateurs, et remplaçons dans l'écriture réduite de chaque at (resp. b{)

toutes les Uj et les uj1 par des lettres deux à deux distinctes :

AB EF, b\ -> GH... KL, a2~+ MN...QR, etc.

En développant les commutateurs, on obtient le symbole suivant:

o - [AB...EF, GH...KL] [MN... QR,...]
AB... EFGH... KLF ~ lE ~1... H~lGlMN... QR...

qui est de genre k (penser chaque segment AB... EF provenant d'un at ou
d'un bt comme une arête At ou Bi). Evidemment, la longueur usuelle de o est

a priori bien plus grande que celle de y; en effet, à chaque lettre de o

correspond un générateur Uj ou son inverse dans la formule (5) développée,
mais celle-ci n'est pas en général une écriture réduite de y. Appliquons alors
W en choisissant pour W et X deux lettres successives de g qui correspondent
à une simplification (;UjUj1 ou uJlUj) du mot sous-jacent. On peut ensuite

effacer la paire YY~l créée dans ê?(o) sans changer le genre (dans la

formule (4), n et p diminuent chacun d'une unité): cela donne un nouveau

symbole qui comprend deux lettres de moins que o. En épuisant par ce procédé
les simplifications successives qui apparaissent dans la réduction de (5), on finit
par obtenir un symbole de genre inférieur ou égal à k, et associé à y.

2.5. Pour compléter le théorème 2, il faut signaler que l'algorithme de

réduction des symboles (aux symboles canoniques) donne des formules

explicites. Par exemple on sait que c([u,v]3) 2 (voir 1 ou 2.7); voici

comment décomposer [u, v]3 en produit de deux commutateurs à partir du

symbole ABA ~1CDEFB lF~lC~lD~lE~l :

E D

ABA ~ 1 CDEFB ~ lF~ lC~lD~lE~l

Figure 4
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Couper suivant X, recoller suivant B [poser X - ABA 1, éliminer B par

5-1 A-lX~lA] (fig. 4).

E D

„ XCDEFA-lX-lAF-lC-lD-lE~l
F

Figure 5

A

Couper suivant Y, recoller suivant A [poser Y CDEFA ~1, éliminer A par
A Y lCDEF] (fig. 5).

A ce stade, on se trouve avec le symbole XYX~lY lCDEC~lD lE l. On
réduit ensuite la partie CDEC~lD-lE~l comme à la figure 2, ce qui donne
(voir 2.3):

ABA ~1CDEFB ~lF~lC~lD~lE~l [ABA ~1, CDEFA ~1 ] [CD,ED]

D'où l'identité:

[u,u]3 [uvu~l,v~luuu~2] [u~lu,uu]

2.6. Conséquences du théorème 2

Corollaire 1 ([G-T]). Pour tout élément y de L\ on a

1

c(y) ^ - (long y)
4

où long y est la longueur usuelle de y.

En effet, tout symbole a au moins une classe de sommets! Ce corollaire

résulte donc de la formule du genre (4) avec p ^ 1 et n - long y.
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On peut aussi exploiter une majoration du nombre de classes de sommets,

moyennant quelques définitions. Remarquons d'abord qu'un symbole o admet

une classe à deux sommets si et seulement si il contient un sous-mot XY et

son inverse Y~lX~l; o sera dit simple s'il ne vérifie pas cette condition. Un
symbole (orientable) simple est appelé mot simple alterné dans la terminologie
de [Cu].

Soit M(Ai,A2, un mot réduit en les Afi « 1,2,...). On dit qu'un
élément y de L(u\,u2i...) est obtenu par substitution sans simplification à

partir de M s'il existe des mots réduits non vides mfi 1,2,...) en les

Uj(J 1,2,...) tels que M(mum%,...) soit une écriture réduite de y.
Enfin, on dira que y est cycliquement réduit s'il admet une écriture

cycliquement réduite.

Corollaire 2 ([Ed], [Cu]). Tout élément cycliquement réduit y de L'
est obtenu par substitution sans simplification à partir d'un mot simple alterné
de longueur usuelle inférieure ou égale à 12c(y) - 6.

Preuve. Un symbole g associé à y de genre minimal c(y) se laisse

«simplifier» sans changement du genre: il suffit de remplacer autant de fois

que c'est nécessaire XY par une nouvelle lettre Z et Y~lX~l par Z1. On

produit ainsi un symbole simple t, et g (donc y) est obtenu par substitution

sans simplification à partir de t. Mais t n'a pas de classe à un seul élément

(t est réduit), ni de classe à 2 éléments puisqu'il est simple. Le nombre de

1

classes de sommets de x est donc au plus égal à - (longx); d'où, d'après (4):
3

2
long x ^ 4c (y) - 2 + - (long x)

3

On en conclut que longx ^ 12c(y) - 6.

Exemple ([Wi]). Un commutateur cycliquement réduit s'obtient par
substitution sans simplification à partir de ABA ~lB~l ou de ABCA ~ lB ~1C ~1.

Le corollaire 2 a une application intéressante:

n 1

Proposition ([Cu]). Soit y e L' et ne N*. Alors c(yn) > - + -
6 2

En particulier, la longueur stable des groupes libres est minorée par 1/6.

Preuve. On peut supposer que y est cycliquement réduit. Tout sous-mot

m de yn dont l'inverse m~x apparaît aussi dans yn doit vérifier l'inégalité
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long m <-(longy). Sinon, par périodicité cyclique de y", il existerait un
2

sous-mot non vide m' constituant la fin de m et le début de m ~\ ce qui est

absurde. D'après le corollaire 2, yn est de la forme M(m\, m2,...) avec

long mi < - (longy)(/ » 1,2,...), et l'on a l'inégalité cherchée:
2

«(long y) long yn < - long y (12c(y") - 6)
2

2.7. OÙ L'ON RETROUVE c([u, U]N) E(N/2) + 1

Pour illustrer encore le théorème 2, appliquons l'algorithme à notre

exemple favori: ^^(A^eN*).
Soit o un symbole de la forme (3); une classe comprenant k sommets

(&eN*) est repérée dans o par

xyx2lx2x;1

(non forcément dans cet ordre) où les Xt(i 1,...,k) appartiennent à

l'ensemble {Ax,Axx,...,An,A~{}. Ainsi, en examinant la succession des

lettres dans [u, 6»]^, on voit que toute classe de sommets d'un symbole associé

à [u,u]N doit avoir au moins 4 éléments. Un tel symbole admet donc au
plus N classes de sommets; compte tenu de la formule du genre (4), on en

déduit l'inégalité:

c{[u,ü]N) ^ E(N/2) + 1

Par ailleurs on construit facilement un symbole de genre E(N/2) + 1

associé à [u, u]N. Il suffit de le faire pour N impair. Considérons le polygone
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Les côtés étant numérotés comme sur la figure 6, identifions ceux qui sont

impairs (resp. pairs) au moyen de la symétrie s (resp. t) d'axe horizontal (resp.

vertical). Les classes de sommets sont les orbites de l'action des symétries s

et t sur les sommets: elles ont toutes 4 éléments. Le genre du symbole ainsi

défini est donc - (N + 1). De plus, il est associé à [u, u]N comme on le vérifie
2

en écrivant ce mot autour du polygone.

2.8. Le nombre minimal de carrés

On s'intéresse ici aux produits de carrés, ce qui est naturel puisqu'ils
admettent la même interprétation topologique que les produits de commutateurs

(voir 1.2), au moyen de surfaces non orientables.
Soit L L(u\, w2> •••) un groupe libre et L2 le sous-groupe de L engendré

par les carrés. Il convient de remarquer que L2 contient L' car tout commutateur

est un produit de carrés:

(6) [X, Y] X2(X~lY)2Y-2

Un élément y de L appartient donc à L2 si et seulement si pour chaque

générateur Uj, la somme des exposants de Uj dans l'écriture de y est paire.
Les symboles considérés dans ce paragraphe seront quelconques :

orientables ou non orientables. La caractéristique d'Euler-Poincaré d'un
symbole A]1 ---A)^ est par définition celle de la surface associée, i.e.:

% \ + p - n

où p désigne comme d'habitude le nombre de classes de sommets.

Pour tout élément y de L2, notons D(y) le nombre minimal de carrés

nécessaires pour exprimer y. La méthode des paragraphes précédents permet
de retrouver simplement le résultat ci-dessous ([Cu]; voir aussi [G-T]):

Théorème 2'. Soit y un élément de L2 et %(y) la caractéristique
d'Euler-Poincaré maximale des symboles associés à y. Deux éventualités
sont possibles:

1) S'il existe un symbole associé o non orientable avec %(g) y (y), alors

(Y) 2 - x(y)

2) Sinon D(y) 3 - x(ï) 2c(y) + 1.
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Exemples.

1) Quand y appartient à L2 — L', on est toujours dans le premier cas; par

exemple C~i {u2x... u2k) k (k e N*)([L-N]).

2) Au contraire, si y est un symbole orientable, alors (y) 2c(y) + 1 ;

ainsi ([ux, ^i] [uk, vk]) 2k + 1 dans L(ux, ux,..., uk,uk) ([L-S] p. 56).

Preuve du théorème 2'.

Tout symbole non orientable o A)^ ...A]^" est équivalent, par découpage

et recollement, au symbole XxXx XkXk où k 2 — %(o) ([Ma 1]). On

en déduit (voir 2.4) que o est le produit de k carrés dans L(AX, ...,An).
Considérons maintenant un symbole o e L(AX, ...,An) orientable de

genre g(o), et posons o A0A0o e L(A0, Ax,..., An). On constate que

^(5) x(o) -1 1- 2g(o). D'après ce qui précède et en faisant A0 1,

on voit que le symbole o est le produit de 2g(o) + 1 carrés de L(AX,..., An).

Exemple. AABCB XC~X (A2BA ~X)2(AB~lA ~{CA "1)2(AC"1)2

C'est le célèbre homéomorphisme P # T « P # P # P où P est le

plan projectif, T le tore et # la somme connexe. On a en particulier la

formule (6) en faisant A 1. Inversement, le même homéomorphisme permet
de réécrire un produit de 3 carrés comme produit d'un carré et d'un
commutateur :

X2 Y2Z2 (X2 Y2ZY-lX~l)2[XY, Z~lY~l]

On a clairement les majorations cherchées: D(y) est majoré par 2 - %(y)

dans le premier cas du théorème 2', et par 3 - %(y) dans le second. Il faut
maintenant construire un symbole associé à y à partir d'une décomposition en

carrés: y a]... a2k {at eL(ax, a2,...)).
Comme à la preuve du théorème 2, on commence par remplacer tous les

Uj et les ujl de l'écriture réduite de chaque at par des lettres deux à deux
distinctes :

ax AB EF3 a2 GH... KL, etc.

Puis en développant les carrés, on obtient un symbole

(7) AB EFAB... EFGH... KLGH... KL

dont la caractéristique d'Euler-Poincaré est égale à 2 - k. On doit ensuite
étendre la transformation W de 2.4 aux symboles non orientables, mais cette
fois-ci il faut tenir compte du mot sous-jacent et il y a trois cas possibles
(u Uj ou uj1 :



128 C. BAVARD

Figure 7

Le premier cas est celui de la figure 3: c'est le seul qui intervient quand les

symboles sont orientables. En examinant la figure 7, on voit que W ne diminue

pas le nombre de classes de sommets (même démonstration que pour
l'affirmation de 2.4), donc

%(&(a))>x(o)

Cependant, la transformation W possède une propriété supplémentaire qui sera
cruciale pour la suite de la démonstration:

Affirmation. Si o est non orientable et si §?(o) est orientable, alors

x(^(o)) ^ x(o) + 1
•

Le passage de non orientable à orientable n'est possible que dans le cas (c) de

la figure 7. L'identification des deux sommets (x) de la figure 7-(c) nécessite

deux arêtes orientées dans le même sens (autres que les X). Comme par
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hypothèse W(o) est orientable, les arêtes W doivent donc intervenir pour
identifier les sommets (x): on constate alors que les classes (g) et O sont

forcément confondues. Finalement, §?(o) comprend une classe de plus que o

(que les classes O et • soient distinctes ou non).
Achevons maintenant la preuve du théorème 2'. A partir du symbole (7)

ci-dessus on trouve (par le même procédé qu'en 2.4) un symbole o associé

à y et vérifiant

X(y) ^ x(o) >2 - k,
d'où k^2 - x(y).

Cela prouve le théorème dans l'éventualité où %{y) est réalisé par un
symbole non orientable, puisqu'on a déjà (y) ^ 2 - %(y) dans ce cas. Dans
l'autre cas, ou bien o est non orientable et on a l'inégalité stricte %(y) > %(o),

ou bien o est orientable et d'après l'affirmation précédente %(o) > 2 - k;
donc finalement k ^ 3 - %(y), et le théorème 2' est démontré.

Pour terminer, il faut mentionner les analogues des corollaires 1 et 2 (§ 2.6).

Corollaire 1 ' ([G-T]). Pour tout élément y de L2, on a

n (y) < - (long y) + 1

2

(et même (y) ^ - (long y) si y eL2 - L').

Un symbole est simple s'il ne contient pas deux exemplaires d'un sous-mot
XY, ni XY et son inverse. A l'exception du symbole AA, les classes de sommets
d'un symbole simple ont au moins 3 éléments. Un mot simple quadratique est
un symbole simple.

Corollaire 2' ([Ed], [Cu]). Tout élément cycliquement réduit y de
L2 tel que (y) ^ 2 est obtenu par substitution sans simplification à
partir d'un mot simple quadratique de longueur usuelle inférieure ou égale à
6 (y) - 6.

Les preuves des corollaires 1' et 2' sont identiques à celles des corollaires

1 et 2 (§2.6).

Remarque sur l'identité (6). Certains commutateurs sont produits de
2 carrés seulement (exemple: \u, v2] (uuu~l)2u~2). Mais on peut montrer à
l'aide du corollaire 2 (2.6) qu'un commutateur non trivial n'est jamais un carré
dans un groupe libre.
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