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L'Enseignement Mathématique, t. 37 (1991), p. 109-150

LONGUEUR STABLE DES COMMUTATEURS

par Christophe Bavard

Introduction

A tout groupe T on associe classiquement son groupe dérivé T': c'est

le sous-groupe de T engendré par l'ensemble des commutateurs

[x,y] xyx~ly-l(x,yeT). Un élément donné y de Y' est de plusieurs

façons possibles le produit de commutateurs. On appellera longueur des

commutateurs de y le nombre minimal de commutateurs nécessaires pour
exprimer y; cet entier sera noté cr(y) ou simplement c(y).

En 1975, C. Edmunds a montré que la longueur des commutateurs est

effectivement calculable dans les groupes libres [Ed] (voir aussi [Gr 1] p. 212).

Un peu plus tard, R. Goldstein et E. Turner [G-T], ainsi que M. Culler [Cu]
retrouvaient ce résultat en s'appuyant sur la topologie des surfaces; on propose
dans la partie 2 une version élémentaire de leurs algorithmes. En particulier
la propriété suivante ([Cu]) répond à une question de M. Newman ([Ne]): dans
le groupe libre à deux générateurs u et v

(1) c([u, u]n) E(n/2) + 1 (neN*)

où E est la partie entière. Par exemple [u, u]3 est le produit de deux
commutateurs seulement, comme le prouve l'identité remarquable ([Cu])

[u,u]3 [uvu~\u~luvu~2] [u~luu,u2]

Il est intéressant d'étudier le comportement global de la longueur de^
commutateurs; on peut en particulier se demander si, pour un groupe donné
T, cette fonction est bornée sur T'. Posons

c(T) sup{c(y); y eT'}
Pour le groupe libre à deux générateurs, on a c oo (cela résulte, par exemple,
de (1)). Cette quantité a été très étudiée pour les groupes linéaires des anneaux
commutatifs, ainsi c(SL2(Z)) oo tandis que c(SLn(Z)) < oo si n ^ 3 ([Ne]);
voir [D-V] pour de nombreuses références. Par ailleurs S. Matsumoto et
S. Morita ont montré que c(T) peut contenir une information sur la
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cohomologie bornée à valeurs réelles de T notée //£(T,R): si T est
uniformément parfait (i.e. Yr Y et c(T) < oo) alors l'application naturelle
#ô(r>R) H2(Y,R) est injective ([M-M]). Rappelons que //J(r,R) est

l'homologie du complexe

d=0 t d
0 - R - CjÇT) - -

où Cnb(Y) désigne l'espace des fonctions bornées de Tn dans R, avec pour

/ e Cnb(T)(n ^ 1) la formule habituelle:

df(xi,.+0 f(x2, ...,xn + l)
n

+ H(- \)if(x^,...,xlXjA.u...,x„ + 1) + (- 1)" + 1/(*1, •••,*») •

/= 1

Afin de préciser cette relation entre commutateurs et cohomologie bornée on
définit la longueur stable d'un élément y dans Y':

Il II rIl y (I — Jim
n -* oo n

Il faut noter que d'après l'inégalité

«Y1Y2) < c(yj) + c(y2)(Yi,Y2er')
la suite c(y") est sous-additive, donc la limite ci-dessus existe (voir [P-S,

partie I, exercice 99]). Cela étant, on établira le

Théorème. L'application //^(T,R) -> //2(T,R) est injective si et
seulement si la longueur stable est nulle sur Y'.

La connaissance de //^(T,R) nous renseigne donc sur la longueur stable:
celle-ci est toujours nulle pour un groupe moyennable (par exemple résoluble)
puisque sa cohomologie bornée est triviale ([Gr 2] ou [Iv]).

Le noyau de H2b(Y, R) - H2(Y, R) est de codimension finie pour une large
classe de groupes intéressants, tels que les groupes fondamentaux de polyèdres

compacts. Quand la longueur stable est nulle, on voit donc que l'espace

//^(T,R) est «petit».
C'est la notion de quasi-morphisme qui relie commutateurs et cohomologie

bornée. Une application / : Y R est un quasi-morphisme si

f(xy) ~ f(x)~ f(y) est borné (x,yeY). D'une part, la donnée d'une telle

application permet de minorer la longueur des commutateurs, selon une

méthode qui remonte à Milnor [Mil] (voir 1.1); d'autre part les quasi-

morphismes décrivent le noyau de H2b(Y, R) -> H2(Y, R) puisque
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f(Xy) - f(x) - f(y)estle cobord de /. En fait ce noyau est isomorphe par

le cobord à l'espace Kdes quasi-morphismes homogènes <p : T -»• R (i.e.

cp(x") «cp(x), xeT,neZ)définisà l'addition d'un morphisme près (voir

[Be] ou 3.3). La longueur stable apparaît alors comme une version duale d'une

norme naturelle sur K:

Il (p II sup{| tp([x,_y]) I; x,yeT}

Plus précisément:

Théorème de dualité. Pour tout élément y de T' on a la relation

h il
1 I <p(y) I

Il Y II - sup -—r2 (peK K (p y

Ce résultat met en évidence la longueur stable comme une quantité naturelle

du point de vue de la cohomologie bornée, puisqu'elle est déterminée par les

quasi-morphismes. La longueur des commutateurs, quant à elle, est seulement

minorée par les quasi-morphismes (voir 1.1).

Cet article comprend trois parties. La première contient une preuve
élémentaire de la formule (1) ainsi qu'une petite généralisation. Dans la

partie 2, on détermine la longueur des commutateurs dans les groupes libres;
on y considère également les produits de carrés car ils s'interprètent topologi-
quement comme les produits de commutateurs (par des surfaces). Enfin, la

troisième partie est consacrée à l'étude de la longueur stable; on décrit le

phénomène de dualité avec la cohomologie bornée et les propriétés qui en

découlent.
Je remercie Etienne Ghys pour l'intérêt qu'il a porté à ce travail. Il m'a

expliqué que le genre des classes d'homologie de dimension 2 ([B-G]) s'interprète

comme nombre minimal de commutateurs. J'ai apprécié sa disponibilité
et ses judicieux conseils.

1. Longueur de [u,v]n.

L'objectif de cette partie est d'établir le théorème suivant, qui généralise
la relation (1) de l'introduction:

Théorème 1. Dans le groupe libre à 2k générateurs (ke N*)

Ui,Vi (/'= 1, ...,k)
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on a l'égalité:

c({[uuul\...[uk9uk]}») n(k-\) + E(n/2) + 1 (neN*)

Nous commencerons par traiter le cas où k 1 en minorant la longueur
de [u, v]n (1.1), puis en la majorant (1.2); l'énoncé général du théorème 1 s'en

déduira alors facilement (1.3). Signalons que la relation (1) sera retrouvée

indépendamment au §2.7. Enfin, il nous a semblé intéressant de donner

une décomposition explicite de [u,v]n en produit de E(n/2) + 1 commutateurs

(1.4).

1.1. Quasi-morphismes et commutateurs

Nous allons voir que la donnée d'un quasi-morphisme permet de minorer
la longueur des commutateurs; un bon choix dans le cas du groupe libre

L(u,v) donnera alors la minoration cherchée pour c([w, u]n).
On appellera défaut d'un quasi-morphisme / la borne supérieure de

I f(xy) - /M - f(y) I pour x et y dans T.

Lemme 1.1. Soit f : T R un quasi-morphisme antisymétrique
(i.e. f(x~l) - f(x),xeT) de défaut D. Alors pour tout élément y
de T':

1 /I f (y) I

c(7) > - ——— + 1

4 \ D

En effet si y est le produit de k commutateurs, /(y) est égal, à (4k - 1 )D près,
à une somme de 4k termes qui s'annulent deux à deux par antisymétrie. D'où
l'inégalité | /(y) | ^ (4k- 1 )D.

Cette observation apparaît déjà dans [Mil 1].

Remarques.

1) On peut toujours antisymétriser un quasi-morphisme suivant la formule

1/2(f(x) - f(x~1)). Cette opération n'augmente pas le défaut.

2) L'existence d'un quasi-morphisme non borné sur V implique que c(r) est

infini.

Le lemme indique clairement la méthode pour bien minorer c(y): il s'agit
de trouver un quasi-morphisme de petit défaut et qui prend une grande valeur

sur y.
Voici maintenant des exemples intéressants, dus à R. Brooks ([Brk]), de

quasi-morphismes du groupe libre L L(u}v) (signalons que B. Johnson
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avait construit auparavant un quasi-morphisme du groupe libre L: voir

[Jo] p. 38).

Etant donné un mot réduit M en m et u, on note le nombre

d'occurences de M dans l'écriture réduite d'un élément x de L et on pose

Vérifions que fM est un quasi-morphisme. Soit X et Y deux mots réduits.

Supposons d'abord que XY est aussi réduit; on a alors:

où §m{X, Y) provient des occurences de M et M-1 situées «à cheval» sur X
et Y, donc | SM(X, Y) | est au plus égal à long M - 1.

De façon plus générale X et Y s'écrivent respectivement X'A et A ~1 Y'
(avec X'Y' réduit) et on a:

Le défaut de fM est donc majoré par 3 (long M - 1).

Cette estimation est souvent améliorable sur des exemples; ainsi pour
M uv, on constate qu'un seul des trois termes de droite dans (2) peut être

non nul, donc le défaut de fuu est égal à 1. Posons alors

Le défaut de / est visiblement (par additivité) majoré par 4. Mais un examen
plus attentif de la relation (2) permet d'obtenir mieux:

Affirmation. Le défaut de / est égal à 2.

Preuve. Reprenons les notations ci-dessus: X X'A, Y A~lY'. On
exclut le cas évident où l'un des mots A, X' ou Y' est vide. Comme / est invariant

par la permutation cyclique u -* v -> u ~1 - u ~1 -> u sur les lettres des

mots, on peut supposer que X' se termine par la lettre u. Il reste alors six cas
possibles:

fM(XY) fM(X) + fM(Y) + bM{X, Y)

(2)
fM(X'Y') - fM(X) - fM(Y)

m 8m(X', T) - 8m(X',A) - 8m(A-\ Y')

f ~ fuu L fvu~l "L fu-lU~l L fu~^u '

X' A A ~ 1 Y' valeur de (2)

U U

U V ~.1

U~l V 2

2

-2
-2
-2

2

u v

U Ü -.1

U V

u u

V V

U'1 v~.1

u~l u~.1

u~l u

Ü u
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Il est maintenant facile d'établir l'inégalité c([u, u]n) ^ E(n/2) +1: on
applique le lemme à / sachant que f([u,u]n) An - 1 et que D 2.

1.2. [w, L»]" EST LE PRODUIT DE E(ïl/2) + 1 COMMUTATEURS

Le nombre de commutateurs a une interprétation topologique simple que
nous allons exploiter.

Notons Zg la surface orientable de genre g dont le bord est un cercle, et

7Ci(£g,*) son groupe fondamental. On omettra le point-base * qui sera

toujours pris sur le bord. Bien que 7ti (Eg) soit un groupe libre, il sera
commode de le présenter de la façon suivante:

71,(E^) <ai,bi, ...,ag,bg,c \f] [«;>&;]> •

/= 1

L'élément c est représenté par le bord öZg de Zg.

Soit maintenant T un groupe et X un espace topologique dont le groupe
fondamental est précisément T. Etant donné un élément y de f, on a deux

propriétés équivalentes :

(i) y est le produit de g commutateurs;

(ii) il existe une application continue / : Eg -> A telle que /(ôEg)
représente y.

Pour voir que (ii) entraîne (i), il suffit d'écrire la relation homotopique

Y Me)n [MM Mb,)]
i= 1

La réciproque, que nous n'utiliserons pas ici, s'établit facilement en construisant

/ à partir de la description usuelle de Eg comme quotient d'un polygone
à 4g + 1 côtés.

Puisqu'on étudie le cas du groupe libre L(u,v), on prend X Ei, et on
choisit les générateurs u et v de sorte que [u,v] soit représenté par le bord

0Ej. Par ailleurs, on observe que pour écrire [uy v]n comme produit de

E(n/2) + 1 commutateurs, il suffit de le faire quand n est impair. La propriété
cherchée sera alors une conséquence du fait suivant:

Proposition ([Ma 2], [H-S]). Si n est impairy il existe un revêtement

de degré n de Ei par Eg avec g (n+1)/2.
Admettons un instant ce résultat: le revêtement doit envoyer 8Zg sur

l'élément [u,v]n, qui se trouve du coup écrit comme produit de (n + l)/2
commutateurs! Cela achève la preuve de l'inégalité cL([uy v]n) ^ E(n/2) + 1.
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Remarque. Cette méthode est utilisée dans [Min] pour montrer que

[w,y]2H1(^eN*) est le produit de k + 1 commutateurs.

Preuve de la proposition. Je remercie Alexis Marin qui m'a signalé la

démonstration ci-dessous.

Rappelons qu'à toute action à gauche de 7ti(Zi) sur un ensemble à n

éléments {1, ...,/?} on peut associer, par «suspension», un revêtement de degré n

de Ej. L'action par relèvements des chemins dans la fibre du revêtement est

alors opposée à l'action donnée: le revêtement est connexe si et seulement si

cette action est transitive.

Il se trouve que pour n impair, la permutation cyclique (1,2,...,n) est un
commutateur dans le groupe des bijections de {1,2,...,/?}:

(1,2,...,/?) (l,fc + 2,...,/?) (1,2,...,*+ 1) (n 2k+l)
produit de deux (k + l)-cycles, le second étant conjugué à l'inverse du premier.
D'où un morphisme de ni(L\) dans 5^n qui envoie [u} //] sur (1,2,...,/?). Le
revêtement associé est une surface orientable connexe, et comme l'action de

[u, i>] est déjà transitive, son bord est connexe. Il s'agit donc d'une surface
où g est déterminé par la relation 1-2g - n.

1.3. Longueur de {[uuvx] [uk9vk]}n

Dans ce paragraphe, on prouve le théorème 1 en s'appuyant sur le fait que
c([u,v]n) — E(n/2) + 1.

Lemme 1.3. Soit T un groupe et y, ô deux éléments de r\ On a
alors l'inégalité

c({yS}") ^ /?c(ô) + c(yn) (neN*)

La preuve est immédiate à partir de l'identité

(yô)« (yôy-1) (y2ôy ~2)... (y"ôy ~n)yn

En appliquant ceci à

T L(u\, Vi,..., uk, vk), y [u\, i/j] et ô [w2,1)2] ••• [uk, vk]

on obtient

c{{{uuvl}...[uk,uk}}») ^ «(Ar— 1) + E(n/2) + 1

Pour établir l'inégalité inverse, écrivons [n,u]2*-1 comme produit
de k commutateurs du groupe libre L(u,v):
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[u,t)]2k-1 [ax,bx] [ak,bk] (ai9bieL(u,u)).

On peut alors définir un morphisme O : L(ux, V\,.. uk, vk) -* L(u, v) en

envoyant w,- sur aet Uj sur £,(2 - 1, ...,k). Si l'on note a l'élément

{[u^Vx]...[uk,vk]}n

on a donc

c(a) ^ c(0(a)) cdu,»]"'2*-1*) n(k - 1) + E(n/2) + 1

Ceci termine la démonstration du théorème 1.

1.4. Voici une preuve complètement élémentaire et explicite de l'inégalité
c([u,u]n) ^ E(n/2) + 1.

Afin d'alléger l'écriture, posons

(P>Q) uq([u,v]p) uq[u,v]pu~q (p,qeZ)

Ainsi

[un,u] (l,n - 1)(\,n - 2)... (1,1)(1,0) (neN*)

Considérons alors le produit de 2 commutateurs

A [""-2[M,y] »"-'([w^]2) [

c'est-à-dire

(R)
A (1,/I-2)(2,/I-3)...(/I-1,0)(-/I+1,1)...

— 3, 27 - 3)(- 1, 22 — 2)(1,22 - 3)(1, 22 — 4)... (1, 1)(1, 0)

Bien que le cas n impair suffise, commençons par examiner le cas n pair
(22 2k) qui est plus simple. En notant

A (\,2k- 2) (2,2k - 3)

et B (3,2k - 4)(4,2k - 5)... (-4,2k - 4)(-3,2k - 3)(- 1,2k-1)
on a

[B,A]A (3,2k — 4)(4,2k - 5)... — 3,2k — 4)(1,2k — 5)... (1,1) (1,0)

On remarque que la valeur maximale de <7 dans les (/?, #) a diminué de 2k — 2

pour A k 2k-4 pour [B, A] A; en répétant cette opération k - 1 fois on

obtient (2ky0) [w, comme produit de k + 1 commutateurs.

Exemple (n A): [u,vV \[u,y]3"([y, w]3) 1,2 [w, v] y]2)]

["2[«,f] "([w,I>]2)[W,I;]3,M] [u4,V]
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Passons au cas où n est impair {n 2k + 1). La relation (R) s'écrit aussi

[C,u][u",u] CD(l,n-3)(1,« -4)... (1,1)(1,0)

avec C (1,n — 2)(2, n —3)(3, 4)... — 1,0)

et D(-« + l,l)...(-4,n —4)(—3,/j —3)(— l,w~2)

Compte tenu de l'identité

[. y,x][x,z][yz~',zxz~']

on voit que l'élément

A' — 2k, 1) ...(— A, 2k — 3) — 1,2k - 2

(2k,0)(l,2k-2)(1,2k-3)...(1,0)
I Jl J

est le produit de 2 commutateurs. La transposition des blocs I J et I 1

diminue la valeur maximale de qde2 unités, au prix d'un commutateur; au

bout de k -1 opérations analogues il vient

k- 1

A' (2k,0)I] ,£;](!,0) (Ai,BieL,i=l 1)

/= 1

On termine en conjuguant par (1,0).

Exemple (n 3).

[u,v]3 [u[u, u]u~x, ul\u, l>] U([u,u]2)] [u3, v]

2. Longueur des commutateurs dans les groupes libres
Cette partie est consacrée à l'étude des produits de commutateurs et de

carrés dans les groupes libres. On y retrouve les résultats de [G-T] et [Cu] en

utilisant directement l'algorithme de classification des surfaces.

2.1. Il convient avant tout de faire une petite remarque. Soit U un
ensemble et L(U) le groupe libre de base U. Si U est inclus dans K, on a pour
tout élément y de L'(U)\

Cl(U)(ï) Q,(F)(Y) •

En effet toute relation dans L{V) se projette dans L{U) grâce à la rétraction
évidente L{V) L(U).

Donc, pour calculer c(y), on peut se restreindre au sous-groupe engendré

par ceux des générateurs qui interviennent dans récriture réduite de y.
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2.2. Afin de fixer le vocabulaire pour la suite, on rappelle quelques faits
élémentaires concernant les surfaces fermées.

Considérons tout d'abord un polygone à 2n côtés, ou arêtes {n e N*); la
donnée d'un recollement par paires des arêtes, avec des orientations spécifiées,
définit une surface fermée. Les identifications d'arêtes peuvent être codées par
un mot, appelé symbole, de la forme

(3) A-l...A^"nh,...,i2„e{1,e,- 1 ou - 1

où chacune des n lettres A:...An apparaît exactement deux fois, avec

exposant 1 ou - 1; on écrit alors ce mot cycliquement, dans le sens direct,
autour du polygone et on identifie les arêtes qui portent la même lettre,
l'orientation étant dictée par les exposants 8/.

Exemple.

Symbole: ABCA~lB-lC~l

Figure 1

Il sera important de penser qu'un symbole définit un élément du groupe
libre L(AX, ...,An). Les surfaces considérées ici seront orientables (sauf

en 2.8) de sorte que chaque lettre At dans (3) apparaît une fois avec exposant

+ 1 et une fois avec exposant — 1. En particulier le symbole (3) appartient au

groupe dérivé de L(A\,..., An).
On appellera genre d'un symbole celui de la surface qu'il définit. L'identification

des arêtes induit une partition des sommets du polygone en classes ;

si p désigne le nombre de ces classes, le genre g est donné par

1

(4) - g -(*+ 1 -p)

Ainsi dans l'exemple ci-dessus (voir fig. 1), on dénombre deux classes de

sommets, figurées par O et (x), et le genre est égal à 1.
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Deux symboles sont équivalents s'ils définissent la même surface. On

montre, dans la preuve du théorème de classification des surfaces, que tout

symbole (orientable) de genre g ^ 1 est équivalent au symbole canonique

xmxï'y;1 ...xgYgx;lY;1

par découpages et recollements sur le polygone (voir [Ma 1]).

Exemple. ABCA xB~lC~x (genre 1)

(a): On coupe suivant X et on recolle suivant A.

(b): On observe que C et B forment une seule arête Y.

Figure 2

2.3. Symboles associés et longueur des commutateurs

Fixons un produit de commutateurs y d'un groupe libre L L(u{, u2, ...)•

Puisque la longueur des commutateurs est invariante par conjugaison, on peut

supposer que y admet une écriture cycliquement réduite, disons de longueur
usuelle 2n. Un symbole g - A)\ ...Ade longueur 2n est dit associé à y
si une substitution convenable de certains des générateurs de L (ou de leurs

inverses) aux Ai définit un morphisme de L(A{ ,A2,...) dans L qui envoie g

sur y. Voici par exemple deux symboles associés à [u,v]3:

ABA ~ lB~lCDC~lD ~ lEFE~lF~1 par A,B,C,D,E,F-> u,o9u,v,u,v
ABA lCDEFB~lF~lC~lD~lE~l par A3BsCyDsEsF -> u,ü,v~l ,u,v,u~l.

Le nombre de symboles associés à un élément donné est évidemment fini. Les

algorithmes de [G-T] et [Cu] peuvent alors se formuler ainsi:
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Théorème 2. La longueur des commutateurs c(y) dans un groupe
libre est égale au genre minimal des symboles associés à y.

Exemples.

1) La longueur des commutateurs d'un symbole est égale à son genre: par
exemple c{[uuvx] [uk>uk]) k dans L(uuvu.,.,uk,vk) ([L-S] p. 55).

2) Eléments de petite longueur.

Quand la longueur usuelle (notée 2n) de y est petite, il est facile d'estimer le

nombre de classes de sommets et leurs cardinaux. On en déduit les résultats
suivants :

Si 2n 6, y est toujours un commutateur puisqu'un symbole de longueur
6 est de genre 1; par exemple uuwu ~ lv ~1 w ~1 [uu, wv] et [u, v] [u, w]

[uw~l, wuw~1].

Si 2/7 8, alors c(y) 1 ou 2, et c (y) 1 si et seulement si y contient un
sous-mot xy de longueur 2 et son inverse y~lx~l.

Si 2n 10, alors c(y) 1 ou 2, et c(y) 1 si et seulement si y contient
deux sous-mots de longueur 2 (ayant peut-être une lettre commune) et leurs
inverses.

2.4. Démonstration du théorème 2

Soit m le genre minimal des symboles associés à y.

Démonstration de c(y) ^ m.

Pour tout symbole o associé à y, il existe par définition un morphisme qui
envoie o sur y. Il suffit donc de montrer qu'un symbole (orientable)
g e L(Ai, ...,A„) de genre g est le produit de g commutateurs de

L(A{, ...,An). On observe pour cela que les opérations géométriques
effectuées sur les polygones pour réduire le symbole se traduisent
algébriquement. Ces opérations sont de deux types (voir [Ma 1]): éliminer une paire
d'arêtes adjacentes AA~l, et couper puis recoller. La première revient à

simplifier le symbole comme mot en les At\ couper revient à remplacer une

portion du symbole par une nouvelle lettre, et recoller suivant l'arête étiquetée

Ai revient à éliminer At. Le nouveau symbole défini par chacune de ces

transformations s'envoie donc sur l'ancien par un morphisme de groupes. Et en

mémorisant ces changements de variables au cours de la réduction du symbole,

on peut exprimer le symbole canonique [Xi9 Yj] [.Xg, Yg] au moyen des

lettres At du symbole intial g, ce qui explicite g comme produit de g

commutateurs.
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Exemple (voir 2.2 fig. 2). o ABCA ~ XB ~ XC~1

(a): on pose X AB et on élimine A par A ~x BXX

(b): on pose Y CB.

D'où ABCA~lB-lC~l XCBXXB-XCX XYXxYl [AB, CB].

Démonstration de m ^ c(y).

Supposons y écrit comme produit de k commutateurs:

k

(5) Y n fo,M (a;,ô,eL(M1;m2,...))•
/= 1

Il s'agit de construire un symbole associé à y de genre au plus k. Pour cela,

on va définir une opération sur les symboles. Etant donné un symbole o, on

sélectionne deux lettres consécutives de o, que l'on appelle W et X, puis on

remplace W et X par deux nouvelles lettres Y et Z selon la règle suivante:

changer respectivement W en Y, X en L_1, W~x en Z et X~x en Z-1
(voir fig. 3). Soit §?(o) le nouveau symbole obtenu. Noter que §?(o) n'est pas

défini comme image de o par un morphisme. Cependant:

Affirmation. La transformation W n'augmente pas le genre.

Il revient au même de voir que W ne diminue pas le nombre de classes de

sommets. Vérifions-le avec la description géométrique de W sur les polygones

correspondants :

remplacer q > g » « Q »
W x w x

Figure 3

Il y a au plus trois classes de sommets de o impliquées dans cette opération;
ces classes se transforment en au moins deux classes car W (o) comprend une
nouvelle classe, notée ®, formée d'un seul sommet entre les deux arêtes Y
(fig. 3). On peut donc supposer que les trois classes initiales O, • et® sont
distinctes. Alors dans §?(o) les classes O et • restent distinctes, puisqu'elles
ne peuvent s'identifier que par des arêtes ne figurant pas sur le dessin, ce qui
est exclu par hypothèse (les classes O et ®, quant à elles, sont identifiées).
L'affirmation est ainsi démontrée.
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Considérons maintenant la décomposition (5) de y en produit de k
commutateurs, et remplaçons dans l'écriture réduite de chaque at (resp. b{)

toutes les Uj et les uj1 par des lettres deux à deux distinctes :

AB EF, b\ -> GH... KL, a2~+ MN...QR, etc.

En développant les commutateurs, on obtient le symbole suivant:

o - [AB...EF, GH...KL] [MN... QR,...]
AB... EFGH... KLF ~ lE ~1... H~lGlMN... QR...

qui est de genre k (penser chaque segment AB... EF provenant d'un at ou
d'un bt comme une arête At ou Bi). Evidemment, la longueur usuelle de o est

a priori bien plus grande que celle de y; en effet, à chaque lettre de o

correspond un générateur Uj ou son inverse dans la formule (5) développée,
mais celle-ci n'est pas en général une écriture réduite de y. Appliquons alors
W en choisissant pour W et X deux lettres successives de g qui correspondent
à une simplification (;UjUj1 ou uJlUj) du mot sous-jacent. On peut ensuite

effacer la paire YY~l créée dans ê?(o) sans changer le genre (dans la

formule (4), n et p diminuent chacun d'une unité): cela donne un nouveau

symbole qui comprend deux lettres de moins que o. En épuisant par ce procédé
les simplifications successives qui apparaissent dans la réduction de (5), on finit
par obtenir un symbole de genre inférieur ou égal à k, et associé à y.

2.5. Pour compléter le théorème 2, il faut signaler que l'algorithme de

réduction des symboles (aux symboles canoniques) donne des formules

explicites. Par exemple on sait que c([u,v]3) 2 (voir 1 ou 2.7); voici

comment décomposer [u, v]3 en produit de deux commutateurs à partir du

symbole ABA ~1CDEFB lF~lC~lD~lE~l :

E D

ABA ~ 1 CDEFB ~ lF~ lC~lD~lE~l

Figure 4
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Couper suivant X, recoller suivant B [poser X - ABA 1, éliminer B par

5-1 A-lX~lA] (fig. 4).

E D

„ XCDEFA-lX-lAF-lC-lD-lE~l
F

Figure 5

A

Couper suivant Y, recoller suivant A [poser Y CDEFA ~1, éliminer A par
A Y lCDEF] (fig. 5).

A ce stade, on se trouve avec le symbole XYX~lY lCDEC~lD lE l. On
réduit ensuite la partie CDEC~lD-lE~l comme à la figure 2, ce qui donne
(voir 2.3):

ABA ~1CDEFB ~lF~lC~lD~lE~l [ABA ~1, CDEFA ~1 ] [CD,ED]

D'où l'identité:

[u,u]3 [uvu~l,v~luuu~2] [u~lu,uu]

2.6. Conséquences du théorème 2

Corollaire 1 ([G-T]). Pour tout élément y de L\ on a

1

c(y) ^ - (long y)
4

où long y est la longueur usuelle de y.

En effet, tout symbole a au moins une classe de sommets! Ce corollaire

résulte donc de la formule du genre (4) avec p ^ 1 et n - long y.
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On peut aussi exploiter une majoration du nombre de classes de sommets,

moyennant quelques définitions. Remarquons d'abord qu'un symbole o admet

une classe à deux sommets si et seulement si il contient un sous-mot XY et

son inverse Y~lX~l; o sera dit simple s'il ne vérifie pas cette condition. Un
symbole (orientable) simple est appelé mot simple alterné dans la terminologie
de [Cu].

Soit M(Ai,A2, un mot réduit en les Afi « 1,2,...). On dit qu'un
élément y de L(u\,u2i...) est obtenu par substitution sans simplification à

partir de M s'il existe des mots réduits non vides mfi 1,2,...) en les

Uj(J 1,2,...) tels que M(mum%,...) soit une écriture réduite de y.
Enfin, on dira que y est cycliquement réduit s'il admet une écriture

cycliquement réduite.

Corollaire 2 ([Ed], [Cu]). Tout élément cycliquement réduit y de L'
est obtenu par substitution sans simplification à partir d'un mot simple alterné
de longueur usuelle inférieure ou égale à 12c(y) - 6.

Preuve. Un symbole g associé à y de genre minimal c(y) se laisse

«simplifier» sans changement du genre: il suffit de remplacer autant de fois

que c'est nécessaire XY par une nouvelle lettre Z et Y~lX~l par Z1. On

produit ainsi un symbole simple t, et g (donc y) est obtenu par substitution

sans simplification à partir de t. Mais t n'a pas de classe à un seul élément

(t est réduit), ni de classe à 2 éléments puisqu'il est simple. Le nombre de

1

classes de sommets de x est donc au plus égal à - (longx); d'où, d'après (4):
3

2
long x ^ 4c (y) - 2 + - (long x)

3

On en conclut que longx ^ 12c(y) - 6.

Exemple ([Wi]). Un commutateur cycliquement réduit s'obtient par
substitution sans simplification à partir de ABA ~lB~l ou de ABCA ~ lB ~1C ~1.

Le corollaire 2 a une application intéressante:

n 1

Proposition ([Cu]). Soit y e L' et ne N*. Alors c(yn) > - + -
6 2

En particulier, la longueur stable des groupes libres est minorée par 1/6.

Preuve. On peut supposer que y est cycliquement réduit. Tout sous-mot

m de yn dont l'inverse m~x apparaît aussi dans yn doit vérifier l'inégalité
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long m <-(longy). Sinon, par périodicité cyclique de y", il existerait un
2

sous-mot non vide m' constituant la fin de m et le début de m ~\ ce qui est

absurde. D'après le corollaire 2, yn est de la forme M(m\, m2,...) avec

long mi < - (longy)(/ » 1,2,...), et l'on a l'inégalité cherchée:
2

«(long y) long yn < - long y (12c(y") - 6)
2

2.7. OÙ L'ON RETROUVE c([u, U]N) E(N/2) + 1

Pour illustrer encore le théorème 2, appliquons l'algorithme à notre

exemple favori: ^^(A^eN*).
Soit o un symbole de la forme (3); une classe comprenant k sommets

(&eN*) est repérée dans o par

xyx2lx2x;1

(non forcément dans cet ordre) où les Xt(i 1,...,k) appartiennent à

l'ensemble {Ax,Axx,...,An,A~{}. Ainsi, en examinant la succession des

lettres dans [u, 6»]^, on voit que toute classe de sommets d'un symbole associé

à [u,u]N doit avoir au moins 4 éléments. Un tel symbole admet donc au
plus N classes de sommets; compte tenu de la formule du genre (4), on en

déduit l'inégalité:

c{[u,ü]N) ^ E(N/2) + 1

Par ailleurs on construit facilement un symbole de genre E(N/2) + 1

associé à [u, u]N. Il suffit de le faire pour N impair. Considérons le polygone
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Les côtés étant numérotés comme sur la figure 6, identifions ceux qui sont

impairs (resp. pairs) au moyen de la symétrie s (resp. t) d'axe horizontal (resp.

vertical). Les classes de sommets sont les orbites de l'action des symétries s

et t sur les sommets: elles ont toutes 4 éléments. Le genre du symbole ainsi

défini est donc - (N + 1). De plus, il est associé à [u, u]N comme on le vérifie
2

en écrivant ce mot autour du polygone.

2.8. Le nombre minimal de carrés

On s'intéresse ici aux produits de carrés, ce qui est naturel puisqu'ils
admettent la même interprétation topologique que les produits de commutateurs

(voir 1.2), au moyen de surfaces non orientables.
Soit L L(u\, w2> •••) un groupe libre et L2 le sous-groupe de L engendré

par les carrés. Il convient de remarquer que L2 contient L' car tout commutateur

est un produit de carrés:

(6) [X, Y] X2(X~lY)2Y-2

Un élément y de L appartient donc à L2 si et seulement si pour chaque

générateur Uj, la somme des exposants de Uj dans l'écriture de y est paire.
Les symboles considérés dans ce paragraphe seront quelconques :

orientables ou non orientables. La caractéristique d'Euler-Poincaré d'un
symbole A]1 ---A)^ est par définition celle de la surface associée, i.e.:

% \ + p - n

où p désigne comme d'habitude le nombre de classes de sommets.

Pour tout élément y de L2, notons D(y) le nombre minimal de carrés

nécessaires pour exprimer y. La méthode des paragraphes précédents permet
de retrouver simplement le résultat ci-dessous ([Cu]; voir aussi [G-T]):

Théorème 2'. Soit y un élément de L2 et %(y) la caractéristique
d'Euler-Poincaré maximale des symboles associés à y. Deux éventualités
sont possibles:

1) S'il existe un symbole associé o non orientable avec %(g) y (y), alors

(Y) 2 - x(y)

2) Sinon D(y) 3 - x(ï) 2c(y) + 1.
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Exemples.

1) Quand y appartient à L2 — L', on est toujours dans le premier cas; par

exemple C~i {u2x... u2k) k (k e N*)([L-N]).

2) Au contraire, si y est un symbole orientable, alors (y) 2c(y) + 1 ;

ainsi ([ux, ^i] [uk, vk]) 2k + 1 dans L(ux, ux,..., uk,uk) ([L-S] p. 56).

Preuve du théorème 2'.

Tout symbole non orientable o A)^ ...A]^" est équivalent, par découpage

et recollement, au symbole XxXx XkXk où k 2 — %(o) ([Ma 1]). On

en déduit (voir 2.4) que o est le produit de k carrés dans L(AX, ...,An).
Considérons maintenant un symbole o e L(AX, ...,An) orientable de

genre g(o), et posons o A0A0o e L(A0, Ax,..., An). On constate que

^(5) x(o) -1 1- 2g(o). D'après ce qui précède et en faisant A0 1,

on voit que le symbole o est le produit de 2g(o) + 1 carrés de L(AX,..., An).

Exemple. AABCB XC~X (A2BA ~X)2(AB~lA ~{CA "1)2(AC"1)2

C'est le célèbre homéomorphisme P # T « P # P # P où P est le

plan projectif, T le tore et # la somme connexe. On a en particulier la

formule (6) en faisant A 1. Inversement, le même homéomorphisme permet
de réécrire un produit de 3 carrés comme produit d'un carré et d'un
commutateur :

X2 Y2Z2 (X2 Y2ZY-lX~l)2[XY, Z~lY~l]

On a clairement les majorations cherchées: D(y) est majoré par 2 - %(y)

dans le premier cas du théorème 2', et par 3 - %(y) dans le second. Il faut
maintenant construire un symbole associé à y à partir d'une décomposition en

carrés: y a]... a2k {at eL(ax, a2,...)).
Comme à la preuve du théorème 2, on commence par remplacer tous les

Uj et les ujl de l'écriture réduite de chaque at par des lettres deux à deux
distinctes :

ax AB EF3 a2 GH... KL, etc.

Puis en développant les carrés, on obtient un symbole

(7) AB EFAB... EFGH... KLGH... KL

dont la caractéristique d'Euler-Poincaré est égale à 2 - k. On doit ensuite
étendre la transformation W de 2.4 aux symboles non orientables, mais cette
fois-ci il faut tenir compte du mot sous-jacent et il y a trois cas possibles
(u Uj ou uj1 :
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Figure 7

Le premier cas est celui de la figure 3: c'est le seul qui intervient quand les

symboles sont orientables. En examinant la figure 7, on voit que W ne diminue

pas le nombre de classes de sommets (même démonstration que pour
l'affirmation de 2.4), donc

%(&(a))>x(o)

Cependant, la transformation W possède une propriété supplémentaire qui sera
cruciale pour la suite de la démonstration:

Affirmation. Si o est non orientable et si §?(o) est orientable, alors

x(^(o)) ^ x(o) + 1
•

Le passage de non orientable à orientable n'est possible que dans le cas (c) de

la figure 7. L'identification des deux sommets (x) de la figure 7-(c) nécessite

deux arêtes orientées dans le même sens (autres que les X). Comme par
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hypothèse W(o) est orientable, les arêtes W doivent donc intervenir pour
identifier les sommets (x): on constate alors que les classes (g) et O sont

forcément confondues. Finalement, §?(o) comprend une classe de plus que o

(que les classes O et • soient distinctes ou non).
Achevons maintenant la preuve du théorème 2'. A partir du symbole (7)

ci-dessus on trouve (par le même procédé qu'en 2.4) un symbole o associé

à y et vérifiant

X(y) ^ x(o) >2 - k,
d'où k^2 - x(y).

Cela prouve le théorème dans l'éventualité où %{y) est réalisé par un
symbole non orientable, puisqu'on a déjà (y) ^ 2 - %(y) dans ce cas. Dans
l'autre cas, ou bien o est non orientable et on a l'inégalité stricte %(y) > %(o),

ou bien o est orientable et d'après l'affirmation précédente %(o) > 2 - k;
donc finalement k ^ 3 - %(y), et le théorème 2' est démontré.

Pour terminer, il faut mentionner les analogues des corollaires 1 et 2 (§ 2.6).

Corollaire 1 ' ([G-T]). Pour tout élément y de L2, on a

n (y) < - (long y) + 1

2

(et même (y) ^ - (long y) si y eL2 - L').

Un symbole est simple s'il ne contient pas deux exemplaires d'un sous-mot
XY, ni XY et son inverse. A l'exception du symbole AA, les classes de sommets
d'un symbole simple ont au moins 3 éléments. Un mot simple quadratique est
un symbole simple.

Corollaire 2' ([Ed], [Cu]). Tout élément cycliquement réduit y de
L2 tel que (y) ^ 2 est obtenu par substitution sans simplification à
partir d'un mot simple quadratique de longueur usuelle inférieure ou égale à
6 (y) - 6.

Les preuves des corollaires 1' et 2' sont identiques à celles des corollaires

1 et 2 (§2.6).

Remarque sur l'identité (6). Certains commutateurs sont produits de
2 carrés seulement (exemple: \u, v2] (uuu~l)2u~2). Mais on peut montrer à
l'aide du corollaire 2 (2.6) qu'un commutateur non trivial n'est jamais un carré
dans un groupe libre.
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3. Longueur stable et cohomologie bornée

Comme préliminaire on étudie l'espace des bords i?i(r,R). Ceci est

justifié par le fait qu'il relie longueur stable et cohomologie bornée: d'une part
J5i(r,R) est muni d'une norme comparable à la longueur stable (proposition

3.2), et d'autre part cet espace s'interprète par dualité à partir de la

cohomologie bornée (3.4).

3.1. L'espace des bords

On rappelle la définition de Phomologie, ici à valeurs réelles, d'un groupe
discret par la «bar-résolution». Soit Cn(r,R) l'espace vectoriel réel de base

Tn(n ^ 1) et soit l'opérateur bord 8: C„ + i(r,R) C„(r,R) donné par

0(*i, ...,xn+i)
n

=(x2>...,x„+1) + £ (- l)i(xl,...,xixi+i,...,xn + d+ (-
i= 1

L'homologie //*(r,R) est alors celle du complexe

••• - C2(T,R) - Cl (r,R) - R - 0 m
L'espace des 1-bords, noté Bi(T,K), est l'ensemble des combinaisons

finies de la forme

£ a, (X/ - X/J; + yd a, e R, x,- j/eT.
/

Soit Z2(r,R) le noyau de 8: C2(r,R) -> Ci(r,R) (espace des 2-cycles).

L'isomorphisme Bi(T, R) ~ C2(r,R)/Z2(r,R) induit sur ß^R) une norme

simpliciale quotient:

Il b|U« inf{D| a,\i0(£a;(x;,yd)
i

borne inférieure sur les 2-chaînes de bord b.

Par ailleurs, les bords entiers b e Bi(T,Z) ont aussi une «norme» entière:

|ö|z*= inf{£|«/|;0(X|H;(x/,.y/)) bet «, e Z}
/

et la norme réelle de b est donnée par

Il b||filim ((Ö6ß,(r,Z))
k-+co k
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3.2. Longueur stable et norme sur l'espace des bords

Remarquons d'abord que le groupe dérivé r' est inclus dans l espace des

bords Bi(T,R) car

(8) [x,y] d{([x,y],y) + (xyx~\x) - (x,y)} (x;yeT)

Il est donc naturel de comparer la longueur stable || y || d'un élément y de F

avec sa norme || y ||5 dans

Proposition 3.2. 4 || y || - 1 < || y 1U ^ 4 |jy [| + 1 (y e r')

Avant d'aborder la preuve de la proposition, voyons comment la combi-

natoire d'une relation

b « 6(Zzi(xi9yij) s, ± 1

/

peut être décrite au moyen d'une surface. On pense à chaque z(x, y) qui

intervient ci-dessus comme à un simplexe géométrique orienté (fig. 8):

y

Figure 8

Choisissons une façon de grouper par paires {x, - x] les arêtes qui s'annulent
dans la relation; il suffit alors d'identifier 2 à 2 les arêtes ainsi sélectionnées

pour construire une surface à bord (abstraite) Z orientée et triangulée, a priori
non connexe et non unique. Noter que si on pose

b YénjZj ZjeT)
j

le nombre de composantes connexes du bord de Z est au plus égal à Y, I nj I
•

j
On dira que Z borde b. Une surface bordant b et formée de | b |z Simplexes

sera appelée minimisante pour b. Ainsi le fait qu'un commutateur soit le bord
de 3 simplexes s'illumine (fig. 9):



La longueur des commutateurs c(y) est le genre minimal d'une telle surface

connexe bordant y (yef). Voici encore un exemple: 2[x,y] bordé par une

surface de genre 1 ayant 2 composantes du bord:

(y= [x,y])

Figure 10

Preuve de la proposition. Comme || y ||fi lim (| ky \z/k) (voir 3.1), la
k~* oo

preuve consiste à relier | ky |z avec c(yk){k e N*). Il faut bien distinguer les

éléments yk et ky qui sont, par définition, linéairement indépendants dans

£i(r,R).
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D'après la relation (8) tout produit de N commutateurs est le bord de

4N- 1 Simplexes, d'où | yk |z ^ 4c(yk) - 1. En remplaçant le simplexe qui

contient yk par k simplexes contenant y (fig. 11), on voit que

I ky |z < 4c(y^) + k - 2

Il reste à établir une inégalité dans l'autre sens:

Affirmation. 4c(yk) - k ^ | ky |z (y e T').
Une fois que l'affirmation sera démontrée, la proposition résultera de

l'encadrement:

4c(yk) - k < | ky \z ^ 4c{yk) + k - 2

Preuve de l'affirmation. Supposons d'abord que ky est bordé par une
surface E minimisante connexe. Soit g le genre de E et r le nombre de

composantes connexes de son bord. Un petit calcul de caractéristique d'Euler-
Poincaré permet de minorer \ky |z. En effet considérons une triangulation
de E qui comprend 5 sommets, a arêtes, / faces et exactement k arêtes sur
le bord; on a les relations

2-2g-r s- a + f et 3/ 2a - k

D'où / 4g - 4 + 2r + 2s - k. Sachant qu'une telle triangulation doit
comprendre au moins k sommets (ceux qui sont sur le bord) on en déduit
l'inégalité

(9) / ^ 4g - 4 + 2r + k

Notons par ailleurs kfi 1, ...,r) le nombre d'arêtes sur la i-ème composante
du bord Ç£,ki k). L'hypothèse signifie algébriquement qu'un certain

i
produit
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ai(y^i) ar-i(ykr-i)ykr e f, / 1, ...,# — 1)

est produit de g commutateurs de T (on rappelle la notation xyx-1).
L'identité

üuciß2x2... [^i,Xi]xi[ör2,x2] xn

montre alors que g ^ c(yk) - r + 1. Compte tenu de (9), il en résulte que

\ky\z^ 4c(yk) - 2r + k

Mais comme le nombre r de composantes connexes du bord de E est par
construction au plus égal à k, on obtient finalement l'inégalité souhaitée.

Dans le cas général, une surface minimisante E se décompose en

composantes connexes Eß (ß 1, ...,a) et l'on a

I kylzI I ^ßY lz É k)
P=1 P 1

où chaque terme correspond à une composante, minimisante elle aussi. En

appliquant ce qui précède, on trouve donc

a

I kylz^ S 4c(y*ï>) - k
p t

a

L'inégalité évidente X c(y^ß) ^ c(y*) permet alors de conclure la preuve
ß i

de l'affirmation.

3.3. Quasi-morphismes et cohomologie bornée

Après avoir rappelé la définition de la cohomologie bornée, on étudie le

rapport entre les quasi-morphismes et le deuxième groupe de cohomologie
bornée.

L'espace vectoriel C„(r,R) (voir 3.1) est muni de la norme simpliciale, de

type Z1. Son dual, noté C£(r,R), qui est l'espace des applications bornées

F.Tn R, hérite donc d'une norme Z00 :

Il FII sup{|F(xi,..„x„) I; eT"}

Le complexe (^) de 3.1 donne ainsi par dualité topologique un complexe dont
l'homologie, avec sa semi-norme quotient, est par définition la

cohomologie bornée de T. Le dual algébrique de (^) définit quant à lui la

cohomologie usuelle //*(r,R) de T.
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On a appelé quasi-morphisme toute application f:V~* R dont le

cobord df est borné:

I df(x, y)!| f(x)-f(xy) + f(y) |< || || yeT)

Avec ce langage, le noyau de H2b(T,R)^ //2(r, R) est naturellement l'espace
des quasi-morphismes définis à l'addition d'un morphisme et d'une application
bornée près. En fait chaque classe de ce noyau contient un élément privilégié:
elle se représente de façon unique comme cobord d(p d'un quasi-morphisme
homogène (p(cp(x") «(p(x),xer, neZ).

Proposition 3.3.1 ([Be]).

1) Le noyau de H2b{T, R) -> H2(T, R) est isomorphe par le cobord à

l'espace des quasi-morphismes homogènes définis à l'addition d'un
morphisme près.

2) Tout quasi-morphisme homogène (p est constant sur les classes de
conjugaison (cp (xyx ~1

(p (x) ; x, y e T) et vérifie la formule
asymptotique:

dg>(x,y) lim - g>((xny"(xy) ~")) (xjer)
00 n

Preuve (voir [Be]). Si / est un quasi-morphisme, la suite (/(x"))„6n est
presque sous-additive:

I f(xm +")-f{xm) - f(x|^ H 1 (x e T ; m, n e N)

§duit (voir [P-S]) c

notée (p(x), vérifie l'inégalité

f(xn)On en déduit (voir [P-S]) que converge et sa limite (homogène!),

i <p(x) - Txi | <; ijyxji („ ^ i)
n n

En particulier,

(10) I <P(*) - /(*) | < 1 dId'où il résulte que d(.pet g?/représentent la même classe de H2b(F, R).
On remarque ensuite que xy"x~>-Z)est le bord de 2 simplexes

(fig. 12):
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(cylindre)

Figure 12

Ceci montre que g>(xynx~l) - cpO") est borné par 21| dq ||, donc

(p(xyx~ *) - (p(y) (homogène en y) est nul.
La formule asymptotique est aussi une conséquence de l'homogénéité.

Ecrivons d'abord la relation

dq>(x,y) lim - {(p(x") + <p{y") - (p((xy)")}
n-+ oo n

Comme xn + yn - (xy)n - xnyn(xy)~n est le bord de 3 simplexes, cette

limite est égale à lim - {(p(xnyn(xy)~n)}
n -* oo n

Les quasi-morphismes décrivent, par définition, le noyau de

H2b(T, R) ^//2(r,R), qui n'est qu'une partie de i/^(r,R). Cependant, dans

beaucoup de cas intéressants, tels que les groupes fondamentaux de polyèdres
finis, ce noyau est de codimension finie dans H\(r, R). De toutes façons, on

peut toujours décrire H2b(T, R) au moyen des quasi-morphismes définis sur un

groupe ad hoc:

Proposition 3.3.2. Tout groupe T admet une extension centrale

E^T qui induit une isométrie: H2b{V, R) ~ Ker (H2b(E, R) H2(E, R))
(en fait ce noyau est égal à H2b(E, R) tout entier).

Preuve. Ecrivons T comme quotient d'un groupe libre L par un sous-

groupe normal i?. On a alors une suite exacte

0 R/[L} R] -> L/[L} R] L/R T^l
Cette suite définit une extension centralep:E L/[L, R] -+ T, qui dépend du

choix de la présentation de T.
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Comme le noyau de l'extension E est abélien (donc moyennable) on sait

d'après un théorème général sur la cohomologie bornée ([Iv]), qutp induit une

isométrie i/^(r,R) « H2b(E, R). Pour établir la proposition, il suffit donc de

prouver que l'application p*: H2(Y,R) - H2(E, R) induite par p en

cohomologie usuelle est nulle.
Soit c un 2-cocycle normalisé sur T, à valeurs réelles; le cocyclep*c définit

une extension centrale n: % -* E. Plus précisément, est l'ensemble R X E
muni de la loi de groupe:

(a,X)(Ç>,Y) (a + $ + c(p(X),p(Y)),XY) (a,ßeR et AT, YeE)

et n est la projection R x E ^ E. Il est facile de vérifier que l'extension

pon: r est centrale. Comme L est un groupe libre, il existe un

morphisme de groupes L -> E au-dessus de Y ; puisque l'extension pon est

centrale, ce morphisme induit un morphisme u: E au-dessus de T. On a

donc

u(X) (a(X),a(X)X) a(X) e R, a(X) e Kerp

En explicitant le fait que u est un morphisme de groupes, on trouve la relation

a (AT) a(X) + a (Y) + c(p(X),p(Y)) (X, YeE)

c'est-à-dire p*c - da.
Il est intéressant de noter que dans notre situation, l'isométrie p% : H2b(T, R)

« H2b{E, R) admet un inverse explicite. Cela est dû au fait que le noyau A de

l'extension E est central. En effet si cp est quasi-morphisme homogène E R,
on a d'après la formule asymptotique (Prop. 3.3.1-2)):

dy(X, a) 0 X e E, a e A

On en déduit que dq>(aX, bY) dq>(X,Y) pour X, Y e E et a, b e A. Cette
propriété permet d'associer à tout quasi-morphisme homogène (p sur E un
2-cocycle borné sur Y en posant

(11) c{x,y) dq>{X, Y) xjeT,
où X et Y sont des relevés quelconques de x et y dans E. D'où une application
H2b(E, R) /f^(r,R) qui est visiblement inverse à droite de p%.

Remarque. Le fait que la semi-norme sur H2b(Y, R) est une vraie norme
([M-M], [Mit]) apparaît clairement dans notre contexte. Pour une classe c
représentable par le cobord df d'un quasi-morphisme, la relation (10) implique
Il <*<P II < 4 II df I, indépendamment du choix de / (rappel: cp(jc) lim f(xn)/n);
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donc, si la semi-norme de c est nulle, cp est un morphisme et c est nulle. Le cas

général résulte ensuite de la proposition 3.3.2.

3.4. Longueur stable et quasi-morphismes

Dans ce paragraphe, le dual de l'espace des bords 2?i(r,R) est décrit au

moyen des quasi-morphismes : le théorème de Hahn-Banach permet alors (avec

la proposition 3.2) d'exprimer la longueur stable par une formule de dualité:

Proposition 3.4. Pour tout élément y de Y' on a la relation

AII II
I I

4 II yII sup J-ttî/ \\df\\

où fdécrit l'ensemble des quasi-morphismes et tp(y) lim -/(y")-
n~* co n

Ce résultat montre en particulier que la minoration de la longueur des

commutateurs par les quasi-morphismes (lemme 1.1) est optimale pour la

longueur stable.

Preuve. L'espace des bords Bi(Y,R) a été considéré comme

C2(r,R)/Z2(r,R) avec la norme quotient: son dual est l'espace des quasi-

morphismes / modulo les morphismes, muni de la norme || df\. D'après le

théorème de Hahn-Banach, la norme d'un élément quelconque b de Bi(Y,R)
est donnée par

m t m

I m i

b \\B sup
/ \df\

Considérons maintenant un élément y de F'. La relation entre || y || et || y ||fi

n n
I 9 (Y) I

(prop. 3.2) et l'inégalité (10) montrent alors que 4 || y || - sup est

f II df\
borné par une constante, donc nul par homogénéité.

il
seulement si la longueur stable est nulle sur Y'.

Corollaire 1. L'application Hb(Y,R) -> 7L2(r,R) est injective si et

En effet, la longueur stable est nulle si et seulement si tout quasi-morphisme

homogène (p est nul sur Y', ce qui équivaut, d'après la formule asymptotique,
à ûf(p 0.
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Corollaire 2. La longueur stable d'un groupe moyennable est nulle.

On pourrait invoquer le fait que la cohomologie bornée d'un tel groupe
est triviale ([Gr 2] ou [Iv]). Cependant il est facile de vérifier (voir [Be]) à l'aide

d'une moyenne que tout quasi-morphisme sur un groupe moyennable est

somme d'un morphisme et d'une application bornée.

Remarque. Il existe d'autres groupes ayant || || 0; ainsi SL3(Z) n'est

pas moyennable et vérifie c < oo ([Ne]).

3.5. Longueur stable et genre des classes de H2(r,Z)

La formule de Hopf (voir ci-dessous) donne une description géométrique
des classes de H2(T, Z) au moyen des surfaces fermées: pour tout élément a
de H2ÇT9Z), il existe une surface fermée Sg de genre g et un morphisme de

n\(Sg) dans Y qui envoie la classe fondamentale de Sg sur a. Le genre de a
est le genre minimal d'une telle surface; on le note g(a).

Il se trouve que le genre d'une classe s'interprète comme nombre minimal
de commutateurs grâce à l'extension de Hopf (12); je remercie Etienne Ghys
qui m'a expliqué ce fait. Cela permet d'illustrer la formule de dualité du

paragraphe 3.4 en retrouvant l'égalité suivante, qui relie le genre des classes

et la norme simpliciale || \\H de H2(Y, R):

Proposition 3.5. ([B-G] prop. 1-9). Pour toute classe a e H2(Y,Z),
on a la relation

n -* oo n

Preuve. Si r est égal à L/R, où L est libre, on a une extension centrale

(12) O^Rn[L,L]/[L,R] -> [R]*= r -* 1

dont le noyau est isomorphe à H2(T, Z) (c'est la formule de Hopf). Noter que
pour un groupe parfait, l'extension ci-dessus est l'extension centrale universelle
de r ([Mil 2] §5). L'isomorphisme R n [. ]« H2(T,Z) peut s'expliciter

comme suit (voir [Brw] p. 46). Considérons la 2-chaîne du groupe libre
L définie par

z(AuBu—,Ag,Bg)
g

E {(Q_I,Ni) + (C,_1^/,5/) - (C,-_ r1,5,) - (C,,Bf)}
i 1

ou g e N*,A,,Bi e L et C, [Al,Bl]... [A,.B,] i 1, ...,g (fig. 13).
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Figure 13

(g 2)

Le bord de z(AuBu ...,Ag,Bg) est égal à 1 - [AUB{] [Ag,Bg]. On obtient
l'isomorphisme de Hopf en associant à tout élément [Al9Bx] [Ag,Bg] de

[L, L] n R le 2-cycle z(ax, b\,ag, bg) sur r, at et bt étant les projections de

Ai et Bi dans T.

Ainsi le second groupe d'homologie H2(T, Z) apparaît comme sous-

groupe du groupe dérivé E' de E L/[L,R], et le genre d'une 2-classe a
(resp. lim (g(na)/n)) est exactement sa longueur des commutateurs (resp. sa

longueur stable) dans E, quand on la considère comme élément de E'.
La (semi-)norme simpliciale de H2(T,R) s'exprime par dualité grâce au

théorème de Hahn-Banach:

où c décrit H2b(T, R). D'après 3.4, il en est de même pour la longueur stable

de a, vue comme élément de E' :

où O décrit Ker (H2b(E, R) H2(E, R))(= H2b{E3 R)), || O || désigne la norme
naturelle de O dans H2b(T, R), et dip son représentant canonique (prop. 3.3.1).
Pour établir la proposition, il suffira d'identifier les éléments respectifs de ces

deux formules de dualité. On a vu en 3.3 que O et c se correspondaient par
isométrie. De plus si l'élément y [A\,B\\ [Ag,Bg] de E' correspond à la

c(a)
(a e//2(r, Z))

4 I a I sup
q>(a)

Il <E) Il
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classe a z(aubu ...,ag,bg) (#/,£, sont les projections de At,Bi dans F et

[aubi] [ag,bg] 1), alors d'après 3.3 (rel. (11)):

c(a) dip(z(AuBu ...,Ag,Bg)) (p(8{z(^4i ,BX, ...,Ag,Bg)}) ~ (p(y)

On en conclut que 4 || [Ai,B{] \Ag,Bg\ || =* J a \\H, ce qu'il fallait
démontrer.

3.6. LE THÉORÈME DE DUALITÉ

Rappelons que chaque classe c du nqyau de //^(r,R) -» //2(T,R) possède

un représentant privilégié d(p où (p est un quasi-morphisme homogène; on peut

se demander s'il existe un rapport entre || dip || et la norme || c ||ö de c dans

//^(r,R). Pour cela considérons l'espace K des quasi-morphismes homogènes

définis à l'addition d'un morphisme près. L'identification de K avec

Ker(//^(r,R)->//2(r,R)) provient de la décomposition en somme directe

(lire quasi-morphismes pour q-m):
{q - m) {q - m homogènes} © {q - m bornés}

On voit ainsi que || dip || est une norme induite, tandis que || c ||^ est une norme
quotient. Comme le montrent la définition de || c \\b et la relation (10), ces

deux normes sont comparables:

Il c lié ^ Il dtp II 4 II r lié •

Mais en estimant la longueur des commutateurs de l'élément xnyn{xy)~n qui
intervient dans la formule asymptotique (lemme 3.6), on trouve une inégalité
plus fine:

Il dip II ^ 2 [I e \\b

On verra des exemples où || dip || 2 J c |& (3.8).
Cependant il y a une autre norme sur K, définie par

I cp ||r sup{| cp|X y]\;x,jeT}((peAT).

L'intérêt de cette norme naturelle réside dans le fait qu'elle est reliée à la
longueur stable par dualité:

Théorème de dualité. Pour tout élément y de T' on a la relation

h H

1 I<p(Y)I
Il y II - sup -——-.

2 cpeK II (p ||r

Nous commençons par établir le résultat suivant qui est le point clé de la
démonstration:
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Lemme 3.6. Dans le groupe libre L(u,v) on a

c(unvn(uv) ~n) E* |———j (n ^ 1)

où E* est la partie entière supérieure.

Preuve. L'élément un + lun + l(uu)~n~l se réduit cycliquement à

unun(uu)~n. Tout symbole associé à ce dernier élément aura au plus 1 classe

à 2 sommets et 2 classes à 3 sommets, les autres classes comprenant au moins
4 sommets. Cela conduit à l'estimation:

c(unvn(vu)~n) ^ n/2

Pour établir une inégalité dans l'autre sens, il suffit d'examiner le cas où n

est pair puisque

u2k+ \v2k* l(uu) ~2k~ 1 u(u2kU2k(uu)~2k)[ü~l ,(vu)2k+l]

Posons n 2k et considérons le symbole ok:

ABGXG2... G21C-3CDH1H2... H21C-3EF/ (milieu du mot)
U U U U U U V V V U V V

a ~ lE~1 G-u'_ ,H-kl_41Gr -1 c - 1//2V_ 3G2V_ 4... Gï1h; 1b -1 F-*
u~l v~l u~l u~{

1

u~lu~lu~l u~l u~l u~l
I

u~l v~l u~l v~l

(le bloc I I est formé de k fois u~lu~l). Ou encore, géométriquement:

F - 1 .A
u °S^B

U A,

\G/v"1 U \
CW -1ru 1 U ^

dIjv1 V ]

V"1
G1 \ -1v 1

u"1

V êLr i
v

V

-WE

(k - 2)

D

Hi

Figure 14
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On identifie deux à deux toutes les arêtes possibles (i.e. de façon compatible

avec le mot unvn(vu)n) par la symétrie centrale; les autres arêtes sont

identifiées par la symétrie d'axe vertical (fig. 14). Ce symbole ok comprend

une classe (x) de 2 sommets (CD, D~xC~l), 2 classes O et • de 3 sommets

(AB, B~lF~1,FA ~1 et F~XA,A ~XE~X ,EF) et 2k-2 classes de 4 sommets.

Son genre est donc égal à k.

Le lemme permet de comparer la norme || cp ||r avec

Il d(p ||r sup{| dcp(x,y) |;x,yeT}

et même avec la norme de d(p restreint au groupe dérivé:

Proposition (égalité des normes). Pour tout cp e K:
Il d(p llr — Il (p ||r — Il dip ||r'

Preuve. Sachant que (p est homogène et constant sur les classes de

conjugaison, on a

(PfeLD - d($>(xyx~l ,y~l) (x,yeT)

d'où II (p ||r ^ 1 dip ||r. D'après le lemme 3.6, l'élément x2k+l y2k+l(xy)~2k~x
est le produit de k commutateurs; il suit que

ip(x2k+ly2k+l(xy)-2k~l) ^ k || (p ||r + (k- 1) || c/(p ||F'

La formule asymptotique montre alors que

I dq>{x,y)|^ 1
(1 (p ||r + Il dip ||r'

Comme || cp ||r et ] c/ip j;-. sont majorés par j| c?cp ]|r. on en déduit l'égalité
cherchée.

Preuve du théorème. Dans la formule asymptotique on peut remplacer cp

par / car (p - / est borné:

cfcp (x,y)lim -
n oo ïl

Si / est antisymétrique, la quantité f{xnsemajore comme en 1.1

Par II df\(Ac{xny"(xy)-n)- 1), et on voit d'après le lemme 3.6 que

I d(p||r ^ 2 I c?/||.

Rappelons maintenant que la longueur stable s'exprime par dualité (Prop. 3.4):
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m H (D(Y) I

4 y sup (y e rr)1 " f unj

Grâce à la remarque 2) de 1.1, cette égalité est encore valable quand / décrit
seulement l'espace des quasi-morphismes antisymétriques. Mais on a vu que
Il (p|r ^ ||cftp ||r ^ 2 I df\% d'où

h H ^
1 MY)!

H Y II ^ - sup
2 q,eK II cp ||r

D'autre part, on a clairement:

I <P(y) I -1 (p(Y") I ^ - {c(y") I (p ||r + (c(yn) - 1) I d(p ||r}
n n

dont on déduit l'inégalité

I <P(Y) I ^ 2 y I H (p ||r (<$ eK,y eT')

qui permet d'achever la preuve du théorème de dualité.

Remarques.

1) Soit Qy le quotient de par l'adhérence du sous-espace
engendré par {yn - ny; y eT', n eZ}. Comme Kr est naturellement le dual
de Qt, on peut reformuler le théorème de dualité: || y \\Q 2 || y ||.

2) La proposition «égalité des normes» montre que || (p ||r ne dépend que
des valeurs de cp sur le ft-ième groupe dérivé T(Aî) de T, n aussi grand que l'on
veut; en d'autres termes, l'espace Qr est engendré par les images des

commutateurs d'éléments de r(rt), n aussi grand que l'on veut. On retrouve
en particulier le fait que la longueur stable des groupes résolubles est nulle.

3) D'après cette même proposition, la restriction définit une injection
isométrique (ÄTr, Il 9 ||r) (Kv >

Il 9 IrO- C'est l'analogue d'une propriété
générale de la cohomologie bornée: si le quotient de F par un sous-groupe
normal est moyennable, alors H2b(T, R) -» H2b(Ti, R) est une injection
isométrique ([Gr 2]).

3.7. Propriétés de la longueur stable

On a regroupé dans ce paragraphe quelques propriétés générales de la
longueur stable. La première découle du lemme 3.6:
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Proposition 3.7.1. Pour tout groupe r on a l'inégalité:

II Y1Y2 II < Il Yi II + II Y2 II + - (Yi »Y2er')

Preuve. Elle est immédiate à partir du lemme 3.6.

Cette inégalité est optimale; pour le voir il suffit de prendre

T L(u,v9w,t), Yi Y2 [w,t] et d'appliquer le théorème 1 de la

partie 1. Plus généralement, on a le résultat suivant:

Proposition 3.7.2. Soit Tx et T2 deux groupes et r ri*r2 leur

somme libre. Alors pour tout yx ^ 1 dans Tx et tout y2 1 dans T2

on a l'égalité

„
1

II Y1Y2 ||r Il Yi llrj + II Y2 Ilr2 + ~ •

Commentaire. Les éléments (Y1Y2)" ef Y1Y2 diffèrent par n/2 commutateurs

environ (lemme 3.6); la proposition signifie que ces commutateurs sont

nécessaires à cause de l'indépendance des deux facteurs Tx et F2.

Preuve. D'après l'inégalité évidente || y, ||r ^ || Y/ |r; (qui est d'ailleurs une

égalité) et la proposition 3.7.1, on a la relation

il Y1Y2 ||r ^ Il Yi llr-t + II Y2 ||r2 + ~ •

Il reste à établir l'inégalité inverse. Pour cela, on s'appuiera sur l'interprétation

de l'espace Kr comme dual de Qr (voir 3.6, remarque 1) et sur le

théorème de dualité. Rappelons que Qr est le quotient de Bi(T, R) par
l'adhérence du sous-espace engendré par {yn - ny;y eTf, n eZ}. On observe

que Qr, et Qr2 s'injectent dans Qr et sont en somme directe dans cet espace.
On aura besoin d'un résultat préliminaire:

Affirmation. L'image de 9(yi,Y2) n'appartient pas à la somme directe

ôr, © Qr2 dans Qr.
Pour prouver ce fait, il suffit de construire une forme linéaire sur Qr, i.e.

un quasi-morphisme homogène sur T, qui s'annule sur QTl © QTl et de

valeur non nulle sur 6(yi ,y2). Tout élément x de T s'écrit de manière unique

x xxyx x2y2...xnyn

où xi et fi sont des éléments distincts de 1, sauf peut-être xx ou yn, appar-
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tenant respectivement äT{ et r2. On pose alors, en s'inspirant de la définition
des quasi-morphismes de Brooks (voir 1.1):

f(x) 0{x) -
où $(x) est le nombre d'occurences de yxy2 dans l'écriture canonique de x.
Par la même vérification formelle qu'en 1.1, / est un quasi-morphisme. Le

quasi-morphisme homogène associé cp(x) lim (f{xn)/n) fait l'affaire car il
n-> <x>

s'annule sur Iù et r2 et 9(6(71,72)) <^9(71,72) ~ - 1.

Revenons à la démonstration de la proposition. Soit s un réel > 0. D'après
le théorème de dualité, il existe un quasi-morphisme homogène 9/ sur Tt de

norme 1 tel que

9/(7/) ^ 2 I 7/ flr,- - s (/= 1,2)

Notons D la droite de Qr engendrée par l'image de 6(71,72). On définit une

forme linéaire de norme 1 sur QTl © QYl © D en posant

<P(<7;) si q, e Qr.(/=1,2) et cp(ô(y,,y2)) - 1
•

Grâce au théorème de Hahn-Banach, 9 se prolonge en un élément 9 de Kr de

norme 1. Par suite

„„Ii- 1 1
II T1Y2 ||r ^ - I 9(7i72) I - I 91 (71 + 92(72) + 1 I ^ Il 7i Hr, + Il 72 ||r2 + ~ - £

On termine en faisant tendre e vers 0.

Exemple. Dans le groupe libre L(ux, Uy,..., uk,uk) on a:

k 1 k jç J

Il II vi\Pi II - H I PiI+ —r~ 6 z> •

/ 1 2 / 1 2

Ce résultat pourrait aussi s'établir en utilisant la méthode des symboles de la

partie 2.

Voici une autre propriété de la longueur stable:

Proposition 3.7.3 (d'annulation). Supposons qu'il existe s > 0 avec

pour tout (x,y) e T2

h
1

lx,y] K - ~ £ •

2

Alors la longueur stable de T est nulle.
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Preuve. Soit (p e Ket(x„), (y„) deux suites d'éléments de T telles que

1 (p I lim | (p I
•

ce

Si (p est non nul, l'inégalité | cp(y) | ^ 2 || y || || (p ||r impose

h H
1

lim II [x„,yn\ Il <= -
n -* oo Z

ce qui est exclu par hypothèse. Ainsi || (p ||r 0, et par dualité la longueur
stable de T est nulle.

3.8. Exemples de calcul de longueur stable

Comme les morphismes de groupes <\>: -> r2 diminuent la longueur des

commutateurs et la longueur stable:

<t2(<Ky)) < cTl(y) et I 0(y) ||r2 ^ Il Y ||r, (Y eTi)

il est important de disposer de groupes où la longueur des commutateurs est

connue. C'est le cas du groupe H des homéomorphismes h de R vérifiant
h(x + 1) h(x) + l(xeR), pour lequel les produits de commutateurs ont été

bien étudiés dans [Wo] et [E-H-N]. Par exemple ([Wo], [E-H-N]) la translation

d'amplitude t est produit de p commutateurs si et seulement si:

| 11 < 2p - 1

Plus généralement, un produit h de p commutateurs de H est caractérisé dans

[E-H-N] par la propriété suivante:

inf (h(x) - x) < 2p - 1 et sup (h(x) - x) > 1 - 2p
xeR xeR

Le groupe H possède un quasi-morphisme célèbre, le nombre de translation
x, défini indépendamment du réel x par:

x(h) lim - —
~ *

n -* oo n

Le nombre de translation est homogène, et il détermine la longueur stable du
groupe H:

Proposition 3.8. Pour tout élément h de H: j h ||^ i] x{h) |.
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Preuve. Le nombre de translation est l'unique quasi-morphisme
homogène de H (à morphisme et homothétie près), puisque H2b(H, R) est égal
à R(é/t) ([M-M]). On applique alors le théorème de dualité.

Une autre preuve plus directe consisterait à utiliser le critère de [E-H-N]
cité plus haut.

Revenons au cas du groupe libre L L(u, v) et calculons la longueur
stable de [u,[u,v]\. Pour cela considérons la combinaison de quasi-
morphismes de Brooks de L(u,v] définie par

./ fuvu~\ ~t~ fu ~ 1 y - 1
m - 1 fu~lvu fuv~lu •

On vérifie comme en 1.1 que || df\\ 2. L'élément [u, [u, v]\n est conjugué à

0uvu-lv~lu-luuv~l)n et f ((uvu~iu~lu~lvuu~l)n) 4n - 1; d'où
(lemme 1.1) c([u, [u,v]]n) ^ E(n/2) + 1. Finalement, on conclut que

Il k [uM IL i/2

Voici un exemple de calcul de longueur stable par dualité. Soit / fuu le

quasi-morphisme de Brooks associé à uv dans L L(u,v). Alors || J/|k 1>

donc I dip I J cp ||l ^ 2. Mais (p([uu2,u~lu]) 2, et comme

| (pOw2, u~lv]) k 2 II (P ||L|| [uu2,u~lu] \\L

on voit que || [vu2,u~lv] ||L -
De plus la norme de la classe c de d(p dans H\(L, R) est égale à 1. Pour

cet exemple, on a donc || dq J — 2 || c ||ö.

On a constaté que la longueur stable peut prendre des valeurs arbitraires

(dans H par exemple). Il est également facile de construire un groupe
dénombrable Y avec un élément y de longueur stable rationnelle donnée:

1

r <u,v,w,t\[u,v]p= [w, t] > [u, u] r — (pe N*)
2p

(pour la minoration prendre un morphisme de Y dans H). Cependant, pour
les groupes libres, elle est minorée par 1/6 (2.6); les résultats précédents

suggèrent la question suivante, laissée au lecteur comme conclusion:

Question: la longueur stable d'un groupe libre est-elle à valeurs demi-

entières?
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