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LONGUEUR STABLE DES COMMUTATEURS

par Christophe BAVARD

INTRODUCTION

A tout groupe I' on associe classiquement son groupe dérivé I': c’est
le sous-groupe de I engendré par [‘ensemble des commutateurs
[x,y] = xyx~'y~!(x,yel). Un élément donné y de I'" est de plusieurs
facons possibles le produit de commutateurs. On appellera longueur des
commutateurs de y le nombre minimal de commutateurs nécessaires pour
exprimer y; cet entier sera noté cr(y) ou simplement c(y).

En 1975, C. Edmunds a montré que la longueur des commutateurs est
effectivement calculable dans les groupes libres [Ed] (voir aussi [Gr 1] p. 212).
Un peu plus tard, R. Goldstein et E. Turner [G-T], ainsi que M. Culler [Cu]
retrouvaient ce résultat en s’appuyant sur la topologie des surfaces; on propose
dans la partie 2 une version élémentaire de leurs algorithmes. En particulier
la propriété suivante ([Cu]) répond a une question de M. Newman ([Ne]): dans
le groupe libre a deux générateurs u et v

(1) Cc(uu]) =E@m/2) + 1 (neN¥*)

ou E est la partie entiere. Par exemple [u,v]? est le produit de deux
commutateurs seulement, comme le prouve I’identité remarquable ([Cu])

[u, v]? = [wou =1, 0~ 'uvu =2] [v ~'uw, v?] .

Il est intéressant d’étudier le comportement global de la longueur de¢
commutateurs; on peut en particulier se demander si, pour un groupe donné
I', cette fonction est bornée sur I''. Posons

c(I') = sup{c(y);yel''}.

Pour le groupe libre & deux générateurs, on a ¢ = oo (cela résulte, par exemple,
de (1)). Cette quantité a été tres étudiée pour les groupes linéaires des anneaux
commutatifs, ainsi ¢(SL,(Z)) = o tandis que ¢(SL,(Z)) < o si n > 3 ([Ne]);
voir [D-V] pour de nombreuses références. Par ailleurs S. Matsumoto et
S. Morita ont montré que c(I') peut contenir une information sur la
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cohomologie bornée a valeurs réelles de I notée H¥(I',R): si I' est unifor-
mément parfait (i.e. IT'"=T et ¢() < o) alors I’application naturelle
‘Hf,(F,R)HHZ(F,R) est injective ([M-M]). Rappelons que Hj}(I',R) est
I’homologie du complexe

d=0 1 d 2
0->R > CLI) > CXD) — ...

‘01‘1 C,(I') désigne I’espace des fonctions bornées de T'” dans R, avec pour
f € Cy(T)(n = 1) la formule habituelle:

df(xls °~-,xn+1) = f(x2s ~-°9-xn+l)

n
+ E(_ DI, s XiXists ooy Xna1) + (= D) (X, 0 X0)
i=1
Afin de préciser cette relation entre commutateurs et cohomologie bornée on
définit la /ongueur stable d’un élément vy dans I'":
.c(ym
[ v = lim :

n— oo n

Il faut noter que d’apres 1’inégalité

c(viv2) <c(y1) + clyz)  (vi,v2€I)

la suite c(y”) est sous-additive, donc la limite ci-dessus existe (voir [P-S,
partie I, exercice 99]). Cela étant, on établira le

THEOREME. L’application H f,(F,R) - H*(I',R) est injective si et
seulement si la longueur stable est nulle sur T .

La connaissance de H ;‘;(P,R) nous renseigne donc sur la longueur stable:
celle-ci est toujours nulle pour un groupe moyennable (par exemple résoluble)
puisque sa cohomologie bornée est triviale ([Gr 2] ou [Iv]).

Le noyau de H ?,(I“, R) - H?(I', R) est de codimension finie pour une large
' classe de groupes intéressants, tels que les groupes fondamentaux de polyedres
compacts. Quand la longueur stable est nulle, on voit donc que I’espace
H,(T,R) est «petit».

‘ C’est la notion de quasi-morphisme qui relie commutateurs et cohomologie
" bornée. Une application f:I'=> R est un quasi-morphisme si
‘ fxy) — f(x) — f(y) est borné (x, yel'). D’une part, la donnée d’une telle
- application permet de minorer la longueur des commutateurs, selon une
' méthode qui remonte a Milnor [Mil] (voir 1.1); d’autre part les quasi-
~morphismes décrivent le noyau de H ‘;;(I“,R) — H*(I',R) puisque
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fxy) — f(x) — f(») est le cobord de f. En fait ce noyau est isomorphe par
le cobord a l’espace K des quasi-morphismes homogenes ¢:1 = R (i.e.
o(x") = ne(x), xel', neZ) définis a I’addition d’un morphisme prés (voir
[Be] ou 3.3). La longueur stable apparait alors comme une version duale d’une
norme naturelle sur K:

| ol = sup{| o (Ix, ¥ |; x,yel'}.

Plus précisément:

THEOREME DE DUALITE. Pour tout élément vy de T’ on a la relation

I Jew|
[v]= sup .
2 ek |0

Ce résultat met en évidence la longueur stable comme une quantité naturelle
du point de vue de la cohomologie bornée, puisqu’elle est déterminée par les
quasi-morphismes. La longueur des commutateurs, quant a elle, est seulement
minorée par les quasi-morphismes (voir 1.1).

Cet article comprend trois parties. La premicre contient une preuve
élémentaire de la formule (1) ainsi qu’une petite généralisation. Dans la
partie 2, on détermine la longueur des commutateurs dans les groupes libres;
on y considére également les produits de carrés car ils s’interprétent topologi-
quement comme les produits de commutateurs (par des surfaces). Enfin, la
troisiéme partie est consacrée a I’étude de la longueur stable; on décrit le
phénomene de dualité avec la cohomologie bornée et les propriétés qui en
découlent.

Je remercie Etienne Ghys pour ’intérét qu’il a porté a ce travail. Il m’a
expliqué que le genre des classes d’homologie de dimension 2 ([B-G]) s’inter-
prete comme nombre minimal de commutateurs. J’ai apprécié sa disponibilité
et ses judicieux conseils.

1. LONGUEUR DE [u,v]”.

L’objectif de cette partie est d’établir le théoréme suivant, qui généralise
la relation (1) de I’introduction:

THEOREME 1. Dans le groupe libre a 2k générateurs (k eN¥)

Ui, U; (lzl,,k)
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on a l’égalité:
c({[uy,v1] ... [ug,01}") = nk—1) + E(n/2) + 1 (neN*) .

Nous commencerons par traiter le cas ou & = 1 en minorant la longueur
de [u, v]” (1.1), puis en la majorant (1.2); I’énoncé général du théoréme 1 s’en
déduira alors facilement (1.3). Signalons que la relation (1) sera retrouvée
indépendamment au §2.7. Enfin, il nous a semblé intéressant de donner
une décomposition explicite de [u,v]” en produit de E(n/2) + 1 commu-
tateurs (1.4).

1.1. QUASI-MORPHISMES ET COMMUTATEURS

Nous allons voir que la donnée d’un quasi-morphisme permet de minorer
la longueur des commutateurs; un bon choix dans le cas du groupe libre
L(u,v) donnera alors la minoration cherchée pour c([u, v]7).

On appellera défaut d’un quasi-morphisme f la borne supérieure de

| f(xy) — f(x) — f(¥) | pour x et y dans T.

LEMME 1.1. Soit f:T = R un quasi-morphisme antisymétrique

(iie. f(x 1)Y= — f(x),xel) de défaut D. Alors pour tout élément v
de T’
1l fo) |
cy)yz—-{———+1].
() 4( 5

En effet si v est le produit de £ commutateurs, f(y) est égal, a (4k — 1)D pres,
a une somme de 4k termes qui s’annulent deux a deux par antisymétrie. D’ou
’inégalité | f(v) | < (4k - 1)D.

Cette observation apparait déja dans [Mil 1].

Remarques.

1) On peut toujours antisymétriser un quasi-morphisme suivant la formule
172(f (x) — f(x~1)). Cette opération n’augmente pas le défaut.

'2) L’existence d’un quasi-morphisme non borné sur I'” implique que ¢(I') est
infini.

Le lemme indique clairement la méthode pour bien minorer c(y): il s’agit
“de trouver un quasi-morphisme de petit défaut et qui prend une grande valeur
sur .

Voici maintenant des exemples intéressants, dus a R. Brooks ([Brk]), de
‘quasi-morphismes du groupe libre L = L(u,v) (signalons que B. Johnson




LONGUEUR STABLE DES COMMUTATEURS 113

avait construit auparavant un quasi-morphisme du groupe libre L: voir
[Jo] p. 38).

Etant donné un mot réduit M en u et v, on note Zy(x) le nombre
d’occurences de M dans 1’écriture réduite d’un élément x de L et on pose

Su(x) = Opx) — Op-1(x) .

Vérifions que fi est un quasi-morphisme. Soit X et Y deux mots réduits.
Supposons d’abord que XY est aussi réduit; on a alors:

fuXY) = fuX) + fu(Y) + 8u(X, Y)

ot 8,,(X, Y) provient des occurences de M et M ~! situées «a cheval» sur X
et Y, donc | §(X, Y) | est au plus égal a long M — 1.

De facon plus générale X et Y s’écrivent respectivement X'A et A 1Y’
(avec XY’ réduit) et on a:

FuX'Y") = fu(X) = fau(Y)
= 8u(X",Y") — 8y(X',A) — 8y(A-1L,Y").

Le défaut de f;, est donc majoré par 3(long M — 1).

Cette estimation est souvent améliorable sur des exemples; ainsi pour
M = uv, on constate qu’un seul des trois termes de droite dans (2) peut étre
non nul, donc le défaut de f,, est égal a 1. Posons alors

f = fuu T fuu—l + fLFlu—1 + j;)‘lu .

Le défaut de f est visiblement (par additivité) majoré par 4. Mais un examen
plus attentif de la relation (2) permet d’obtenir mieux:

(2)

Affirmation. Le défaut de f est égal a 2.

Preuve. Reprenons les notations ci-dessus: X = X’4A, Y= A-'Y’. On
exclut le cas évident ol I’'un des mots 4, X’ ou Y’ est vide. Comme f est inva-
riant par la permutation cyclique u > v = u-1—>0p-1 - y sur les lettres des

mots, on peut supposer que X' se termine par la lettre u. Il reste alors six cas
possibles:

X A A~y valeur de (2)
.U U u-t' v 2
.u vl v v 2
LU U ... o u”topat, -2
LU vl p-l —3
.U W, -1 u =3
.u vt v u . 2
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Il est maintenant facile d’établir I’inégalité c([u, v]") > E(n/2) + 1: on
~applique le lemme a f sachant que f([u,v]") = 4n — 1 et que D = 2.

1.2, [, v]™ EST LE PRODUIT DE E(n/2) + 1 COMMUTATEURS

Le nombre de commutateurs a une interprétation topologique simple que
nous allons exploiter.

Notons X, la surface orientable de genre g dont le bord est un cercle, et
71(2,,*) son groupe fondamental. On omettra le point-base * qui sera
toujours pris sur le bord. Bien que m;(X,;) soit un groupe libre, il sera
commode de le présenter de la facon suivante:

g
nl(zg) = <alybl)--'aag’bgac l ¢ = H [ai’bi] > .
i=1
L’¢lément c est représenté par le bord 0%, de %,.

Soit maintenant I' un groupe et X un espace topologique dont le groupe
fondamental est précisément I'. Etant donné un élément v de I'’, on a deux
propriétés équivalentes:

(i) vy est le produit de g commutateurs;

(i) 1l existe une application continue f:%X, = X telle que [f(0%,)
représente v.
Pour voir que (ii) entraine (i), il suffit d’écrire la relation homotopique

g
Y = falc) = Hl [f (@), fu(bI)] -
i
La réciproque, que nous n’utiliserons pas ici, s’établit facilement en construi-
sant f a partir de la description usuelle de X, comme quotient d’un polygone
a 4g + 1 cotés.

Puisqu’on étudie le cas du groupe libre L(u,v), on prend X = ¥£;, et on
choisit les générateurs u et v de sorte que [u, v] soit représenté par le bord
0X,. Par ailleurs, on observe que pour écrire [u,v]” comme produit de
- E(n/2) + 1 commutateurs, il suffit de le faire quand » est impair. La propriété
cherchée sera alors une conséquence du fait suivant:

PROPOSITION ([Ma 2], [H-S]). Si n est impair, il existe un revétement
de degré n de X, par X, avec g = (n+1)/2.
Admettons un instant ce résultat: le rev€tement doit envoyer 90X, sur

1’élément [u, v]”, qui se trouve du coup écrit comme produit de (n+ 1)/2
commutateurs! Cela achéve la preuve de I’inégalité c; ([u, v]") < E(n/2) + 1.
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Remarque. Cette méthode est utilisée dans [Min] pour montrer que
[u, v]%¢+1(keN*) est le produit de £k + 1 commutateurs.

Preuve de la proposition. Je remercie Alexis Marin qui m’a signalé la
démonstration ci-dessous.

Rappelons qu’a toute action a gauche de m,(X;) sur un ensemble a n élé-
ments {1, ..., n} on peut associer, par «suspension», un revétement de degré n
de X,. L’action par relévements des chemins dans la fibre du revétement est
alors opposée a I’action donnée: le revétement est connexe si et seulement si
cette action est transitive.

Il se trouve que pour # impair, la permutation cyclique (1,2, ..., 1) est un
commutateur dans le groupe &, des bijections de {1,2,...,n}:

(1,2,...,n) = (LLk+2,...,n)(1,2,....k+1) (n=2k+1)

produit de deux (k + 1)-cycles, le second étant conjugué a ’inverse du premier.
D’ou un morphisme de =w;(X;) dans &, qui envoie [u, v] sur (1,2,...,n). Le
revetement associé est une surface orientable connexe, et comme 1’action de
[u, v] est déja transitive, son bord est connexe. Il s’agit donc d’une surface
2., ou g est déterminé par la relation 1 — 2g = — n.

1.3. LONGUEUR DE {[u;,v,] ... [ug, 0] }"

Dans ce paragraphe, on prouve le théoréme 1 en s’appuyant sur le fait que
c([u,v]1”y = E(n/2) + 1. ‘

LEMME 1.3. Soit T wun groupe et v,8 deux élémentsde T'. On a
alors ’inégalité

c({y8}") < nc(d) + cly") (neN*).
La preuve est immédiate a partir de I’identité
(vd)" = (ydy ~1) (y?8y ) ... (y"8y ~")y" .
En appliquant ceci a
I'= L(u, 01, oty 00), v = [ug,00] et 8 = [up,00] ... [ug,04] ,
on obtient
c({lur, 0] ... [, 061} < nk—1) + E(n/2) + 1.

Pour etablir 'inégalité inverse, écrivons [u,0]2%-! comme produit
de k commutateurs du groupe libre L (u, v):
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[u: U]Zk_1 = [alybl] [aksbk] (a,',b,'GL(u, U))

'On peut alors définir un morphisme ®@: L(uy,v;...u,0) — L(u,v) en
~envoyant u; sur g; et v; sur b;(i=1,...,k). Si I’on note a I’élément

{[u19U1] eos [uk,Uk]}n ’
on a donc
c(a) = c(®(a)) = c([u, v]"**-Y) = nk—1) + E(n/2) + 1.
Ceci termine la démonstration du théoreme 1.
1.4. Voici une preuve complétement élémentaire et explicite de 1’inégalité

c([u,v]”) < E(n/2) + 1.
Afin d’alléger I’écriture, posons

(0, q) = “"([u,v]1?) = uiu,v]?u-7 (p,qel).

Ainsi
[ur,0l =1,n—-1)1,n—-2)...(1,1)(1,0) (neN¥*).
Considérons alors le produit de 2 commutateurs
A = [# 2w, 0127 ((w,0]?) ... “((w, 017 2) [, 0] u] [um, ]
c’est-a-dire

A=1,n-2)2,n-3)...(n-1,0)(-n+1,1)...
o (=3,n=-3)(-1,n-2)(1,n-3)1,n—-4)...(1,1)(1,0) .

(R)

Bien que le cas n impair suffise, commengons par examiner le cas n pair
- (n=2k) qui est plus simple. En notant

‘ A=(01,2k—-2)(2,2k-3)
| et B=0,2k—-4)4,2k—-5)...(—4,2k-4)(—3,2k-3)(—- 1,2k - 1)
on a

[B,A]A = 3,2k —4)(4,2k—5) ... (=3,2k—-4)(1,2k-5) ... (1,1)(1,0) .
On remarque que la valeur maximale de g dans les (p, g) a diminué de 2k — 2

pour A a 2k—4 pour [B, A]A; en répétant cette opération k — 1 fois on
obtient (2k, 0) = [u, v]** comme produit de £ + 1 commutateurs.

Exemple (n=4): [u,v0]* = [[u, 0] “(lv, u]*) “[v,ul, “[u,v]*(l,v]?)]
[0, 01 “(Q, 012) [, 013, 1] [, 0] .
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Passons au cas ou 7 est impair (n =2k + 1). La relation (R) s’écrit aussi

[C,u][u",v] = CD(l,n—-3)(1,n—4)...(1,1)(1,0)

avec C=(1,n-2)2,n-3)3,n—4)...(n—1,0)

et D=(-n+1,1)...(-4n-49H(-3,n-3)(-1,n-2).

Compte tenu de ’identité

[y, x1[x, z] = [yz ', zxz ']

on voit que I’élément

A =(=2k1)...(—4,2k—3)(—1,2k-2)(3,2k - 3)
|(2/{,0)(1,2/{—2)l‘(_1,2k—3)...(1,0)l

est le produit de 2 commutateurs. La transposition des blocs L_Jet L _ |
diminue la valeur maximale de ¢ de 2 unités, au prix d’'un commutateur; au
bout de k — 1 opérations analogues il vient

1

k —
A" = @2k, 0) [] [4;,B1(1,0) (A;,BieL,i=1...k—1).

i=1
On termine en conjuguant par (1,0).
Exemple (n =3).

[, 01° = [“[o, ulu ", [u, 0] ([, 01?)] 13, 0] -

2. LONGUEUR DES COMMUTATEURS DANS LES GROUPES LIBRES

Cette partie est consacrée a I’étude des produits de commutateurs et de
carrés dans les groupes libres. On y retrouve les résultats de [G-T] et [Cu] en
utilisant directement 1’algorithme de classification des surfaces.

2.1. Il convient avant tout de faire une petite remarque. Soit U un
ensemble et L(U) le groupe libre de base U. Si U est inclus dans V, on a pour
tout ¢lément y de L'(U):

crn(y) = cron(y) -

En effet toute relation dans L(V) se projette dans L(U) grice a la rétraction
évidente L (V) — L(U).

Donc, pour calculer ¢(y), on peut se restreindre au sous-groupe engendré
par ceux des générateurs qui interviennent dans [l’écriture réduite de 1.




118 C. BAVARD

2.2. Afin de fixer le vocabulaire pour la suite, on rappelle quelques faits
¢lémentaires concernant les surfaces fermées.

Considérons tout d’abord un polygone a 2n c6tés, ou arétes (n e N*); la
donnée d’un recollement par paires des arétes, avec des orientations spécifiées,
définit une surface fermée. Les identifications d’arétes peuvent étre codées par
un mot, appelé symbole, de la forme

?3) AP APy, e ed{l, .. 0}, =1 0u — 1,

VY
ou chacune des n lettres A.... A, apparalt exactement deux fois, avec
exposant 1 ou — 1; on écrit alors ce mot cycliquement, dans le sens direct,
autour du polygone et on identifie les arétes qui portent la méme lettre,
I’orientation étant dictée par les exposants g;.

Exemple.

Symbole: ABCA ~'B~-1C~!

FIGURE 1

1l sera important de penser qu’un symbole définit un élément du groupe
 libre L(A,,...,A,). Les surfaces considérées ici seront orientables (sauf
en 2.8) de sorte que chaque lettre A4; dans (3) apparait une fois avec exposant
+ 1 et une fois avec exposant — 1. En particulier le symbole (3) appartient au
groupe dérivé de L(A,...,A,).

| On appellera genre d’un symbole celui de la surface qu’il définit. L’identifi-
~ cation des arétes induit une partition des sommets du polygone en classes;
sl p désigne le nombre de ces classes, le genre g est donné par

: 1
-4 ’ g=£(ﬂ+1—p)-

 Ainsi dans ’exemple ci-dessus (voir fig. 1), on dénombre deux classes de
= sommets, figurées par O et ®, et le genre est égal a 1.
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Deux symboles sont équivalents s’ils définissent la méme surface. On
montre, dans la preuve du théoréme de classification des surfaces, que tout
symbole (orientable) de genre g > 1 est équivalent au symbole canonique

XXX YX, Y,
par découpages et recollements sur le polygone (voir [Ma 1]).

Exemple. ABCA-'B-'C-! (genre 1)

(a): On coupe suivant X et on recolle suivant A4.

(b): On observe que C et B forment une seule aréte Y.

FIGURE 2

2.3. SYMBOLES ASSOCIES ET LONGUEUR DES COMMUTATEURS

Fixons un produit de commutateurs y d’un groupe libre L = L(u;,u,,...).
Puisque la longueur des commutateurs est invariante par conjugaison, on peut
supposer que y admet une écriture cycliquement réduite, disons de longueur
usuelle 2n. Un symbole 6 = A} ... A7?" de longueur 2n est dit associé a vy
si une substitution convenable de certains des générateurs de L (ou de leurs
inverses) aux A; définit un morphisme de L(A;, A,,...) dans L qui envoie ¢
sur y. Voici par exemple deux symboles associés a [u, v]3:

ABA-'B-'CDC-'D-'EFE-'F~-! par A,B,C,D,E,F > u,0,u,0,u,v
ABA - 'CDEFB-'F-'C-'D-'E-! par A,B,C,D,E,F — u,v,0~ ', u,0,u-"'.

Le nombre de symboles associés & un élément donné est évidemment fini. Les
algorithmes de [G-T] et [Cu] peuvent alors se formuler ainsi:
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| THEOREME 2. La longueur des commutateurs c(y) dans un groupe
libre est égale au genre minimal des symboles associés @ .

Exemples.

1) La longueur des commutateurs d’un symbole est égale & son genre: par
exemple c([u;, 0] ... [uk,0¢]) = k dans L(uy,v;, ..., u;,0¢) ([L-S] p. 55).

2) Eléments de petite longueur.

3 Quand la longueur usuelle (notée 2n) de v est petite, il est facile d’estimer le
- nombre de classes de sommets et leurs cardinaux. On en déduit les résultats
- suivants:

Si2n = 6, y est toujours un commutateur puisqu’un symbole de longueur
6 est de genre 1; par exemple wowu~'v-'w=! = [uv, w] et [u,v][v, w]
= [uw =1, wow~1].

Si2n = 8, alors c¢(y) = 1 ou 2, et c(y) = 1 si et seulement si y contient un
sous-mot xy de longueur 2 et son inverse y ~!x 1.

Si 2n = 10, alors c(y) = 1 ou 2, et c(y) = 1 si et seulement si y contient
- deux sous-mots de longueur 2 (ayant peut-étre une lettre commune) et leurs
inverses.

2.4. DEMONSTRATION DU THEOREME 2
Soit m le genre minimal des symboles associés a v.

- Démonstration de c(y) < m.

Pour tout symbole ¢ associé a v, il existe par définition un morphisme qui
envoie o sur v. Il suffit donc de montrer qu’un symbole (orientable)
ocelL(,,...,A,) de genre g est le produit de g commutateurs de
- L(A,,...,A,). On observe pour cela que les opérations géométriques
- effectuées sur les polygones pour réduire le symbole se traduisent algé-
 briquement. Ces opérations sont de deux types (voir [Ma 1]): éliminer une paire
 d’arétes adjacentes AA !, et couper puis recoller. La premiére revient a
 simplifier le symbole comme mot en les A4;; couper revient a remplacer une
- portion du symbole par une nouvelle lettre, et recoller suivant 1’aréte étiquetée
A, revient a éliminer A;. Le nouveau symbole défini par chacune de ces trans-
~ formations s’envoie donc sur I’ancien par un morphisme de groupes. Et en
mémorisant ces changements de variables au cours de la réduction du symbole,
on peut exprimer le symbole canonique [X,, Yi] ... [X,, Y,] au moyen des
- lettres 4; du symbole intial o, ce qui explicite ¢ comme produit de g
commutateurs.
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Exemple (voir 2.2 fig. 2). o = ABCA-'B-!C~!
(a): on pose X = AB et on élimine A par A -1=BX"!
(b): on pose Y = CB.
D’ot ABCA-'B-!C-!= XCBX-'B-1C-!=XYX~'Y~! = [AB, CB].

Démonstration de m < c(y).

Supposons y écrit comme produit de £ commutateurs:

k
(5) Y = H [ai, bi] (ai,biEL(ubUz,---)) .
i=1

Il s’agit de construire un symbole associé a y de genre au plus k. Pour cela,
on va définir une opération sur les symboles. Etant donné un symbole ¢, on
sélectionne deux lettres consécutives de o, que I'on appelle W et X, puis on
remplace W et X par deux nouvelles lettres Y et Z selon la régle suivante:
changer respectivement W en Y, X en Y-!, W-'en Z et X ! en Z!
(voir fig. 3). Soit @ (o) le nouveau symbole obtenu. Noter que & (c) n’est pas
défini comme image de ¢ par un morphisme. Cependant:

Affirmation. La transformation @ n’augmente pas le genre.

Il revient au méme de voir que © ne diminue pas le nombre de classes de
sommets. Vérifions-le avec la description géométrique de & sur les polygones
correspondants:

remplacer ... O—p@Q—Pp@ - —€4—O - @—€—O ---
X

W X W
par e O—p—0—<4—90 - 0——0 ... O—44—9 ...
Y Y Z Z
FIGURE 3

Il y a au plus trois classes de sommets de ¢ impliquées dans cette opération;
ces classes se transforment en au moins deux classes car @ (o) comprend une
nouvelle classe, notée @, formée d’un seul sommet entre les deux arétes Y
(fig. 3). On peut donc supposer que les trois classes initiales O, @ et & sont
distinctes. Alors dans # (o) les classes O et @ restent distinctes, puisqu’elles
ne peuvent s’identifier que par des arétes ne figurant pas sur le dessin, ce qui

est exclu par hypothese (les classes O et &, quant a elles, sont identifiées).
L’affirmation est ainsi démontrée.
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| Considérons maintenant la décomposition (5) de y en produit de k
commutateurs, et remplacons dans 1’écriture réduite de chaque a; (resp. b;)
toutes les u; et les u j‘l par des lettres deux & deux distinctes: |

a — AB... EF, bl - GH ... KL, a, — MN ... QR, etc.
En développant les commutateurs, on obtient le symbole suivant:

6 = [AB...EF, GH...KL]1[MN...OR, ...] ...
~ AB...EFGH...KLF-'E-'...B-'A-'L-'K-!'...H-'G-'MN...OR ...

qui est de genre k (penser chaque segment. AB ... EF provenant d’un a; ou
d’un b; comme une aréte 4; ou B;). Evidemment, la longueur usuelle de ¢ est
a priori bien plus grande que celle de y; en effet, a chaque lettre de o
correspond un générateur u; ou son inverse dans la formule (5) développée,
mais celle-ci n’est pas en général une écriture réduite de y. Appliquons alors
% en choisissant pour W et X deux lettres successives de ¢ qui correspondent
a une simplification (u;u j"l ou u j‘luj) du mot sous-jacent. On peut ensuite
effacer la paire YY ! créée dans ©(c) sans changer le genre (dans la
~ formule (4), n et p diminuent chacun d’une unité): cela donne un nouveau
symbole qui comprend deux lettres de moins que 6. En épuisant par ce procédé
les simplifications successives qui apparaissent dans la réduction de (5), on finit
par obtenir un symbole de genre inférieur ou égal a k, et associé a .

2.5. Pour compléter le théoréme 2, il faut signaler que I’algorithme de
réduction des symboles (aux symboles canoniques) donne des formules
explicites. Par exemple on sait que c([u,v]?) =2 (voir 1 ou 2.7); voici
comment décomposer [u,v]? en produit de deux commutateurs a partir du
symbole ABA"'CDEFB-'F-'C-'D-'E-1:

ABA - 'CDEFB-'F-1Cc-1p-1g-1

FIGURE 4
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Couper suivant X, recoller suivant B [poser X = ABA !, €liminer B par
B-1=A-1X-14] (fig. 4).

XCDEFA ' x-4F-1c-'p-1g-1

FIGURE 5

Couper suivant Y, recoller suivant A [poser Y = CDEFA —!, éliminer A par
A = Y- ICDEF] (fig. 5).

A ce stade, on se trouve avec le symbole XYX 'Y ICDEC-'D-'E-!, On
réduit ensuite la partie CDEC-'D-!'E -1 comme a la figure 2, ce qui donne
(voir 2.3):

ABA - 'CDEFB-'F-'C-'D-'E-! = [ABA -',CDEFA '] [CD, ED] .
D’ou P’identité:
[, 013 = [wou =1, 0 " Yuvu =] [v ~'u, vu] .
2.6. CONSEQUENCES DU THEOREME 2

COROLLAIRE 1 ([G-T]). Pour tout élément vy de L', on a
1
c(y) < 2 (longvy),
ou longy est la longueur usuelle de .

En effet, tout symbole a au moins une classe de sommets! Ce corollaire

résulte donc de la formule du genre (4) avec p > 1 et n = l long vy.
2
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On peut aussi exploiter une majoration du nombre de classes de sommets,
moyennant quelques définitions. Remarquons d’abord qu’un symbole ¢ admet
une classe a deux sommets si et seulement si il contient un sous-mot XY et
son inverse Y ~' X ~!; ¢ sera dit simple s’il ne vérifie pas cette condition. Un
. symbole (orientable) simple est appelé mot simple alterné dans la terminologie
de [Cu].

Soit M(A,,A,,...) un mot réduit en les A;(i=1,2,...). On dit qu’un
élément y de L(u;,u,,...) est obtenu par substitution sans simplification a
partir de M s’il existe des mots réduits non vides m;(i =1,2,...) en les
ui(j=1,2,...) tels que M(m,,m,,...) soit une écriture réduite de v.

Enfin, on dira que 7y est cycliqguement réduit s’il admet une écriture
cycliquement réduite.

COROLLAIRE 2 ([Ed], [Cu]). Tout élément cycliquement réduit y de L’
est obtenu par substitution sans simplification a partir d’un mot simple alterné
de longueur usuelle inférieure ou égale a 12c(y) — 6.

Preuve. Un symbole ¢ associé a y de genre minimal c(y) se laisse
- «simplifier» sans changement du genre: il suffit de remplacer autant de fois
que c’est nécessaire XY par une nouvelle lettre Z et Y-'X-! par Z-!. On
produit ainsi un symbole simple 1, et 6 (donc y) est obtenu par substitution
sans simplification a partir de 1. Mais T n’a pas de classe a un seul ¢lément
(t est réduit), ni de classe a 2 éléments puisqu’il est simple. Le nombre de

classes de sommets de T est donc au plus égal a 5— (long 1); d’ou, d’apres (4):
2
longt < 4c(y) — 2 + g (long 1) .

On en conclut que longt < 12c¢(y) — 6.

Exemple ([Wi]). Un commutateur cycliquement réduit s’obtient par subs-
titution sans simplification & partir de ABA ~'B~! ou de ABCA-'B-1C-1.

Le corollaire 2 a une application intéressante:
. , n 1
PROPOSITION ([Cu]). Soit ye L’ et ne N*. Alors c(y") > g + 5 .

'En particulier, la longueur stable des groupes libres est minorée par 1/6.

Preuve. On peut supposer que y est cycliquement réduit. Tout sous-mot
'm de y" dont I’inverse m ~! apparait aussi dans y” doit vérifier 1’inégalité

-
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long m < — (longy). Sinon, par périodicité cyclique de y”, il existerait un
P

sous-mot non vide m’ constituant la fin de m et le début de m ~!, ce qui est
absurde. D’aprés le corollaire 2, y” est de la forme M(m,m,,...) avec

1 . r b r F
long m; < 5 (longy)(i=1,2,...), et ’on a 'inégalité cherchee:
1
n(longy) = longy” < 5 long y(12¢(y™) — 6) .

2.7. OU L’ON RETROUVE c([u,v]V) = E(N/2) + 1

Pour illustrer encore le théoréme 2, appliquons I’algorithme a notre
exemple favori: [u, V]V (N € N*).

Soit ¢ un symbole de la forme (3); une classe comprenant k sommets
(k e N*) est repérée dans ¢ par

XX, XX L X X!

(non forcément dans cet ordre) ou les X;(i=1,...,k) appartiennent a
I’ensemble {Al,Afl,...,A,,,A,,‘l}. Ainsi, en examinant la succession des
lettres dans [u, v]?", on voit que toute classe de sommets d’un symbole associé
a [u, 0]V doit avoir au moins 4 éléments. Un tel symbole admet donc au
plus N classes de sommets; compte tenu de la formule du genre (4), on en
déduit I’'inégalité:

c([u, v]N) > E(N/2) + 1.

Par ailleurs on construit facilement un symbole de genre E(N/2) + 1
associé a [u, v]V. 1l suffit de le faire pour N impair. Considérons le polygone
a 4N cotés disposé comme suit (fig. 6):

FIGURE 6

2N+1
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| Les cOtés étant numérotés comme sur la figure 6, identifions ceux qui sont
impairs (resp. pairs) au moyen de la symétrie s (resp. ¢) d’axe horizontal (resp.
vertical). Les classes de sommets sont les orbites de ’action des symétries s
et ¢ sur les sommets: elles ont toutes 4 éléments. Le genre du symbole ainsi

1 .
défini est donc 5 (N +1). De plus, il est associé a [u, v]" comme on le vérifie

en écrivant ce mot autour du polygone.

2.8. LE NOMBRE MINIMAL DE CARRES

On s’intéresse ici aux produits de carrés, ce qui est naturel puisqu’ils
admettent la méme interprétation topologique que les produits de commu-
tateurs (voir 1.2), au moyen de surfaces non orientables.

Soit L = L(u;,u,,...) un groupe libre et L? le sous-groupe de L engendré
par les carrés. Il convient de remarquer que L? contient L’ car tout commu-
tateur est un produit de carrés:

(6) [X, Y] = XX(X-'Y)2Y-2.

Un élément y de L appartient donc a L? si et seulement si pour chaque
générateur u;, la somme des exposants de u; dans I’écriture de vy est paire.

Les symboles considérés dans ce paragraphe seront quelconques:
orientables ou non orientables. La caractéristique d’Euler-Poincaré d’un

symbole A;'... A7>" est par définition celle de la surface associée, i.e.:

x=1+p—n
ou p désigne comme d’habitude le nombre de classes de sommets.
Pour tout élément y de L2, notons [1(y) le nombre minimal de carrés

nécessaires pour exprimer y. La méthode des paragraphes précédents permet
de retrouver simplement le résultat ci-dessous ([Cu]; voir aussi [G-T]):

THEOREME 2’. Soit Yy un élément de L* et vy(y) la caractéristique
d’Euler-Poincaré maximale des symboles associés a vy. Deux éventualités
sont possibles:

1) S’il existe un symbole associé c non orientable avec (o) = y(y), alors

L) =2 - %) .
' 2) Sinon [(y) =3 — x(y) = 2c(y) + 1.
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Exemples.

1) Quand y appartient 4 L?> — L', on est toujours dans le premier cas; par
exemple (I (u3...u}) = k (ke N*)([L-N)).

2) Au contraire, si y est un symbole orientable, alors Ll (y) = 2¢(y) + 1;
ainsi [ ([ug,01] ... [te,06]) = 2k + 1 dans L(uy,01, ..., Uy, Ux) ([L-S] p. 56).

Preuve du théoreme 2.

Tout symbole non orientable 6 = A;'... 42" est équivalent, par décou-
page et recollement, au symbole X; X ... X; X, ou k = 2 — y(o) (Ma 1]). On
en déduit (voir 2.4) que o est le produit de k carrés dans L(4,,...,A4,).

Considérons maintenant un symbole ¢ € L(4,,...,A,) orientable de
genre g(o), et posons 6 = Ap4,0 € L(Ap,A;,...,A,). On constate que
v(0) = x(c) — 1 =1 — 2g(c). D’apres ce qui précéde et en faisant Ay = 1,
on voit que le symbole ¢ est le produit de 2g(c) + 1 carrés de L(Ay, ..., An).

Exemple. AABCB-'C-! = (A?BA-"1)2(AB~'A-'CA-1)*(AC~")?

C’est le célebre homéomorphisme P#T=P#P#P ou P est le
plan projectif, T le tore et # la somme connexe. On a en particulier la
formule (6) en faisant A = 1. Inversement, le méme homéomorphisme permet
de réécrire un produit de 3 carrés comme produit d’un carré et d’un
commutateur:

X2Y?Z? = (X*Y?ZY ' X)) XY, Z 'Y 1].

On a clairement les majorations cherchées: [](y) est majoré par 2 — x(y)
dans le premier cas du théoreme 2’, et par 3 — % (y) dans le second. Il faut
maintenant construire un symbole associé a y a partir d’une décomposition en
carrés: Y = a; ... a: (e L(ay,a,...)).

Comme a la preuve du théoréme 2, on commence par remplacer tous les
u; et les u; ' de Iécriture réduite de chaque a; par des lettres deux a deux
distinctes:

a, > AB...EF,a, > GH... KL, etc.
Puis en développant les carrés, on obtient un symbole
(7 AB...EFAB... EFGH...KLGH...KL ...

dont la caractéristique d’Euler-Poincaré est égale 4 2 — k. On doit ensuite
etendre la transformation # de 2.4 aux symboles non orientables, mais cette

fois-ci il faut tenir compte du mot sous-jacent et il y a trois cas possibles
(u = u; ou uj_l):
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e W X \%% X
| c  O—Pp—o—pbQ® - 0—eq—O0 —<4—0

() u u-l u-l u
“(©) ... O—p—D—4—O - &—p-O O—4—@

— Y Y Z Z

— WY X Y% X
o o— ——rQ - 0—b——0 - 40

(b) u u-l u u
@ (o) ... o—b—o—<—0 -+ O—p—e - O—b—@9

— Y Y Z Z

B \WY% X \\Y% X
G o—r——r— - O—b—0 - —p0B

(©) u u-l u u-l

% (o)

| v+ O—P—0—<4—0 - O—p—e .- —4—0

Y Y Z Z

FIGURE 7

Le premier cas est celui de la figure 3: c’est le seul qui intervient quand les
symboles sont orientables. En examinant la figure 7, on voit que & ne diminue
pas le nombre de classes de sommets (méme démonstration que pour 1’affir-
mation de 2.4), donc

1(Z(0)) = (o) .

Cependant, la transformation @ posséde une propriété supplémentaire qui sera
cruciale pour la suite de la démonstration:

Affirmation. Si o est non orientable et si @ (o) est orientable, alors
(7 (@) = x(0) + 1.

Le passage de non orientable a orientable n’est possible que dans le cas (c) de
la figure 7. L’identification des deux sommets & de la figure 7-(c) nécessite
deux arétes orientées dans le méme sens (autres que les X). Comme par
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hypothése # (c) est orientable, les arétes W doivent donc intervenir pour
identifier les sommets &) : on constate alors que les classes @ et O sont
forcément confondues. Finalement, & (6) comprend une classe de plus que ¢
(que les classes O et @ soient distinctes ou non).

Achevons maintenant la preuve du théoréme 2’. A partir du symbole (7)
ci-dessus on trouve (par le méme procédé qu’en 2.4) un symbole ¢ associé
a y et vérifiant

x() =2 x(c) =22 -k,

d’ou k£ =2 — x(y).

Cela prouve le théoréme dans I’éventualité ou 7y (y) est réalis€ par un
symbole non orientable, puisqu’on a déja L1(y) < 2 — x(y) dans ce cas. Dans
’autre cas, ou bien ¢ est non orientable et on a I’inégalité stricte y(y) > (o),
ou bien ¢ est orientable et d’aprés ’affirmation précédente (o) > 2 — k;
donc finalement k£ > 3 — y(y), et le théoréme 2’ est démontré.

Pour terminer, il faut mentionner les analogues des corollaires 1 et 2 (§2.6).

COROLLAIRE 17 ([G-T]). Pour tout élément y de L2, ona

L1(v) <~;— (longy) + 1

1
(et méme [1(y) < 5 (ongy) si yeL2?-1L’).

Un symbole est simple s’il ne contient pas deux exemplaires d’un sous-mot
XY, ni XY et son inverse. A I’exception du symbole 44, les classes de sommets
d’un symbole simple ont au moins 3 éléments. Un mot simple quadratique est
un symbole simple.

COROLLAIRE 2’ ([Ed], [Cu]). Tout élément cycliquement réduit Y de
L% tel que [(y) >2 est obtenu par substitution sans simplification a
partir d’un mot simple quadratique de longueur usuelle inférieure ou égale a

6L](y) — 6.

Les preuves des corollaires 1’ et 2’ sont identiques a celles des corol-
laires 1 et 2 (§2.6).

Remarque sur [’identité (6). Certains commutateurs sont produits de
2 carrés seulement (exemple: [u, v2] = (uvu ~1)2v ~2). Mais on peut montrer a

I’aide du corollaire 2 (2.6) qu’un commutateur non trivial n’est jamais un carré
dans un groupe libre.
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3. LONGUEUR STABLE ET COHOMOLOGIE BORNEE

Comme préliminaire on étudie 1’espace des bords B;(I',R). Ceci est
justifié par le fait qu’il relie longueur stable et cohomologie bornée: d’une part
B,;(I',R) est muni d’une norme comparable a la longueur stable (propo-
sition 3.2), et d’autre part cet espace s’interpréte par dualité a partir de la
cohomologie bornée (3.4).

3.1. L’ESPACE DES BORDS

On rappelle la définition de I’homologie, ici a valeurs réelles, d’un groupe
discret par la «bar-résolution». Soit C,(I', R) ’espace vectoriel réel de base
I'"(n>1) et soit opérateur bord 9: C,,, (I', R) = C,(I', R) donné par

O(X1, .oy Xn41)

n
= (XZ,---,xn+l) + Z (_I)i(xls'-'axixi+l7"'9xn+l) + (_1)n+1(xl"-°’xn) .
i=1

L’homologie H.(I',R) est alors celle du complexe
d d 0 0
- > GIT,R—->CIT,R)-R—->0 (¥).

L’espace des 1-bords, noté B;(I',R), est I’ensemble des combinaisons
finies de la forme

Yo, (xi—xyi+y) weR,x,yel.

Soit Z,(I', R) le noyau de 9: C,(I',R) = Ci(I',R) (espace des 2-cycles).
L’isomorphisme B;(I',R) = C,(I', R)/Z,(T', R) induit sur B;(I', R) une norme
simpliciale quotient:

“ b “B = inf{ Zl di ‘§ 8(2 (li(xi,J’i)) = b} (b e B (T, R)) '
borne inférieure sur les 2-chaines de bord b.

Par ailleurs, les bords entiers b € B;(I', Z) ont aussi une «norme» entiére:

|blz=mf{ Y[ n[;8(Lnta,y) =b et neZ)

et la norme réelle de b est donnée par

| kb |z

” b ”B = lim

k—

((beB\(I,Z)) .
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3.2. LONGUEUR STABLE ET NORME SUR L’ESPACE DES BORDS

Remarquons d’abord que le groupe dérivé 1'" est inclus dans ’espace des
bords B;(I',R) car

(8) [x, ] = 8{([x, »],») + Cyx 1, x) — (6 »)} (xsyel).
1l est donc naturel de comparer la longueur stable ||y || d’un élément y de I'’
avec sa norme |y |5 dans B;(T,R):

PROPOSITION 3.2. 4|y|l-1<|yvls<4|vll+1 @Gel).

Avant d’aborder la preuve de la proposition, voyons comment la combi-
natoire d’une relation

b = B(E g(xi, ) &= =x1

peut étre décrite au moyen d’une surface. On pense a chaque e(x, y) qui
intervient ci-dessus comme & un simplexe géométrique orienté (fig. 8):

FIGURE 8

Choisissons une facon de grouper par paires {x, — x} les arétes qui s’annulent
dans la relation; il suffit alors d’identifier 2 a 2 les arétes ainsi sélectionnées
pour construire une surface a bord (abstraite) X orientée et triangulée, a priori
non connexe et non unique. Noter que si on pose

b=Ynz (neZ, zel)
J

le nombre de composantes connexes du bord de ¥ est au plus égal a ), | n;|.

J
On dira que ¥ borde b. Une surface bordant b et formée de | b |, simplexes

sera appelée minimisante pour b. Ainsi le fait qu’un commutateur soit le bord
de 3 simplexes s’illumine (fig. 9):
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(surface de genre 1)

FIGURE 9

La longueur des commutateurs c(y) est le genre minimal d’une telle surface
connexe bordant y (yeI'’). Voici encore un exemple: 2[x, y] bordé par une
surface de genre 1 ayant 2 composantes du bord:

(y=0DyD

FIGURE 10

Preuve de la proposition. Comme |y |z = lim (| ky |z/k) (voir 3.1), la
k— oo

zpreuve consiste a relier | ky |z avec c(y*)(k € N*). Il faut bien distinguer les
éléments y* et ky qui sont, par définition, linéairement indépendants dans .
Bi(T',R).
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D’aprés la relation (8) tout produit de N commutateurs est le bord de
4N — 1 simplexes, d’ou |y¥ |z < 4c(y¥) — 1. En remplacant le simplexe qui
contient y* par k simplexes contenant y (fig. 11), on voit que

| ky |z < de(y¥) + k- 2.

AYL_’ xY A'Y

FIGURE 11

Il reste & établir une inégalité dans I’autre sens:

Affirmation. 4c(y¥) — k<lkylz (yveI).

Une fois que P’affirmation sera démontrée, la proposition résultera de
I’encadrement:

de(y ) — k <|kylz <dcyd) + k— 2.

Preuve de ’affirmation. Supposons d’abord que ky est bordé par une
surface X minimisante connexe. Soit g le genre de X et r le nombre de
composantes connexes de son bord. Un petit calcul de caractéristique d’Euler-
Poincaré permet de minorer | ky |z. En effet considérons une triangulation
de ¥ qui comprend s sommets, a arétes, f faces et exactement k arétes sur
le bord; on a les relations

2-2g—r=s—a+f e 3f=2a-%k.

D’ou f =4g — 4 + 2r + 25 — k. Sachant qu’une telle triangulation doit
comprendre au moins k£ sommets (ceux qui sont sur le bord) on en déduit
I’'inégalité

© f>4g—-4+2r+k.

Notons par ailleurs k;(i = 1, ...,r) le nombre d’arétes sur la i-éme composante
du bord (Zk,- = k). L’hypothese signifie algébriquement qu’un certain
produit
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a(ykr)y ... ar-1(yk-tyyk (q;eT,i=1,...,r—1)

-est produit de g commutateurs de I" (on rappelle la notation *y = xyx~1).
L’identité

“x %2, ..., = [ay,x 1% az,x;] ... B2 x-Da,, x,] X1 ... X,

montre alors que g > c(y*¥) — r + 1. Compte tenu de (9), il en résulte que
| ky |z = 4c(y%) — 2r + k.

Mais comme le nombre r de composantes connexes du bord de X est par
construction au plus égal a k, on obtient finalement 1’inégalité souhaitée.

Dans le cas général, une surface minimisante X se décompose en
composantes connexes g (B=1,...,0) et I’on a

|kY|z= Z|kBY|Z (E kB:k),
B=1 B=1

ou chaque terme correspond a une composante, minimisante elle aussi. En
appliquant ce qui précéde, on trouve donc

=

|kY lz Z de(yke) — k

a

L’inégalité évidente Z c(y*s) > c(y*) permet alors de conclure la preuve
B=1
de I’affirmation.

' 3.3. QUASI-MORPHISMES ET COHOMOLOGIE BORNEE

Apreés avoir rappelé la définition de la cohomologie bornée, on étudie le
| rapport entre les quasi-morphismes et le deuxiéme groupe de cohomologie
bornée.

L’espace vectoriel C,(I', R) (voir 3.1) est muni de la norme simpliciale, de
type /'. Son dual, noté C,(I',R), qui est I’espace des applications bornées
F:T"— R, hérite donc d’une norme /*:

| F | = sup{| Fx1,y..0r ) |; X1y ennyX0) €7}

' Le complexe (%) de 3.1 donne ainsi par dualité topologique un complexe dont
' I’homologie, avec sa semi-norme quotient, est par définition H}(I',R), la
gcohomologze bornée de T'. Le dual algébrique de (%) définit quant a lui la
%cohomologie usuelle H*(I', R) de T".

i
i
i
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On a appelé quasi-morphisme toute application f:IT = R dont le
cobord df est borné:

| dfey)| =) - fe) + f ] <df| xyeD).

Avec ce langage, le noyau de H> »(I,R) = H*(I', R) est naturellement ’espace
des quasi-morphismes définis a I’addition d’un morphisme et d’une application
bornée prés. En fait chaque classe de ce noyau contient un élément privilégié:
elle se représente de facon unique comme cobord d¢ d’un quasi-morphisme
homogeéne (¢ (x") = no(x),xel,neZ).

PROPOSITION 3.3.1 ([Be]).

1) Le noyau de H?,(F,R)HHZ(F,R) est isomorphe par le cobord a
I’espace des quasi-morphismes homogenes définis a [’addition d’un
morphisme pres.

2) Tout quasi-morphisme homogéne ¢ est constant sur les classes de
conjugaison (PGyx—Y = ox);x,yel) et vérifie la formule
asymptotique:

1
do(x,y) = lim — cp((xy »)™m) (xyel).

n— o

Preuve (voir [Be]). Si f est un quasi-morphisme, la suite (f(x™) nen €5t
presque sous-additive:

| fxmmy — fxm) — fxmy |<|ldf | (xel;m,neN) .

n

On en déduit (voir [P-S]) que L&

converge et sa limite (homogéne!),

notée @(x), vérifie ’inégalité

n d
|cp(x)~f(x)|<“ /1 (n>1) .
n n
En particulier,
(10) e - feI<dr

d’ou il résulte que do et df représentent la méme classe de HZ(F R).

On remarque ensuite que xy"x-! — Y"(neZ) est le bord de 2 simplexes
(fig. 12):
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(cylindre)

FiGURE 12

Ceci montre que @(p"x~!) — @(y") est borné par 2|del, donc
@(xyx~1) — @(y) (homogeéne en y) est nul.

' La formule asymptotique est aussi une conséquence de I’homogénéité.
Ecrivons d’abord la relation

1
do(x,y) = lim — {o(x") + o(¥y™") — o((xy)")} .

n—-o A
Comme x" + y" — (xy)" — x"y"(xy)~" est le bord de 3 simplexes, cette
1
limite est égale a lim — {@(x"y"(xy) ")} .
n— o n
Les quasi-morphismes décrivent, par définition, le noyau de
H,(I',R) » HXI',R), qui n’est qu’une partie de H-(I',R). Cependant, dans
beaucoup de cas intéressants, tels que les groupes fondamentaux de polyédres
' finis, ce noyau est de codimension finie dans Hﬁ(l“, R). De toutes facons, on
peut toujours décrire Hi(F, R) au moyen des quasi-morphismes définis sur un
- groupe ad hoc:

PROPOSITION 3.3.2. Tout groupe I admet une extension centrale
E—T qui induit une isométrie: H,([T',R) = Ker(H,(E,R) — H*(E,R))
(en fait ce noyau est égal @ H,(E,R) tout entier).

Preuve. Ecrivons I' comme quotient d’un groupe libre L par un sous-
‘groupe normal R. On a alors une suite exacte

0—-R/[L,R]—=L/[IL,LR]>L/R=T-1.

i

 Cette suite définit une extension centrale p: E = L/[L, R] — I', qui dépend du
. choix de la présentation de I'.
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Comme le noyau de I’extension E est abélien (donc moyennable) on sait
d’aprés un théoréme général sur la cohomologie bornée ([Iv]), que p induit une
isométrie H2(I', R) = H,(E,R). Pour établir la proposition, il suffit donc de
prouver que [’application p*:H*(I',R) > H?*(E,R) induite par p en
cohomologie usuelle est nulle.

Soit ¢ un 2-cocycle normalisé sur I', & valeurs réelles; le cocycle p*c définit
une extension centrale n: € — E. Plus précisément, % est ’ensemble R X FE
muni de la loi de groupe:

(@, X)(B, Y) = (¢ +B+c(p(X),p(Y)),XY) (a,peR et X,Y€EE),

et m est la projection R x E— E. Il est facile de vérifier que 1’extension
pomn: € =T est centrale. Comme L est un groupe libre, il existe un
morphisme de groupes L — E au-dessus de I'; puisque I’extension p o 1 est
centrale, ce morphisme induit un morphisme u: E > % au-dessus de I'. On a
donc

u(X) = (a(X),a(X)X) o(X)e€eR, a(X) € Kerp.

En explicitant le fait que « est un morphisme de groupes, on trouve la relation

a(XY) = a(X) + a(Y) + c(p(X),p(Y)) (X,YE€E),

c’est-a-dire p*c = — da.

Il est intéressant de noter que dans notre situation, I’isométrie p#: H,(T', R)
~ H.(E,R) admet un inverse explicite. Cela est di au fait que le noyau 4 de
I’extension E est central. En effet si ¢ est quasi-morphisme homogéne E — R,
on a d’apres la formule asymptotique (Prop. 3.3.1-2)):

dp(X,a) =0 XeE,acA.

On en déduit que do(aX, bY) = do(X,Y) pour X, Ye E et a, b € A. Cette
proprieté permet d’associer & tout quasi-morphisme homogéne ¢ sur E un
2-cocycle borné sur I" en posant

(11) c(x,y) =do(X,Y) x,yel,

ou X et Y sont des relevés quelconques de x et y dans E. D’ol une application
Hf,(E, R) — Hf,(l“ ,R) qui est visiblement inverse a droite de pE.

Remarque. Le fait que la semi-norme sur Hf,(l“, R) est une vraie norme
(IM-M], [Mit]) apparait clairement dans notre contexte. Pour une classe c
representable par le cobord df d’un quasi-morphisme, la relation (10) implique
| do | < 4| df|, indépendamment du choix de £ (rappel: ¢(x) = lim f(x")/n);

n— o
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donc, si la semi-norme de c est nulle, ¢ est un morphisme et ¢ est nulle. Le cas
général résulte ensuite de la proposition 3.3.2.

3.4. LONGUEUR STABLE ET QUASI-MORPHISMES

Dans ce paragraphe, le dual de I’espace des bords B;(I',R) est décrit au
moyen des quasi-morphismes: le théoréme de Hahn-Banach permet alors (avec
la proposition 3.2) d’exprimer la longueur stable par une formule de dualité:

PROPOSITION 3.4. Pour tout élément vy de I’ on a la relation

Ay o) |

= sup ——
s larsl

. .y : . .1
ou [ décrit ensemble des quasi-morphismes et ¢(y) = lim — f(y").
n— oo n
Ce résultat montre en particulier que la minoration de la longueur des
commutateurs par les quasi-morphismes (lemme 1.1) est optimale pour la
longueur stable.

Preuve. L’espace des bords B;(I,R) a ¢été considéré comme
C,(I,R)/Z,(I',R) avec la norme quotient: son dual est I’espace des quasi-
morphismes f modulo les morphismes, muni de la norme | df|. D’aprés le
théoréme de Hahn-Banach, la norme d’un élément quelconque b de B;(I', R)
est donnée par

| f®)|
| s = sup ——-.
s ldrl
Considérons maintenant un élément y de I'’. La relation entre ||y | et | v |5
(prop. 3.2) et I’inégalité (10) montrent alors que 4|7 || — sup‘“(p asj‘)ll\ est
S

' borné par une constante, donc nul par homogénéité.

COROLLAIRE 1. L’application Hy(IT,R) = H*(T,R) est injective si et
seulement si la longueur stable est nulle sur 1.

En effet, la longueur stable est nulle si et seulement si tout quasi-morphisme
' homogeéne ¢ est nul sur I'’, ce qui équivaut, d’apres la formule asymptotique,
ado =0.

-~
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COROLLAIRE 2. La longueur stable d’un groupe moyennable est nulle.

On pourrait invoquer le fait que la cohomologie bornée d’un tel groupe
est triviale ([Gr 2] ou [Iv]). Cependant il est facile de vérifier (voir [Be]) a I’aide
d’une moyenne que tout quasi-morphisme sur un groupe moyennable est
somme d’un morphisme et d’une application bornée.

Remarque. 1l existe d’autres groupes ayant || | = 0; ainsi SL3;(Z) n’est
pas moyennable et vérifie ¢ < oo ([Ne]).

3.5. LONGUEUR STABLE ET GENRE DES CLASSES DE H,(I',Z)

La formule de Hopf (voir ci-dessous) donne une description géométrique
des classes de H,(I', Z) au moyen des surfaces fermées: pour tout ¢lément o
de H,(I', Z), il existe une surface fermée S, de genre g et un morphisme de
n1(S,) dans I' qui envoie la classe fondamentale de S, sur a. Le genre de a
est le genre minimal d’une telle surface; on le note g(a).

Il se trouve que le genre d’une classe s’interpréte comme nombre minimal
de commutateurs grace a I’extension de Hopf (12); je remercie Etienne Ghys
qui m’a expliqué ce fait. Cela permet d’illustrer la formule de dualité du
paragraphe 3.4 en retrouvant ’égalité suivante, qui relie le genre des classes
et la norme simpliciale || | de H,(T, R):

PROPOSITION 3.5. ([B-G] prop. 1-9). Pour toute classe ae H,(I',Z),
on a la relation
no
laly=4 lim £9Y

n— o

Preuve. SiT est égal a L/R, ou L est libre, on a une extension centrale
(12) O->RnNI[LLY/[L,RI>[L,L1/[L,LRI>L/R=T-1

dont le noyau est isomorphe a H,(I", Z) (c’est la formule de Hopf). Noter que
pour un groupe parfait, I’extension ci-dessus est I’extension centrale universelle
de I' ([Mil 2] §5). L’isomorphisme R n [L, L1/[L, R] = H,(I', Z) peut s’expli-
citer comme suit (voir [Brw] p. 46). Considérons la 2-chaine du groupe libre
L définie par

2(Ay, By, ..., Ag, By)

I
I Do

{(Ciz1,A) + (Ci_1A4;,B) — (Ci-1A:BA ', B) — (Ci, B)}

1

ougeN* A;,,BieLetC =[A4,,B]... [A;,Bi] i=1,..., ¢ (fig. 13).

!
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(g=2)

FIGURE 13

Le bord de z(A4,, B, ...,A,,B,) est égal a 1 — [4,,B] ... [4,, B,]. On obtient
I'isomorphisme de Hopf en associant a tout élément [4;, B,] ... [4,, B,] de
[L,L] N R le 2-cycle z(a;, by, ...,a,,b,) sur I, a; et b; étant les projections de
A; et B; dans T".

Ainsi le second groupe d’homologie H,(I',Z) apparait comme sous-
groupe du groupe dérivé E' de E = L/[L,R], et le genre d’une 2-classe o
(resp. lim (g(no)/n)) est exactement sa longueur des commutateurs (resp. sa

n— o

longueur stable) dans E, quand on la considéere comme élément de E’.
La (semi-)norme simpliciale de H,(I',R) s’exprime par dualité grice au
théoréme de Hahn-Banach:

| c(a) |
|| = sup

¢ el

ou ¢ décrit Hﬁ(l“, R). D’apres 3.4, il en est de méme pour la longueur stable
de a, vue comme élément de E’:

(0 e Hy(T', Z))

4] al = sup
0]

ou @ décrit Ker(H5(E,R) = H*(E,R)) (= H,(E,R)),| ® | désigne la norme
naturelle de ® dans H‘,’;(F, R), et do son représentant canonique (prop. 3.3.1).
Pour établir la proposition, il suffira d’identifier les éléments respectifs de ces
- deux formules de dualité. On a vu en 3.3 que ® et ¢ se correspondaient par
-isométrie. De plus si I’élément y = [4,,B] ... [4,, B,] de E’ correspond & la
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classe a = z(ai, by, ...,a,,b,) (a;,b; sont les projections de A;, B; dans I et
[a;,b1] ... [a,,b,] = 1), alors d’apres 3.3 (rel. (11)):
C((l) = d(p(Z(Al’Bla -~'9Ag>Bg)) = (D(G{Z(AlsBla -“’AgaBg)}) = - (p(’Y) d

On en conclut que 4|[A4;,B]...[4., B, =]z, ce quil fallait
démontrer.

3.6. LE THEOREME DE DUALITE

Rappelons que chaque classe ¢ du nqQyau de Hi(r, R) —» H*(I', R) possede
un représentant privilégié do ou ¢ est un quasi-morphisme homogéne; on peut
se demander s’il existe un rapport entre || do || et la norme || c |, de ¢ dans
H 12,(1“, R). Pour cela considérons I’espace K des quasi-morphismes homogenes
définis a l’addition d’un morphisme prés. L’identification de K avec
Ker (H,(,R) — H(T,R)) provient de la décomposition en somme directe
(lire quasi-morphismes pour g — m):

{q — m} ={qg — mhomogeénes} ® {q — mbornés} .

On voit ainsi que | do || est une norme induite, tandis que | ¢ ||, est une norme
quotient. Comme le montrent la définition de | ¢ |, et la relation (10), ces
deux normes sont comparables:

lelle<ldel<4lcls.

Mais en estimant la longueur des commutateurs de I’élément x"y”(xy) " qui
intervient dans la formule asymptotique (lemme 3.6), on trouve une inégalité
plus fine:

ldoll<2lels.

On verra des exemples ou || do | = 2| c||, (3.8).
Cependant il y a une autre norme sur K, définie par

lolc = sup{|olx, y1;x,yel} (pekK).

L’intérét de cette norme naturelle réside dans le fait qu’elle est reliée a la
longueur stable par dualité:

THEOREME DE DUALITE. Pour tout élément v de T’ on a la relation

1 o]
|y | == sup

20k ol

Nous commengons par établir le résultat suivant qui est le point clé de la
démonstration:
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LEMME 3.6. Dans le groupe libre L(u,v) on a

c(umvr(uv)-") = E* (n; 1) n=1)

ou E* est la partie entiere supérieure.

Preuve. L’¢lément wu”*lv"+Y(uw)-"-1 se réduit cycliquement a
u"v"(vu) ~". Tout symbole associé a ce dernier élément aura au plus 1 classe
a 2 sommets et 2 classes a 3 sommets, les autres classes comprenant au moins
4 sommets. Cela conduit a ’estimation:

c(u™v™(vu)~")y = n/2 .

Pour établir une inégalité dans 1’autre sens, il suffit d’examiner le cas ou n
est pair puisque

u2k+102k+1(uu)—2k—1 — u(u2kU2k(Uu)—2k) [U_l,(Uu)2k+l] .
Posons n = 2k et considérons le symbole o,:

ABGI G2 GZk__3CDH1H2 o sz_3EF/ (mllleu du mot)

‘ uuuuu ... uuvvovv ... v 0LV

-1~ -1 -1 -l =1yt —1pr-1 -1 -lrr-lp_-1p-1
A-'E-\G;l Hy' ,...H;'G;'D-'C-'H}' ,G5,...G; 'H'B~'F
u-lv-tu-1tp-1 L0ty y -yl ou o ly-1p-1

I J

(Ie bloc | est formé de k fois u~'v~1). Ou encore, géométriquement:

(k=2)

FIGURE 14
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On identifie deux & deux toutes les arétes possibles (i.e. de fagcon compatible
avec le mot u"v"(vu)") par la symétrie centrale; les autres ar€tes sont
identifiées par la symétrie d’axe vertical (fig. 14). Ce symbole 6, comprend
une classe ® de 2 sommets (CD, D-1C-1), 2 classes O et @ de 3 sommets
(AB,B-'F~-',FA-' et F-'A,A-'E-',EF) et 2k-2 classes de 4 sommets.
Son genre est donc égal a k.

Le lemme permet de comparer la norme | ¢ ||r avec

| do |- = sup{|do(x, ) |;x,yeT},

et méme avec la norme de d¢ restreint au groupe dérive:

PROPOSITION (égalité des normes). Pour tout ¢ € K:

I dolr=1lol:=1dolr .

Preuve. Sachant que ¢ est homogéne et constant sur les classes de
conjugaison, on a

o(lx,y]) = —doxyx~1,y~") (xyel),

dou | ¢ |r < | do|r. D’aprés le lemme 3.6, 1’élément x2k+1y2k+1(xy)-2k-1
est le produit de & commutateurs; il suit que

QY2+ 1) =2k-1y < ko |r + (k=1) | do | .

La formule asymptotique montre alors que
1
| do(x, ) | < 5 o le+1dolr) .
Comme | ¢ | et |do |- sont majorés par | do |-, on en déduit I’égalité
cherchée.
Preuve du théoréeme. Dans la formule asymptotique on peut remplacer ¢

par f car ¢ — f est borné:

1
do(x,y) = lim — (f(x"y"(xy)~")) .

n— o

Si f est antisymétrique, la quantité f(x"y"(xy) ~") se majore comme en 1.1
par || df ||(4c(x"y"(xy)=") — 1), et on voit d’apreés le lemme 3.6 que

ldole<2arl.

Rappelons maintenant que la longueur stable s’exprime par dualité (Prop. 3.4):
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o) | ,
llvll—sp (Yel’).
lafl
Gréce a la remarque 2) de 1.1, cette égalité est encore valable quand f décrit
seulement I’espace des quasi-morphismes antisymétriques. Mais on a vu que

lolr <|de |- < d’ou

L o) |
!|v||\ —

<peK ” ) “r

D’autre part, on a clairement:

] 1
loy) | = ;Icp(v”)K ;{C(v”) lolle + (ctyny—1D | do |},

dont on déduit I’inégalité

lom [<2]vllol (peK ver)

qui permet d’achever la preuve du théoréme de dualité.
Remarques.

1) Soit Qr le quotient de B;(I',R) par D’adhérence du sous-espace .
engendré par {y” — ny;yeI'’,neZ}. Comme K est naturellement le dual
de QOr, on peut reformuler le théoréme de dualité: |y [lo = 2| v ||.

2) La proposition «égalité des normes» montre que | ¢ |- ne dépend que
des valeurs de ¢ sur le n-iéme groupe dérivé I'™ de I', n aussi grand que [’on
veut; en d’autres termes, ’espace QOr est engendré par les images des
commutateurs d’éléments de I', n aussi grand que ’on veut. On retrouve
en particulier le fait que la longueur stable des groupes résolubles est nulle.

3) D’apres cette méme proposition, la restriction définit une injection
isométrique (Kr,| ¢ ) = (K-, || @ |r7). C’est I’analogue d’une propriété
générale de la cohomologie bornée: si le quotient de I" par un sous-groupe
normal I'; est moyennable, alors HZ(F R) — H* »(I'1,R) est une injection
isométrique ([Gr 2]).

3.7. PROPRIETES DE LA LONGUEUR STABLE

On a regroupé dans ce paragraphe quelques propriétés générales de la
longueur stable. La premieére découle du lemme 3.6:
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PROPOSITION 3.7.1. Pour tout groupe T on a l’inégalité:

1 4
l|Yl'Yz“<“Y1 ||+”Y2||+£ (Y1,72€T7) .

Preuve. Elle est immédiate a partir du lemme 3.6.

Cette inégalité est optimale; pour le voir il suffit de prendre
[ = L(u,v,w,t), vi = [u,0], v, = [w, t] et d’appliquer le théoreme 1 de la
partie 1. Plus généralement, on a le résultat suivant:

PROPOSITION 3.7.2. Soit I, et T, deux groupeset I =T *1, leur
somme libre. Alors pour tout vy, #1 dans T, et tout vy, # 1 dans I,
on a l’égalité

1
” Y1Y2 ”F = “ Y1 ||rl + “ Y2 Hrz + —.

2
Commentaire. Les éléments (y;y,)" et y]y, difféerent par n/2 commu-
tateurs environ (lemme 3.6); la proposition signifie que ces commutateurs sont
nécessaires & cause de 1’indépendance des deux facteurs Iy et I';.

Preuve. D’aprés Iinégalité évidente || v; [r < v: |, (qui est d’ailleurs une

égalité) et la proposition 3.7.1, on a la relation

1
vz e < v “F1 + | v2 “Fz + 5 )

Il reste a établir I’inégalité inverse. Pour cela, on s’appuiera sur ’interpré-
tation de 1’espace Kr comme dual de Or (voir 3.6, remarque 1) et sur le
théoréeme de dualité. Rappelons que QOr est le quotient de B;(I',R) par
I’adhérence du sous-espace engendré par {y” — ny;yeI'’,neZ}. On observe

que QOr, et Or, s’injectent dans Qr et sont en somme directe dans cet espace.
On aura besoin d’un résultat préliminaire:

Affirmation. L’image de 9(y,,y,) n’appartient pas a la somme directe
Or, @ QOr, dans Qr.

Pour prouver ce fait, il suffit de construire une forme linéaire sur Qr, i.e.
un quasi-morphisme homogéne sur I', qui s’annule sur Qr, @ Qr, et de
valeur non nulle sur d(y;,y,). Tout élément x de I s’écrit de maniére unique

X = X1 1X2Y2 «oo XpYn

ou x; et y; sont des éléments distincts de 1, sauf peut-&tre x; ou y,, appar-
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tenant respectivement a I'; et I',. On pose alors, en s’jnspirant de la définition
des quasi-morphismes de Brooks (voir 1.1):

f)y=20x) - 1),

ou Z(x) est le nombre d’occurences de vy,y, dans I’écriture canonique de Xx.
Par la méme vérification formelle qu’en 1.1, f est un quasi-morphisme. Le
quasi-morphisme homogene associé ¢(x) = lim (f(x")/n) fait affaire car il

n— o

s’annule sur 'y et T, et @(3(y1,v2)) = do(y,,72) = — 1.

Revenons a la démonstration de la proposition. Soit € un réel > 0. D’apres
le théoréme de dualité, il existe un quasi-morphisme homogéne ¢; sur I'; de
norme 1 tel que

iy =2 | v ||r,- -t (=12).

Notons D la droite de Or engendrée par I’image de d(y;,vy,). On définit une
forme linéaire de norme 1 sur Qr, @ Qr, @ D en posant

0(q) = 0i(q) si g€ Or,(i=1,2) et @@, y))=—-1.

Gréce au théoreme de Hahn-Banach, ¢ se prolonge en un élément ¢ de Kr de
norme 1. Par suite

1, _ 1 1
lviv2 llr > 5|(P(Y172) | = -2-|q)1(yl) +02(v2) + 1| = [ville, + | vale, + 5 £ .

On termine en faisant tendre € vers O.

Exemple. Dans le groupe libre L(u;,0;,...,Ux, V) On a:

k 1k k-1
T i, 07l == Y |pil+ ——  (pi€Z).
i=1 2i=1 2

Ce résultat pourrait aussi s’établir en utilisant la méthode des symboles de la
partie 2.

Voici une autre propriété de la longueur stable:

PROPOSITION 3.7.3 (d’annulation). Supposons qu’il existe € > 0 avec
pour tout (x,y) € I'?

1
||[x,y]||<£—8.

Alors la longueur stable de T est nulle.
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Preuve. Soit ¢ € K et (x,), (¥,) deux suites d’éléments de I' telles que

Lo = tim|@(x.,».D 1.

. Si ¢ est non nul, inégalité | o(y) | < 2] v | ¢ |- impose

. 1
lim || [x,, 3.1 | = =,

n— o 2

ce qui est exclu par hypothése. Ainsi || @ || = 0, et par dualité la longueur
stable de T est nulle.

3.8. EXEMPLES DE CALCUL DE LONGUEUR STABLE

Comme les morphismes de groupes ¢: I'; = I'; diminuent la longueur des
commutateurs et la longueur stable:

cr,(0M) <o) et oW, <lvl, el),

il est important de disposer de groupes ou la longueur des commutateurs est
connue. C’est le cas du groupe H des homéomorphismes # de R vérifiant
h(x+ 1) = h(x) + 1(xeR), pour lequel les produits de commutateurs ont €té
bien étudiés dans [Wo] et [E-H-N]. Par exemple ([Wo], [E-H-N]) la translation
d’amplitude ¢ est produit de p commutateurs si et seulement si:

|t|l<2p—1.

Plus généralement, un produit # de p commutateurs de H est caractérisé dans
[E-H-N] par la propriété suivante:

inf (A(x)—x)<2p -1 et sup(h(x)—x)>1-2p.

xeR xeR

Le groupe H posséde un quasi-morphisme célébre, le nombre de translation
7, défini indépendamment du réel x par:

) = lim T X ey
n

n— oo

Le nomb~re de translation est homogene, et il détermine la longueur stable du
groupe H:

PROPOSITION 3.8.  Pour tout élément h de H: || h|z= ! | T(h)|.
7
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Preuve. Le nombre de translation est Iunique quasi-morphisme
homogéne de H (3 morphisme et homothétie prés), puisque Hf,(ﬁ, R) est égal
a R(dt) (IM-M]). On applique alors le théoréme de dualité. .

Une autre preuve plus directe consisterait & utiliser le critére de [E-H-N]
cité¢ plus haut.

Revenons au cas du groupe libre L = L(u,v) et calculons la longueur
stable de [u, [u,v]]. Pour cela considérons la combinaison de quasi-
morphismes de Brooks de L(u,v] définie par

f = fuuu-l + fu—lu—lu—l + fu*luu + qu‘lu .

On vérifie comme en 1.1 que | df|| = 2. L’élément [u, [, v]]” est conjugué a
(wou-tv~'u-touww-YH" et fwwu-'vo'u-tvuw-")") =4n - 1; d’ou
(lemme 1.1) c([u, [u,v]]") > E(n/2) + 1. Finalement, on conclut que

| [, G, 011 = 172
Voici un exemple de calcul de longueur stable par dualité. Soit f = f,, le

quasi-morphisme de Brooks associé & uv dans L = L(u,v). Alors || df| < 1,
donc || do | =1l o |, < 2. Mais ¢([vu?,u~'v]) = 2, et comme

(a2, u-w) | <2 o] e, w101, ,

1
on voit que | [vu?,u-"w]|, = 5
De plus la norme de la classe ¢ de d¢ dans HE(L,R) est égale a 1. Pour
cet exemple, on a donc || do | =2 c|,.

On a constaté que la longueur stable peut prendre des valeurs arbitraires
(dans H par exemple). Il est également facile de construire un groupe
dénombrable I' avec un élément y de longueur stable rationnelle donnée:

T'=<uo,wt|[uv]?=I[wit]l>, ||[u,v]||r=2i (p e N¥) .
D

(pour la minoration prendre un morphisme de I' dans f{) Cependant, pour
les groupes libres, elle est minorée par 1/6 (2.6); les résultats précédents
suggérent la question suivante, laissée au lecteur comme conclusion:

Question: la longueur stable d’un groupe libre est-elle & valeurs demi-
entieres?



[G-T]
[Gr 1]

[Gr 2]
[H-S]
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