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ON A THEOREM OF SIKORAV

by Marco Brunella

The aim of this note is to give a new proof of the following theorem of
J.C. Sikorav:

Theorem ([Sik]). Let M be a closed manifold, let

be a hamiltonian isotopy and let L C T*M be an immersed lagrangian
submanifold with a generating function 5:Mx R^R quadratic at
infinity, then also has a generating function quadratic at infinity.

Recall that a generating function of an immersed lagrangian submanifold
L C T*M is a function S:M x R, (q, X) S(q, X), such that:

a) — : M x R^ -> R^ is transverse to 0 e R^, so C M x Rk
dX

is a submanifold;

0<S

b) L {\e T*MI3^ e R* : — (jt ft), X) (U ft))}
OA

where n: T*M - M is the canonical projection.
The generating function S is said to be quadratic at infinity if for some

where Q is some non-degenerate quadratic form.
A hamiltonian isotopy of a symplectic manifold is a smooth curve of

symplectic diffeomorphisms {(M*e[o,i] such that

([>,: r*M-+ T*M, t e [0,1]

R > 0

S(q, X) Q(X) V(q, X) e M x R*, || X || > R

$o id and $t — $t + s o (|)
ds s o

• def d - 1

is a hamiltonian vector field Vt e [0,1].
The above theorem is important in the intersection theory of lagrangian

submanifolds.
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Our proof starts with the following remark, contained in [Gir] under the

name of "Chekanov trick". Let i:M RN be any embedding and let RN,

M be equipped with riemannian metrics such that i is an isometric embedding.
These metrics induce isomorphisms T*M — TM and PR^ - TRN, so the

embedding 77: TM TRN induces an embedding

j:T*M-+ T*RN

which is a symplectic embedding. Remark that j(T*M) is a subbundle of
(7*rn)[/(m) ancj there is a canonical decomposition

(;r*Rw)|/(M) j(T*M) © Nf(M)

where Nf{M) is the conormal bundle of i(M) in RN. This decomposition is the

dual version of the decomposition (TRN)\i{M) (Ti){TM) ® Ni{M), Ni{M)

being the normal bundle of i(M) in RN.
We want to extend hamiltonian isotopies and lagrangian submanifolds

from r*M(> j{T*M)) to T*RN.

Lemma 1. Let (j),: T*M -> T*M, t e [0,1], be a hamiltonian isotopy
and let j: T*M T*RN as above, then there exists a hamiltonian isotopy

il//: r*R"-> T*RNf t e [0,1], such that "it e [0,1]:

1) j 0 0, \jjtoj
2) vj/, leaves invariant (7*RN)|/(M)

moreover, if V C R7^ is any neighborhood of i(M) then we may choose

every \j/, with support contained in (77*RN)|j/.

Proof. Let pr: (T*RN)im j(T*M) © N?(M) -> j(T*M) be the projection

on the first factor; (r*R©/(M) is a coisotropic submanifold of r*RN and

the fibres of pr are its characteristic leaves. For every x e j(T*M) let Ex be

the antiorthogonal complement of Tx(j(T*M)); Ex is transverse to
Tx(j(T*M)) and intersects TX((T*RN) |/(M)) along Tx(pr~l(x)). This implies
that we may find a tubular neighborhood of j{T*M) in r*RN,
p0:U-+j(T*M), such that the fibre Pq1(x) intersects (r*RN)|/(M) along

pr~l(x):

p~\x) n (T*R»)\im pr~l(x) n U Vxej{T*M)
Let now {//©e[0,i] be hamiltonians of the vector fields {<Mfe[o,i], define

W e [0, l]Kt:Uu (T*RN)\im - R by:
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\Ht(j~l(po(x))) if xeU
KAx)

1 H,(j ~1 (p/-(*))) if * e (T*RN)\im

The relation between pQ and pr guarantees that Kt are well defined; now
extend smoothly the family {ifr}re[0,i] on all T*RN, in such a way that Kt are

constant outside (T*RN)|j/ (this is possible choosing U such that its

projection on has closure contained in V). Then the hamiltonian isotopy
\j/,: T*Rn - T*RN, t 6 [0,1], generated by {K[}le[0t :1] satisfies the conclusions

of the lemma.

Lemma 2. Let L C T*M be an immersed lagrangian submanifold
with generating function S:MxR^R quadratic at infinity, then

there exists an immersed lagrangian submanifold L C T*RN with a

generating function S: RN xR^R quadratic at infinity and such that
L n (r*RA,')|/(M) j(L) (transversally); moreover, if V C RN is any
neighborhood of i(M) then we may choose L and S such that L is

equal to the null section outside (PRN)|F and S is equal to Q(=
quadratic form associated to S) outside FxR^.

q0
Proof. Let W-*i(M) be a tubular neighborhood of in R'7, with

fibres orthogonal to i(M) and W CV;define
by SX)S(i ~ l(q0(x)), X)

and extend S to all R v x R ' preserving the quadraticity at infinity and in
such a way that S(x. X) Q(X) outside V x R<:; a transversality argument
allows to find such a S such that it generates a lagrangian submanifold
L C T*RN, and clearly L, S satisfy the conclusions of the lemma.

Conversely:

Lemma 3. Let L c T*RN^,L C T*M be immersed lagrangian sub-
manifolds such that j(L) L n (T*RN)\im transversally; if 5:R"
x R* -» R is a generating function for L, then S:MxR'-»R, S(x, X)

S(i(x),X), is a generating function for L.

Remark that if S is quadratic at infinity, so is S.

Let now L C T*M, S: Mx R* R, (J),: T*M -» t e [0,1], as in the
hypotheses of the theorem. Let v|/,: r*R" -> r*R", / e [0,1], be an extension
of as in lemma 1, and let LCL*RA' be an extension of as in lemma 2,
with generating function S:RNxR* -> R. We have:
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yfoiCL)) ViÜ(L)) Vi(£) n (r*R")|/(M)

and so, by lemma 3, we have only to prove that \|/i(Z) has a generating
function, quadratic at infinity. If we choose V with compact closure, then the

support properties of \j/, outside (r*RN)|K allows to "compactify"
{Mh}/e[o,i]> ^at is there exists a hamiltonian isotopy {ij/JmiM] of r*RN with
compact support such that \j/i(Z) ij/i(Z) (remark that the quadraticity at

infinity of S implies that Z n (r*RN)|K is contained in a compact set,
and so is [u/6[0,i]\|/,(Z)] n (T*RN)\V). Observe that S is equal to a quadratic
form Q Q(X) outside a compact set.

We may decompose \j>i as a product \j>i g{ ° °g/, where each gj is a

symplectic diffeomorphism with compact support and with a generating
function Fj: RN x RN R:

(P, Q) gj(p> 0) p p + ^ (Q>p), Q Q + ~p- (Q>p)
9Q àp

(we use here the standard symplectic coordinates on T*RN). We may suppose
that each Fj has compact support.

The proof of the theorem is achieved by an iteration of the following
lemma :

Lemma 4. Let Z C PRN be an immersed lagrangian submanifold
with generating function Z:R^x R^ R such that outside a compact
set S(x, X) Q(X) non-degenerate quadratic form, let g: T*RN-> T*RN
be a symplectic diffeomorphism with a generating function F: RN x RN R

with compact support; then g{L) has a generating function equal to a

non-degenerate quadratic form outside a compact set.

Proof. A computation shows that T:RN x Rk x RN x RN->R defined

by

JX*,X,É,T1) F(X,Ö + S(x + t\,X) -
is a generating function for g(L) (with X, E,,r| as parameters). Let p: [0, + oo)

[0,1] be a smooth function s.t. p(/) a 1VK 1 and p(/) 0 V/ ^ 2, then

for an appropriate choice of positive constants Ku K2, K3, K4 the function

sHi")- p p I I H v. ;|

lf)> (r)a3 / \ A4 /
+ p I—I p rv i [s(*+ti.x) - ß(x>] + e(X) - ^ • n
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is again a generating function for g(L), and it is equal to the non degenerate

quadratic form Q(X) - % • q outside a compact set. A possible choice of the

constants Kj is the following:
def ~

if S0(x, X) S{x, X) - O(l)

if supp So C {|| x II < R,IIXII < R},suppC {|| x || < || £, || <

and

e sup

then define:

Kx s.t. K, > R and || X || ^ Kx

1

» So, ic sup
8F

- d sup
0So

0x

dSo

dX
ß sup

dp

dt
>

0O

dX
> — $a + e

Kx

1

K2 K3 K s.t. K> R, K > — §b + c, K > — $a + d
K K

Ka s.t. K4 > K + R
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