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ON A THEOREM OF SIKORAV

by Marco BRUNELLA

The aim of this note is to give a new proof of the following theorem of
J.C. Sikorav:

THEOREM ([Sik]). Let M be a closed manifold, let
¢O;: T*M — T*M, t € 10, 1] ,

be a hamiltonian isotopy and let L C T*M be an immersed lagrangian
submanifold with a generating function S:M X R¥—> R quadratic at
infinity, then also &,(L) has a generating function quadratic at infinity.

Recall that a generating function of an immersed lagrangian submanifold

L C T*M is a function S: M X R¥* >R, (g, X) = S(q, ), such that:
oS i aS
a)a:Mka—*RklstransversetoOeR", SO a—x=o C M x Rk

is a submanifold;
oS
b) L = {£eT*M |31 eRF: - (m(€),A) = 0,& = d(S(-,V)(n())}

where n: T*M — M is the canonical projection.
The generating function S is said to be quadratic at infinity if for some
R >0

S(g:M) = QM) V(@A) eMXxRF|L]|>R

where Q is some non-degenerate quadratic form.
A hamiltonian isotopy of a symplectic manifold is a smooth curve of
symplectic diffeomorphisms {¢;};cpo,1; such that
_ « def d
Go=1id and G;=—| ;00"
ds is=0
is a hamiltonian vector field V¢ e [0, 1].

The above theorem is important in the intersection theory of lagrangian
submanifolds.
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Our proof starts with the following remark, contained in [Gir] under the
name of ‘‘Chekanov trick”’. Let i: M — R be any embedding and let R,
M be equipped with riemannian metrics such that 7 is an isometric embedding.
These metrics induce isomorphisms 7*M = TM and T*RY = TR¥V, so the
embedding Ti: TM — TRY induces an embedding

Jj: T*M — T*R¥

which is a symplectic embedding. Remark that j(7*M) is a subbundle of
(T*R™)|;an and there is a canonical decomposition

(T*RM) i = J(T*M) @ Ny,

|
|
|
|
! where N, is the conormal bundle of i(M) in R¥. This decomposition is the
i dual version of the decomposition (TR™)|ian = (T))(TM) @ Nian> Nion
| being the normal bundle of /(M) in R¥.
% We want to extend hamiltonian isotopies and lagrangian submanifolds
- from T*M(=j(T*M)) to T*RY,

LEMMA 1. Let &,: T*M — T*M, t € [0,1], be a hamiltonian isotopy
and let j: T*M — T*RYN as above, then there exists a hamiltonian isotopy
y,: T*RYN — T*RN, t € [0,1], such that Yt e [0,1]:

1) job, =y, 0]
2) v, leaves invariant (T*RM)|;up

moreover, if V C RY s any neighborhood of i(M) then we may choose
every i, with support contained in (T*RM)|,.

| Proof. Let pr: (T*R");an = j(T*M) @ Ny, — j(T*M) be the projec-
| tion on the first factor; (T*R™);up is a coisotropic submanifold of 7#*R”» and
| the fibres of pr are its characteristic leaves. For every x € j(T*M) let E, be
the antiorthogonal complement of T,(j(T*M)); E, is transverse to
| 7.(j(T*M)) and intersects T.((T*R™)|;an) along T,(pr-1(x)). This implies
that we may find a tubular neighborhood of j(7T*M) in T*R"V,
pol U— j(T*M), such that the fibre po"(x) intersects (T*RM)|;a along
 pr—1(x):

po @) N (T*RY) |ipn =pr=') n U Vx e j(T*M) .

Let now {H,}cpo,;y be hamiltonians of the vector fields {(i),},e[o,l], define
Vvt e [0,11K,: U U (T*RM)|iun — R by:
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H( Y(px)) if xeU
H(j Y (prx)) if xe (T*RY|i -

The relation between p, and pr guarantees that K, are well defined; now
extend smoothly the family {K,};cj0,1j on all 7*R%, in such a way that K| are
constant outside (7*R¥)|, (this is possible choosing U such that its
projection on R¥ has closure contained in V). Then the hamiltonian 1sotopy
y,: T*RY = T*RN, t € [0, 1], generated by {K,},cpo,1; satisfies the conclusions
of the lemma. [

K(x) = {

LEMMA 2. Let L C T*M be an immersed lagrangian submanifold
with generating function S:M X R¥— R quadratic at infinity, then
there exists an immersed lagrangian submanifold L C T*RN  with a
generating function S:R¥ x R¥ >R quadratic at infinity and such that
LN (T*RN)}[(M) = j(L) (transversally); moreover, if V C RN s any
neighborhood of i(M) then we may choose L and S such that L is
equal to the null section outside (T*R™)|, and S s equal to Q (= qua-
dratic form associated to S) outside V X R¥X.

Proof. Let w3 I(M) be a_tubular neighborhood of /(M) in R¥, with
fibres orthogonal to i(M) and W C V; define

S:WXxRK>R by S =SGE"(qox), 1)

and extend S to all RY x R* preserving the quadraticity at infinity and in
such a way that 5’(x A) = Q(\) outside V' x R¥; a transversality argument
allows to find such a S such that it generates a lagrangian submanifold
LcC T*R¥, and clearly L, S satisfy the conclusions of the lemma. [

Conversely:

LEMMA 3. Let L C T*RN,L C T*M be immersed lagrangian sub-
manifolds such that j(L) =L m(T"RN)l,(M) transversally; if S:RN
X R¥ = R is a generating function for L, then S:M x Rt — R, S(x, \)
=S (i(x),\), is a generating Junction for L. L]

Remark that if S is quadratic at infinity, so is S.
Letnow L C T*M, S: M X R*¥ > R, ¢,: T*M —> T*M, t € [0, 1], as in the
hypotheses of the theorem. Let y,: T*RY —» T*RN, ¢ ¢ [0, 1], be an extension

of ¢, as in lemma 1, and let L C T*R™ be an extension of L as in lemma 2,
with generating function S: R x R¥ — R. We have:
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J(oi@)) = v (L)) = wiL) N (T*RY) ;a0

and so, by lemma 3, we have only to prove that \pl(]:) has a generating
function, quadratic at infinity. If we choose V with compact closure, then the
support properties of vy, outside (7*RM)|, allows to ‘‘compactify’’
{W/}rep,17, that is there exists a hamiltonian isotopy {W,}eo,1; of T*R¥ with
compact support such that wl(L) = \ul(L) (remark that the quadraticity at
infinity of S 1mphes that L N (T*RM)|, is contained in a compact set,
and so is [U e, 1 wt(L)] N (T*RM)|,). Observe that S is equal to a quadratic
form Q = Q()\) outside a compact set.

We may decompose y,; as a product y; = g, ©..0g,, where each g; is a
symplectic diffeomorphism with compact support and with a generating
Junction F;: RY x RV — R:

OF OF;
P,0)=gp.g) e P=p+—(Qp)g=Q+—(Q.p)
00 op
(we use here the standard symplectic coordinates on 7*R%). We may suppose
~ that each F; has compact support.
’ The proof of the theorem is achieved by an iteration of the following
lemma:

LEMMA 4. Let L C T*RN be an immersed lagrangian submanifold
with generating function S: RN x R¥—> R such that outside a compact
set S (x, \) = O(\) = non-degenerate quadratic form, let g: T*RN — T*RVN
be a symplectic diffeomorphism with a generating function F:RY X RM - R
with compact support; then g(i) has a generating function equal to a
non-degenerate quadratic form outside a compact set.

Proof. A computation shows that 7: RY X R¥ X RN x RN — R defined
by

T(x, M EM) = F(x, &) + Se+m,0) — &1

| is a generating function for g(i) (with X, &, as parameters). Let p: [0, + o)
i — [0, 1] be a smooth function s.t. p(?) = 1V¢ < 1 and p(¢) = 0Vz > 2, then
| for an appropriate choice of positive constants K, K;, K3, K; the function

N A
T, A, E,m) = p (”——”) p (”" ”) F(x,£)

K, K,

ey (Ixhy <
el - O\ ) — E -
(K3) (K4) [Sx+n,2) — Q)] + Q(h) — & -1
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is again a generating function for g(i), and it is equal to the non degenerate
quadratic form Q(A) — & - m outside a compact set. A possible choice of the
constants K is the following:
def ~
if  So(,A) = SEA) — Q4 ,
it supp So C {lx|<R,IA[<R}, supp FC{lx|<R[E[<R},

and
oF AN
if a=sup F, b =sup S, c=supH5—&— s d=sup“5; ,
aSo dp
e=sup || 2| o= |2

then define:

S.1. an = =

1 1
K2=K3=Ks.t.K>R,K>I-EBb+c,K>I—<Ba+d

K,st. K,>K+ R. []
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