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78 R. BACHER
2. ACTION OF G,.; ON pi(Zp)

In this section, we show how the n usual generators (0, 1), ..., (n — 1, n) of
the group o,.; act on the subset py(X;) of (Z/kZ)"~!.

LEMMA 2.1. Let (0y,..,0,_1) € pi(Zy). Then

0,1) - (01,00, ey Oy ey Oy 1) = ((1 — 0= 0= .. —Opy-1), 02, .oy ai,--,an—l)

@Gi+1) (0, 0 Qs ey Opmg) = (O, ey O, Oy . Oyoq), 1 <Ii<n—2

(M= 1,1) * (01s ey Oy ey U2, Opmg) = (=000, Ly, ey — @0,y = Oy, 00,

n

In particular, if (0,,..,0,_1) € pp(Xy), then ao,_, is invertible (mod k).

Proof. Let us show the first equality. Let (a,,..,0,_;) € pi(Zs).
Consider the numerated simplex S, with vertices

(2.2) Vo=0,0,=e,1<i<n—1,0,=ke, + ) ae

i=1
| (a; representant of the class a;).

Let us identify R” with the points of the hyperplane H of R”*! defined
by x,.; = 1. By identifying the elements of R” with vector columns we

N
H

see that

\1/
1

| where 0 is the origin in R” and {ey, ..., e,} is the usual basis of R” and the 1
in the second matrix is where you think it should be, namely at the i-th row.
There exists a natural injection of the group Aff(Z") in the subgroup of

| GL, ., (Z) which preserves H. It is easy to check that the following matrix
i M € GL, . (Z) exchanges v, and v;, preserves v; for 2 < i < n and sends v, to

| n
} the element ke, + 1 — Y ' 'ayer + Y7, aer:

-1 -1 -1 .. -1 0 1
( 0 1 0O .. 0 0 o\ :;
0 0 1 .. 0 0 0 #,
M = . ;
0 0 0 .. 1 0 0 q
K 0 0 o .. 0 1 o)
0 0 0 .. 0 0 1
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The calculations for the transposition (i,i+ 1) are immediate if 1 <1
<n-—2.

Finally, let us consider the last equality: We take again the simplex S,
with vertices as in (2.2). Since S, is small-faced, there exists a simplex
Sy, (n—1) integers by, .., by and an element g € Aff(Z”) such that the
vertices of S, are

n-1
vi=0,0l=e,1<i<n—1,0,=ke,+ ) bie
i=1
and such that g(v;) = v/ for 0<i<n—2,80,-1) =0, and g,) = Vp-1.
Since v, = vy = 0 we have g(0) = 0 and g is in fact in GL,(Z). The matrix
of g with respect to the standard basis is

1 0 0 0 0 b1 \ (1 0 0 a; O\ -1
0 0 0 1 0 bn—Z 0 0 1 a,_» 0
0 0 0 1 bn—l \O 0 a,_ i 1}
0O 0 O 0 } 0 O 0 k 0
this gives
1 0 O 0 O b, \ k 0 0 0 O —a, \
0 1 O 0 0 b, | 0O k£ O 0 O —a,
0 0 0 1 0 bys| klo 0 o0 k0 —a,;
0O 0 O 1 bn_l} 0O 0 O 0 0 1
0O 0 O 0 k 0O 0 O 0 k —an_I)
But since g € GL,(Z) this implies that
—q—bja,_;, =0 (modk) 1<£ig<n-2.

Let us now suppose that a,_; is not invertible (mod k). Then there exists
some prime p dividing both k& and a,_,. But then the prime p divides g; too
for every i. So p divides all coefficients of the vector v, — vg which is an edge
of S,. But then S, is not small-faced which contradicts the fact that
(ay,..,0,-1) € pe(Zr). So we have proved that a,_; is invertible (mod k).
And the b/s satisfy

bi= —aa,;' (modk) 1<i<n-2 and b,_,=a;' (modk).

This proves the last equality. [
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