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78 R. BACHER

2. Action of on + l on p*(L*)

In this section, we show how the n usual generators (0,1), (n - 1, n) of
the group on + l act on the subset p*:(E*) of (Z/kZ)n~K

Lemma 2.1. Let (ai, e p^ÇE*)- Then

(0,1) • (aj, a2,a,,.., a„_0 ((1 - cq - a2- - a„_0, a2, a,-,

(/, / + 1) • (al5 ..,a/,a/+i, ..,a^_i) (ah ..,a/ + uais.., 1 ^ ^ n - 2

(72- 1,Aï) • (ai, ..,a/5 ..,a^_2,an_i) « (-aia^.1,,.., - a/a~_\,.

In particular, if (ai,.., a„_i) e then an-\ is invertible (mod k).

Ct/7 -2&n - I 5

Proof. Let us show the first equality. Let (ai,.., a„_ j) e
Consider the numerated simplex Sv with vertices

(2.2) u0 0, U( ei9 1 ^ i ^ n

n — l
1 ,u„ ken + £ a,e,

(fli représentant of the class a/).
Let us identify R" with the points of the hyperplane H of R" + 1 defined

by xn + i 1. By identifying the elements of R" with vector columns we

see that

l°\

0
/v i /

/°\
i

u!
where 0 is the origin in Rn and {elf ...,enj is the usual basis of R" and the 1

in the second matrix is where you think it should be, namely at the Lth row.
There exists a natural injection of the group Aff(Zn) in the subgroup of
GLn + i(Z) which preserves H. It is easy to check that the following matrix
M e GLn +1 (Z) exchanges u0 and V\, preserves for 2 ^ i < n and sends un to

M

-r>: 1
x n — 1

1 ai)e 1 + L, i 2

-1 - 1 -1 - 1 0 1\
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 17
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The calculations for the transposition (i, i + 1) are immediate if 1 ^ /

^ n - 2.

Finally, let us consider the last equality: We take again the simplex Sv

with vertices as in (2.2). Since Sv is small-faced, there exists a simplex

S^in—l) integers b{, bn-\ and an element g e Aff(Z") such that the

vertices of SI are

n - 1

Vq h® 0, Ui £jta 1 ^ î ^ ft l,^n ~ F ^ bi&i
i= 1

and such that gOy) ü/ for 0 < / ^ /î — 2,g(v„-i) v'n and g(p*) 1 •

Since a0 0 we have g(0) 0 and g is in fact in GLn(Z). The matrix

of g with respect to the standard basis is

/I 0 0 0 0 b V 1 0 0 «i °\ -1

0 1 0 0 0 b2 0 1 0 a2 0

0 0 0 1 0 bn- 2 0 0 1 an-i 0

0 0 0 0 1 b„- 1 0 0 0 &n - 1
1

\o 0 0 0 0 k \o 0 0 k 0/
this gives

1 0 0 0 0 h1 Ik 0 0 0 0 - a\
0 1 0 0 0 b2

1

0 k 0 0 0 — a2

0 0 0 1 0 b„-2 k 0 0 0 k 0 - a,n-2
0 0 0 0 1 b„-1 0 0 0 0 0 1

\o 0 0 0 0 k / \o 0 0 0 k - n-J

But since g e GLn(Z) this implies that

- at - btan _i 0 (mod k) 1 ^ i ^ n - 2

Let us now suppose that a„-i is not invertible (mod k). Then there exists

some prime p dividing both k and an_ i. But then the prime p divides at too
for every i. So p divides all coefficients of the vector vn - v0 which is an edge

of 5V. But then Sv is not small-faced which contradicts the fact that
(oq,.., an-1) e PfcCCfc). So we have proved that an- % is invertible (mod k).
And the ö/s satisfy

bi - (mod/;) 1 ^ i ^ n - 2 and bn-\ (mod/:)

This proves the last equality.
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