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76 R. BACHER

In the hexagonal lattice:

Example 0.7. Case where n = 3,k = 2.

Let C.= [0,1]3 be the standard cube of R3. Let A be the tetrahedron
defined by the vertices of the cube of which the sum of the coordinates is even.
It is easy to see that A is affinely regular and that the linear transformation
defined by

e~ —e;, etre+e, ey>e + e

(where (e;, e,, e3) is the standard basis of R?) sends A to the representant
given in Theorem 0.5.

1. SIMPLICES WITH SMALL FACES

| Definition 1.1. An integral simplex S is said to have small faces if, for
| each hyperplan H containing a (n — 1)-face of S, the vertices of S contained
| in H constitute an affine Z-basis of Z" N H.

A numerotation of an integral simplex S is an enumeration

V= (UOa Uy .0 Un)

of the vertices of S. We will denote by S, the simplex S with numerotation v.
| The group Aff(Z") acts naturally on the set of numerated simplices and we
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will say that S, (with v = (g, .., U,)) is equivalent to Sy (with v’ = Vg, -+, Un))
if there exists g € Aff(Z") such that g(v;) = v; for all 7.

The group 6,,; acts on the set of numerated simplices: If seoc,si1s a
permutation of {0,..,n} and if S, is an integral simplex numerated by
v = (Ug,..,Vi,..,U,), We define

s+ S, =S,
where
SV = (US—I({)), coy Us—1()s ooy US—I(,;)) .

This action of o, ., commutes with that of Aff(Z"), hence 6, acts also
on the equivalence classes of numerated simplices modulo Aff(Z").

An integral simplex S is affinely regular if and only if the stabilizer Stab (S)
operates transitively on the numerotations of S.

Let us recall an elementary and well-known lemma:

LEMMA 1.2. Let v;,..,b,_, be linearly independent vectors of Z17".
Let H be the hyperplane of R" generated by the v;’s, and suppose that
Uiy .., Un—1 form a basis of the sublattice H N Z".

Then we can complete vy, ..,0,_; to a basis of Z".

Proof. See for instance the Corollary in Bourbaki, Algébre, chap. VII,
§4, No. 3.

From this point until the end of section 2, & will be some fixed natural
integer. Let now S, be a numerated simplex with small faces, of volume
k/n!. Let {e;,..,e,} be the canonical basis of Z” C R”. The lemma implies
that there exists g € Aff(Z") such that gS, has vertices

n—1
Vo=0,0,=€,.,0p1=€_1,0p = ke, + Y, ae
i=1

where the a;’s are integers. An easy calculation shows that the a's are well
defined (mod k).

Let us associate to S, the element (a,,..,a,_;), where a; is the class of
a; (mod k). This gives us a map py: Xy = (Z/kZ)"-!, where ¥, is the set of
numerated simplices with small faces of volume k/n!. For S, € ;, the
element p,(S,) depends only of the equivalence class of S, modulo Aff(Z")
and this allows us do define an action of 6,,; on pg(Z,).
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