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76 R. BACHER

In the hexagonal lattice:

Example 0.7. Case where n 3, k 2.

Let C - [0,1]3 be the standard cube of R3. Let À be the tetrahedron
defined by the vertices of the cube of which the sum of the coordinates is even.

It is easy to see that À is affinely regular and that the linear transformation
defined by

ei i-> - e3 e2 ^ ex + e3 e3 ^ e2 + e3

(where (ei,e2,e3) is the standard basis of R3) sends À to the représentant
given in Theorem 0.5.

1. SlMPLICES WITH SMALL FACES

Definition 1.1. An integral simplex S is said to have small faces if, for
each hyperplan H containing a (n - l)-face of S, the vertices of S contained
in H constitute an affine Z-basis of Zn n H.

A numérotation of an integral simplex S is an enumeration

v (u0,ul9 ..,vn)

of the vertices of S. We will denote by Sv the simplex S with numérotation v.
The group Aff(Z") acts naturally on the set of numerated simplices and we
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will say that Sv (with v (u0, un)) is equivalent to Sf (with v' (üq9 u'„))

if there exists g e Aff(Z") such that g(Vi) u\ for all i.

The group on + i acts on the set of numerated simplices: If 5 g on+\ is a

permutation of {0, ,.9n} and if 5V is an integral simplex numerated by

v (u09..9ui9„9un)9 we define

s ' Sv Ss. v

where

S ' V (Us- i(0) 5 • • 5 Vs~ i(/) 5 • • i(n)) •

This action of on + i commutes with that of Aff(Zw), hence o„ + i acts also

on the equivalence classes of numerated simplices modulo Aff(Z").
An integral simplex S is affinely regular if and only if the stabilizer Stab (5)

operates transitively on the numérotations of S.

Let us recall an elementary and well-known lemma:

Lemma 1.2. Let vx, i be linearly independent vectors of Zn.
Let H be the hyperplane of R" generated by the vf s, and suppose that

U\, ..9un-1 form a basis of the sublattice H n Z".
Then we can complete ox, ..9un- x to a basis of Zn.

Proof. See for instance the Corollary in Bourbaki, Algèbre, chap. VII,
§4, No. 3.

From this point until the end of section 2, k will be some fixed natural
integer. Let now Sv be a numerated simplex with small faces, of volume
k/n \. Let {elf ..,enj be the canonical basis of Z" C Rn. The lemma implies
that there exists g e Aff(Z") such that gSv has vertices

n - 1

o00,Ui eu .„vn-ien-i,v„ + ^ ^i= 1

where the a "s are integers. An easy calculation shows that the a\s are well
defined (mod k).

Let us associate to Sv the element (aXi ..,a^_0, where az is the class of
at (mod k). This gives us a map p*: L* - (:Z/kZ)n~l9 where Lk is the set of
numerated simplices with small faces of volume k/n\. For Sv e Lk, the
element pk(Sv) depends only of the equivalence class of Sv modulo Aff (Zn)
and this allows us do define an action of on + x on pfr(X^).
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