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AFFINELY REGULAR INTEGRAL SIMPLICES

by Roland BACHER

0. INTRODUCTION

We will consider the standard lattice Z" of the real vector space R” with
n > 2. An integral simplex is a non-degenerate simplex of R” with all vertices
in Z”. In this note, all simplices will be integral.

We will denote by Aff(Z") the group of affine bijections of R” which
preserve Z"; it is the usual semi-direct product Z” X1 GL,(Z). The affine
groupe Aff(Z") acts naturally on the set of integral simplices in Z".

For each integral simplex S we define

Stab(S) = {g € Aff(Z") | g(S) = S}

which is of course a subgroup of the group o,.; (group of permutations of
n + 1 objects), since there exists an injection in the group of permutations of
the vertices of S.

Definition 0.1. A simplex S is called affinely regular if Stab(S) is equal
to the whole group 6, ..

The definition of an affinely regular simplex is independent of the metric.
For a discussion of integral simplices which are metrically regular one can
consult [1] or [2] of the bibliography.

Two simplices S and S’ are equivalent if there exists g € Aff(Z") such
that g(S) = S’. The scope of this note is to find all equivalence classes of
affinely regular simplices.

Let S be a simplex. Let us denote by AS the image of the simplex S
multiplied by some non-zero integer A.

PROPOSITION 0.2.  The groups Stab(S) and Stab(AS) are isomorphic
for any integer )\ + 0.

Proof. Denote by 8(\) the linear automorphism x = Ax of R”. Let ¢,
denote the endomorphism g+ 8(A)gd(A~1!) of Aff(Z"); observe that o, is
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one-to-one, but is not onto if |A|>2. Indeed, an affine Dbijection
g € Aff(Z") is in the image of ¢, if and only if g preserves the sublattice AZ"
of Z".

If g € Stab(S), then ¢,(g) € Stab(ALS). Consequently ¢, restricts to an
injective homomorphism ;, : Stab(S) — Stab(AS). Let now /# € Stab(ALS). We
can write h = at, where a is in GL,(Z) and where ¢ is a translation. As a !
preserves AZ" (as any element of GL,(Z) does), and as /4 preserves AS one has

t(AS) =a~"th(AS) = a~'(AS) C a~'AZ"

so that ¢ preserves AZ"”. Hence & = at preserves AZ", so that A is in the image
- of ¢,. It follows that y, is an isomorphism onto. [

Caution: We have in fact proved that Stab(S) and Stab(AS) are conjugate
in Aff(Q") but they are in general not conjugate in Aff(Z"). This can be seen
. for instance by the fact that Stab(S) fixes the barycenter P of S and Stab (AS)
| fixes AP. But P and AP are not necessarily in the same orbit of Aff (Zm).
| So AS is affinely regular if and only if S is affinely regular. Hence we will
 be interested in minimal simplices.

Definition 0.3. An integral simplex S is minimal if, for every integral
simplex 7 and for every integer A > 1 such that S is equivalent to A7, we have
A=1.

PROPOSITION 0.4. Let S be an integral simplex of Z". The following
assertions are equivalent:

1) S is minimal.
ii) For every integer N\ = 2 there exists no class of 1" modulo NL"
which contains all the vertices of S modulo ML".

Proof. Not (ii) = not (i). Let S be a simplex with all vertices in the same
class of Z” modulo AZ”. Let vy, be one of the vertices. The translate of S by
— U 1s then a simplex with the coordinates of all vertices divisible by some
A > 2. This implies that S is not minimal.

Not (i) = not (ii). Let S be a non-minimal integral simplex. Hence there
exists an integral simplex 7, an integer A > 2, an element g € GL,(Z) and a
vector v € Z” such that S = g(AT) + v. But then all the vertices of S are in
the class of v in Z” modulo AZ". [l

The main subject of this note is to show the following theorem:
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THEOREM 0.5. For n > 2, one has a bijection between the equivalence
classes of minimal affinely regular integral simplices and the set of positive
divisors of n + 1 (including 1 and n + 1). The bijection associates to the
divisor k of n + 1 the class of the simplex whose vertices are given by the
columns of the following n X n matrix

1 0 0 ... 0 k-1
o 1 0 .. 0 k-1
. . k=1
0 0 0 1 k-1
0 0 O 0 k

and by the origin of Z".

Proposition 0.4 implies that all representants in the theorem are minimal.
Moreover, representants associated to distinct divisors k, k” of n + 1 are
non-equivalent since they are respectively of volumes k/n! and k'/n!.

The plan of the proof is as follows. We will introduce a family of particular
simplices: those which have small faces. Then we dress the list of all small-
faced affinely regular simplices (this gives us in fact the list of the theorem).

Last, we prove that an affinely regular minimal simplex is necessarily
small-faced.

Let us start with some examples:

Example 0.6. Case where n = 2, k = 3.

In the standard lattice:
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In the hexagonal lattice:

Example 0.7. Case where n = 3,k = 2.

Let C.= [0,1]3 be the standard cube of R3. Let A be the tetrahedron
defined by the vertices of the cube of which the sum of the coordinates is even.
It is easy to see that A is affinely regular and that the linear transformation
defined by

e~ —e;, etre+e, ey>e + e

(where (e;, e,, e3) is the standard basis of R?) sends A to the representant
given in Theorem 0.5.

1. SIMPLICES WITH SMALL FACES

| Definition 1.1. An integral simplex S is said to have small faces if, for
| each hyperplan H containing a (n — 1)-face of S, the vertices of S contained
| in H constitute an affine Z-basis of Z" N H.

A numerotation of an integral simplex S is an enumeration

V= (UOa Uy .0 Un)

of the vertices of S. We will denote by S, the simplex S with numerotation v.
| The group Aff(Z") acts naturally on the set of numerated simplices and we
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