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AFFINELY REGULAR INTEGRAL SIMPLICES

by Roland BACHER

0. INTRODUCTION

We will consider the standard lattice Z" of the real vector space R” with
n > 2. An integral simplex is a non-degenerate simplex of R” with all vertices
in Z”. In this note, all simplices will be integral.

We will denote by Aff(Z") the group of affine bijections of R” which
preserve Z"; it is the usual semi-direct product Z” X1 GL,(Z). The affine
groupe Aff(Z") acts naturally on the set of integral simplices in Z".

For each integral simplex S we define

Stab(S) = {g € Aff(Z") | g(S) = S}

which is of course a subgroup of the group o,.; (group of permutations of
n + 1 objects), since there exists an injection in the group of permutations of
the vertices of S.

Definition 0.1. A simplex S is called affinely regular if Stab(S) is equal
to the whole group 6, ..

The definition of an affinely regular simplex is independent of the metric.
For a discussion of integral simplices which are metrically regular one can
consult [1] or [2] of the bibliography.

Two simplices S and S’ are equivalent if there exists g € Aff(Z") such
that g(S) = S’. The scope of this note is to find all equivalence classes of
affinely regular simplices.

Let S be a simplex. Let us denote by AS the image of the simplex S
multiplied by some non-zero integer A.

PROPOSITION 0.2.  The groups Stab(S) and Stab(AS) are isomorphic
for any integer )\ + 0.

Proof. Denote by 8(\) the linear automorphism x = Ax of R”. Let ¢,
denote the endomorphism g+ 8(A)gd(A~1!) of Aff(Z"); observe that o, is
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one-to-one, but is not onto if |A|>2. Indeed, an affine Dbijection
g € Aff(Z") is in the image of ¢, if and only if g preserves the sublattice AZ"
of Z".

If g € Stab(S), then ¢,(g) € Stab(ALS). Consequently ¢, restricts to an
injective homomorphism ;, : Stab(S) — Stab(AS). Let now /# € Stab(ALS). We
can write h = at, where a is in GL,(Z) and where ¢ is a translation. As a !
preserves AZ" (as any element of GL,(Z) does), and as /4 preserves AS one has

t(AS) =a~"th(AS) = a~'(AS) C a~'AZ"

so that ¢ preserves AZ"”. Hence & = at preserves AZ", so that A is in the image
- of ¢,. It follows that y, is an isomorphism onto. [

Caution: We have in fact proved that Stab(S) and Stab(AS) are conjugate
in Aff(Q") but they are in general not conjugate in Aff(Z"). This can be seen
. for instance by the fact that Stab(S) fixes the barycenter P of S and Stab (AS)
| fixes AP. But P and AP are not necessarily in the same orbit of Aff (Zm).
| So AS is affinely regular if and only if S is affinely regular. Hence we will
 be interested in minimal simplices.

Definition 0.3. An integral simplex S is minimal if, for every integral
simplex 7 and for every integer A > 1 such that S is equivalent to A7, we have
A=1.

PROPOSITION 0.4. Let S be an integral simplex of Z". The following
assertions are equivalent:

1) S is minimal.
ii) For every integer N\ = 2 there exists no class of 1" modulo NL"
which contains all the vertices of S modulo ML".

Proof. Not (ii) = not (i). Let S be a simplex with all vertices in the same
class of Z” modulo AZ”. Let vy, be one of the vertices. The translate of S by
— U 1s then a simplex with the coordinates of all vertices divisible by some
A > 2. This implies that S is not minimal.

Not (i) = not (ii). Let S be a non-minimal integral simplex. Hence there
exists an integral simplex 7, an integer A > 2, an element g € GL,(Z) and a
vector v € Z” such that S = g(AT) + v. But then all the vertices of S are in
the class of v in Z” modulo AZ". [l

The main subject of this note is to show the following theorem:
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THEOREM 0.5. For n > 2, one has a bijection between the equivalence
classes of minimal affinely regular integral simplices and the set of positive
divisors of n + 1 (including 1 and n + 1). The bijection associates to the
divisor k of n + 1 the class of the simplex whose vertices are given by the
columns of the following n X n matrix

1 0 0 ... 0 k-1
o 1 0 .. 0 k-1
. . k=1
0 0 0 1 k-1
0 0 O 0 k

and by the origin of Z".

Proposition 0.4 implies that all representants in the theorem are minimal.
Moreover, representants associated to distinct divisors k, k” of n + 1 are
non-equivalent since they are respectively of volumes k/n! and k'/n!.

The plan of the proof is as follows. We will introduce a family of particular
simplices: those which have small faces. Then we dress the list of all small-
faced affinely regular simplices (this gives us in fact the list of the theorem).

Last, we prove that an affinely regular minimal simplex is necessarily
small-faced.

Let us start with some examples:

Example 0.6. Case where n = 2, k = 3.

In the standard lattice:
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In the hexagonal lattice:

Example 0.7. Case where n = 3,k = 2.

Let C.= [0,1]3 be the standard cube of R3. Let A be the tetrahedron
defined by the vertices of the cube of which the sum of the coordinates is even.
It is easy to see that A is affinely regular and that the linear transformation
defined by

e~ —e;, etre+e, ey>e + e

(where (e;, e,, e3) is the standard basis of R?) sends A to the representant
given in Theorem 0.5.

1. SIMPLICES WITH SMALL FACES

| Definition 1.1. An integral simplex S is said to have small faces if, for
| each hyperplan H containing a (n — 1)-face of S, the vertices of S contained
| in H constitute an affine Z-basis of Z" N H.

A numerotation of an integral simplex S is an enumeration

V= (UOa Uy .0 Un)

of the vertices of S. We will denote by S, the simplex S with numerotation v.
| The group Aff(Z") acts naturally on the set of numerated simplices and we
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will say that S, (with v = (g, .., U,)) is equivalent to Sy (with v’ = Vg, -+, Un))
if there exists g € Aff(Z") such that g(v;) = v; for all 7.

The group 6,,; acts on the set of numerated simplices: If seoc,si1s a
permutation of {0,..,n} and if S, is an integral simplex numerated by
v = (Ug,..,Vi,..,U,), We define

s+ S, =S,
where
SV = (US—I({)), coy Us—1()s ooy US—I(,;)) .

This action of o, ., commutes with that of Aff(Z"), hence 6, acts also
on the equivalence classes of numerated simplices modulo Aff(Z").

An integral simplex S is affinely regular if and only if the stabilizer Stab (S)
operates transitively on the numerotations of S.

Let us recall an elementary and well-known lemma:

LEMMA 1.2. Let v;,..,b,_, be linearly independent vectors of Z17".
Let H be the hyperplane of R" generated by the v;’s, and suppose that
Uiy .., Un—1 form a basis of the sublattice H N Z".

Then we can complete vy, ..,0,_; to a basis of Z".

Proof. See for instance the Corollary in Bourbaki, Algébre, chap. VII,
§4, No. 3.

From this point until the end of section 2, & will be some fixed natural
integer. Let now S, be a numerated simplex with small faces, of volume
k/n!. Let {e;,..,e,} be the canonical basis of Z” C R”. The lemma implies
that there exists g € Aff(Z") such that gS, has vertices

n—1
Vo=0,0,=€,.,0p1=€_1,0p = ke, + Y, ae
i=1

where the a;’s are integers. An easy calculation shows that the a's are well
defined (mod k).

Let us associate to S, the element (a,,..,a,_;), where a; is the class of
a; (mod k). This gives us a map py: Xy = (Z/kZ)"-!, where ¥, is the set of
numerated simplices with small faces of volume k/n!. For S, € ;, the
element p,(S,) depends only of the equivalence class of S, modulo Aff(Z")
and this allows us do define an action of 6,,; on pg(Z,).
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2. ACTION OF G,.; ON pi(Zp)

In this section, we show how the n usual generators (0, 1), ..., (n — 1, n) of
the group o,.; act on the subset py(X;) of (Z/kZ)"~!.

LEMMA 2.1. Let (0y,..,0,_1) € pi(Zy). Then

0,1) - (01,00, ey Oy ey Oy 1) = ((1 — 0= 0= .. —Opy-1), 02, .oy ai,--,an—l)

@Gi+1) (0, 0 Qs ey Opmg) = (O, ey O, Oy . Oyoq), 1 <Ii<n—2

(M= 1,1) * (01s ey Oy ey U2, Opmg) = (=000, Ly, ey — @0,y = Oy, 00,

n

In particular, if (0,,..,0,_1) € pp(Xy), then ao,_, is invertible (mod k).

Proof. Let us show the first equality. Let (a,,..,0,_;) € pi(Zs).
Consider the numerated simplex S, with vertices

(2.2) Vo=0,0,=e,1<i<n—1,0,=ke, + ) ae

i=1
| (a; representant of the class a;).

Let us identify R” with the points of the hyperplane H of R”*! defined
by x,.; = 1. By identifying the elements of R” with vector columns we

N
H

see that

\1/
1

| where 0 is the origin in R” and {ey, ..., e,} is the usual basis of R” and the 1
in the second matrix is where you think it should be, namely at the i-th row.
There exists a natural injection of the group Aff(Z") in the subgroup of

| GL, ., (Z) which preserves H. It is easy to check that the following matrix
i M € GL, . (Z) exchanges v, and v;, preserves v; for 2 < i < n and sends v, to

| n
} the element ke, + 1 — Y ' 'ayer + Y7, aer:

-1 -1 -1 .. -1 0 1
( 0 1 0O .. 0 0 o\ :;
0 0 1 .. 0 0 0 #,
M = . ;
0 0 0 .. 1 0 0 q
K 0 0 o .. 0 1 o)
0 0 0 .. 0 0 1
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The calculations for the transposition (i,i+ 1) are immediate if 1 <1
<n-—2.

Finally, let us consider the last equality: We take again the simplex S,
with vertices as in (2.2). Since S, is small-faced, there exists a simplex
Sy, (n—1) integers by, .., by and an element g € Aff(Z”) such that the
vertices of S, are

n-1
vi=0,0l=e,1<i<n—1,0,=ke,+ ) bie
i=1
and such that g(v;) = v/ for 0<i<n—2,80,-1) =0, and g,) = Vp-1.
Since v, = vy = 0 we have g(0) = 0 and g is in fact in GL,(Z). The matrix
of g with respect to the standard basis is

1 0 0 0 0 b1 \ (1 0 0 a; O\ -1
0 0 0 1 0 bn—Z 0 0 1 a,_» 0
0 0 0 1 bn—l \O 0 a,_ i 1}
0O 0 O 0 } 0 O 0 k 0
this gives
1 0 O 0 O b, \ k 0 0 0 O —a, \
0 1 O 0 0 b, | 0O k£ O 0 O —a,
0 0 0 1 0 bys| klo 0 o0 k0 —a,;
0O 0 O 1 bn_l} 0O 0 O 0 0 1
0O 0 O 0 k 0O 0 O 0 k —an_I)
But since g € GL,(Z) this implies that
—q—bja,_;, =0 (modk) 1<£ig<n-2.

Let us now suppose that a,_; is not invertible (mod k). Then there exists
some prime p dividing both k& and a,_,. But then the prime p divides g; too
for every i. So p divides all coefficients of the vector v, — vg which is an edge
of S,. But then S, is not small-faced which contradicts the fact that
(ay,..,0,-1) € pe(Zr). So we have proved that a,_; is invertible (mod k).
And the b/s satisfy

bi= —aa,;' (modk) 1<i<n-2 and b,_,=a;' (modk).

This proves the last equality. [
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3. LIST OF SMALL-FACED AFFINELY REGULAR SIMPLICES

An integral simplex S with small faces is affinely regular if and only if the
numerated simplices S, and S, are equivalent for each pair v, v’ of
enumerations of S. In other terms, an integral simplex S with small faces of
volume k/n! is affinely regular if and only if p.(S,) = pi(S, ) for all
enumerations v and v’, hence if and only if the element p,(S,) is a fixed point
under the action of 6,.; on py(Zy).

It is sufficient for p.(S,) to be fixed under the action of a set of
generators in order to be a fixpoint of 6, acting on p,(Z;). Let us suppose
that (a;,..,0,_;) is a fixpoint of pi(Xy). Then, for all i e {1,...,n—2}:

(l)l+ 1) * (al:-->ai3 U.i+1,.., O~n—1) = (ala --,aH—l’ai,--an—l)
= (a17--aiaai+19“san—l)
implies o, = o (mod k) for some o € Z/kZ.
Furthermore

(n—1,n) - (a,..,0,0) =(—aa~1,..,—aa",a ) =(a,..,q)

gives o = —aoa~!' = —1 (mod k).
Finally

O0,n-(-1,-1,.,-D)=0-@w-D(-D,-1,..,-1)=(—-1,.., - 1)

implies —1=1—-(n—-1)(—1)(mod k) namely 0 = n + 1 (mod k) namely
k|(n+1).

This shows that the simplices listed in the theorem are exactly all the
affinely regular simplices with small faces.

We have yet to show that any affinely regular minimal simplex is small-
faced. This will be the aim of the next paragraph.

4. ANY AFFINELY REGULAR MINIMAL SIMPLEX HAS SMALL FACES
Lemma 1.2 implies the following corollary:

COROLLARY 4.1. Every integral simplex of Z" with numerated vertices
is equivalent to an integral simplex with vertex vy at 0 and vertex v; at
the i-th vector-column of an upper triangular matrix (i> 0).

Regularity and Proposition 0.4 imply almost immediately the following:
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Remark 4.2. Let S be an affinely regular simplex. Then S is minimal if
and only if the interior of each edge of S is without integral points.

Let us start with the proof that each affinely regular minimal simplex is
small-faced.

Consider an affinely regular minimal simplex S of Z2. Corollary 4.1
implies that S is equivalent to a simplex S’ with vertices at 0 and at the

[ a : .
vector-columns of a matrix of the type ( " k) . Remark 4.2 implies
that the integer / is equal to =+ 1.

By exchanging S’ with an equivalent simplex if necessary, we can suppose
that S’ has its vertices at 0 and at the vector-columns of a matrix of

1 a . . . .
type (0 k) with k& a positive integer. The affine regularity now implies

that S’ (and hence §) is small-faced.

Hence the theorem holds for n = 2.

Induction: (n — 1) = (n).

Let S, be a numerated affinely regular minimal simplex of Z” with
underlying simplex S. Corollary 4.1 implies that, after some suitable choice
of an equivalent simplex, we can suppose that v, = 0 and v; is the i-th vector-
column of an upper triangular » X »n matrix 7.

The (n — 1)-face containing vy, vy, .., U,_, is an affinely regular simplex of
Z"-1 and Remark 4.2 shows that it is minimal. So Lemma 1.2 and the

induction hypothesis imply that, possibly after a suitable change of S,, the
matrix 7 is of the form

(1 o o0 .. 0 [-1 a;
0 1 0 . 0 [—1 (75
o o o . 1 I-1 a,_,
O o o0 .. o0 [ an_
\0 o o0 .. 0 0 k

where / and k are positive integers, and where / divides n by induction
hypothesis.

Set uw = n/l e N.

The barycenter of wug, oy, .., W,_1 IS e; + e, + .. + e,_,.

Since S, is affinely regular, there exists for all i € {0,1,..,n} an element
g: € Aff(Z"™) which sends

P

A~
Mg, .oy WUy -1, Hop to HWg, ..y Viy ooy Wy ;



82 R. BACHER

the barycenter of puo, .., W0, .., W,, which is gie;+e + .. +e, 1), is
consequently also in Z”.

So the barycenters of all faces of uS, are in Z” and they are the vertices
of an integral simplex S’.

Calculating the first coordinate of the barycenter of [y, Wy, .., LU, We
see that n divides p + p(/—1) + pa;.

Calculating the first coordinate of the barycenter of pvg, 01, Lz, ..s WUp,
we see that n divides p(/—1) + pa,.

So the integer n divides p too but this implies that p = » and hence / = 1.
This and the affine regularity imply that S is small-faced. [

The notions of affine regularity and of integrality may both be generalized
to other polytopes, such as hypercubes, cross-polytopes, hexagones in
dimension 2 or exceptional polytopes in dimension 4. We plan to consider these
in a further paper.
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