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68 J. HUEBSCHMANN

3. The proof of Theorem B

It is clear that the subring C(Q) of the integral cohomology i/*(Q, Z)
generated by (the classes of) cx, cn has the defining relations

(3.1.1) hCi 0 1 ^ ^ n

Since the c7 are Chern classes of the obvious 1-dimensional complex representations

of Q we refer to C(Q) as the Chern ring of Q.

Theorem 3.1. As a module over its Chern ring, the integral
cohomology H*(Q, Z) of a finite abelian group Q Ci{ x • • • x Qn with
h \h I I ln is generated by 1 and the classes t)XjXj...Xk of the kind (1.5)
with XiXj... xk of degree at least two, subject to the relations

(3-1.2) l&XiXj...Xk 0

Proof. We prove the Theorem by induction. It is clear that when Q is

cyclic there is no monomial (SXiXj...X/c of the kind (1.5) with XjXj xk of degree

at least two and hence there is nothing to prove. Thus the induction starts.
Next, let

G C/j x • • • x Ctn < t\,..., tn; tlj 1 > with lx 112 \ | ln

let

Q G x Z/1 t;tl,t'=l>
and suppose that the exponent of G divides /, that is,

/1U2UI/J/.
It is manifest that the model sd(Q) may be written

f(Q) sd(G) <g) sd{Z//)

Regard the cycles C(jaf(Z//)) and the boundaries B{s^(Z/lj) as complexes
with zero differential, and write D(s^{Z/lj) for the boundaries B(j^{Z/lj),
regraded up by one, so that the exact sequence

0 C(j^(Z//)) ^ jaf(Z//) -> D(stf{Z/lj) 0

of chain complexes results. Since jaf(G) is free as a graded abelian group,
N

J2^(G)(x)K
0 - jaf(G) (X) C( J^(Z//)) -> jaf(G) (X) sdifL/l) jaf(G) <g) D(stf{Z/lj) -> 0

is an exact sequence of chain complexes, too. In the standard way, cf. e.g.
what is said on p. 166 of Mac Lane [23], its homology exact sequence boils
down to the Künneth exact sequence
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0 - H*(G, Z) (X) H*(Z/l, Z) //*(Q, Z) Tor (H* (G, Z),H*(Z/!f Z)) 0

It is well known that this sequence splits. Exploiting the inductive hypothesis

we conclude at once that, as a module over the Chern ring

C(Q), H*(G, Z) (x) H* (Z/1j Z) is generated by 1 and the classes ^mj...Xk of the

kind (1.5) with xtXj... xk of degree at least two, subject to the relations

l&XiXj...Xk 0 •

Likewise, as a module over the Chern ring C(Q), Tor(#*(G, Z),77*(Z/7, Z))
is generated by the images in Tor(/f*(G, Z),H*(Z/l, Z)) of the classes

^xiXj...xkx of the kind (1.5) with XiXj ...xk of degree at least one, subject to the

relations

l&XjXj...Xk 0 •

Since the Künneth sequence splits, this completes the proof.

We note that the above generators ÇXiXj...Xk can presumably be understood
in terms of the multi torsion product given in Mac Lane [25] generalizing the

triple torsion product introduced in Mac Lane [24]. Details have not been

worked out yet.
We now refer to the subring of A(Q) generated by C,X2, \Xn as the

Chern ring of A(Q). It is clear that (1.13) identifies the Chern rings.

Proof of Theorem B. In view of (3.1), as a module over the Chern

ring C(Q), H*(Q} Z) is generated by 1 and the classes t>XjXj...X/c with xtXj... xk
of degree at least two; hence (1.13) is an isomorphism over the Chern
ring. Furthermore, (1.13) is induced by the restriction of (1.11) to the
cycles in sd(Q). Since the product structure in the cohomology ring is induced
by the product structure in and since the algebra A(Q) arises from
c/(Q) by introducing the additional relations /zc, 0, the association (1.13)

identifies H*(Q, Z) with the subalgebra of A(Q) generated by the
ixiXj...xk e A(Q).

Under the circumstances of Theorem B it is straightforward to work out
explicit formulas for the products

^SXjXj... Xk ^sXjjXy ...xw eA(Q)
and hence for the products

txlxJ...x&xux0...xweH*(Q, Z)
Since such formulas do not seem to provide any additional insight we spare
the reader and ourselves these added troubles.
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