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Appliquons cette technique a la situation du lemme. Dans ce cas, ’action
de Z/pgZ considérée est engendrée par f; et f, d’ordres respectifs p et g,
agissant sur S2¢ — {N, S}. Nous obtenons que si g et # sont deux difféo-
morphismes de Diffy (S, N, S) a supports dans un ouvert U assez petit de
S2k — {N, S}, le commutateur [g, #] appartient au groupe engendré par les
sous-groupes Diffe (S2¢, N, S, f;) (i=1,2). Pour conclure, il suffit de
remarquer que ces commutateurs engendrent Diff; (S24, N, S). Ceci résulte de
deux faits. Tout d’abord, si les ouverts U; recouvrent S* — {N, S}, les
groupes Diff .(U;) C Diff7 (S2%, N, S) engendrent Diff(S%,N, S); c’est le
lemme de fragmentation de [6]. D’autre part, d’aprés le théoréme de
W. Thurston déja mentionné, les groupes Diffy (U;) sont des groupes
simples et donc sont engendrés par les commutateurs. L]

Soit s I’involution isotope a I’identité définie par

S+ L, Doy ey X+ Dy ) = (X1 — V1, =X — D2y eeey — X — iV, — 1) .

Elle commute avec C, de sorte que o(s) préserve I globalement. De plus,
s échange S et N et il existe donc un unique point x, de I qui est fixe par ¢ (s).
Soit W et E les points (— 1,0, ...,0) et (1,0,...,0) de S2*. 1l est clair que ’arc
analogue a / joignant W a E, formé des points fixes de o(s), contient x,. Les
deux groupes o Diff; (S%*, N, S) et oDiff; (S2*, E, W) fixent donc x, et leurs
différentielles en x, sont triviales.

LEMME 4.5. Les groupes Diffy(S*,N,S) et Diffy(S%*,E, W)
engendrent Diff (S%).

Démonstration. Soit f un élément de Diff (S2¢). Soit g, un élément de
Diff (S2*, E, W) qui coincide avec f au voisinage des points N et S et posons
g =g, ' °f. Onaalors g, € Diff7(S2%*,N,S) et f =g, 0g,. L[]

La contradiction cherchée est maintenant claire. Le groupe o Diff (S%)
tout entier fixe x, et sa différentielle en x, est triviale. Ceci est absurde puis-
que les €léments d’ordre fini distincts de I’identité (par exemple ceux de
6(C,)) ne peuvent avoir une différentielle égale & I’identité en un point fixe.
Ceci termine la preuve du théoréme dans le cas ol # est pair.

5. QUELQUES REMARQUES

Le résultat obtenu dans cette note suggére immédiatement une question
plus générale. Si V est une variété a bord non vide o0V, dans quelles
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conditions existe-t-il un morphisme de Diffy (8V) vers Diff; (V) qui
«prolonge les difféomorphismes a l’intérieur»? Nous avons vu qu’un tel
morphisme existe si V est une bande de Moebius et n’existe pas si V est une
boule. Le lecteur n’aura maintenant aucune difficulté a traiter le cas général
ou V est une surface compacte a bord. Qu’en est-il par contre si V est un corps
a anses de genre g (i.e. le domaine de R?3 bordé par une surface de genre g
plongée de manieére habituelle)?

De mani¢re analogue, on peut s’intéresser aux morphismes entre groupes
de difféomorphismes de variétés fermées (i.e. compactes sans bord). Voici deux
exemples.

On peut identifier I’espace projectif complexe CP” au quotient de (S2)”
par ’action du groupe symétrique. Cette identification peut étre obtenue de
la facon suivante. Au point de coordonnées homogeénes [ay:a;:...:a,] de
CP", on associe les n zéros du polyndme ayz” + ... + a, dans C U {o} = §2
qui sont définis & ’ordre prés. Il est facile de vérifier qu’un difféomorphisme
de classe C*= de S? meéne ainsi a un difféomorphisme de classe C* de CP” et
on a donc un morphisme naturel:

Diff; (S?) — Diff; (CP") .

Une deuxiéme construction générale s’obtient de la facon suivante. Si V'
est une variété fermée et si PTV désigne le projectifié du fibré tangent a V,
on a un morphisme obtenu par différentielle:

Diff; (V) — Diffy (PTV) .

On notera que PTV est fermée. Ces exemples suggerent la question qui suit:

QUESTION. Soit V|, et V, deux variétés fermées telles qu’il existe un
morphisme non trivial de Diffg (Vy) vers Diffg(V;). Peut-on affirmer
que la dimension de V, est inférieure ou égale a celle de V,?

Les cas d’isomorphismes entre groupes de difféomorphismes ont été étudiés
dans [3]: Diffy (V1) et Diff; (V>) ne sont isomorphes que si V; et V, sont
difféomorphes.

Signalons enfin que les méthodes utilisées dans cet article tombent en défaut
dans le contexte analytique réel (sauf lorsque n = 1).
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