Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1991)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROLONGEMENTS DES DIFFÉOMORPHISMES DE LA SPHÈRE

Autor: Ghys, Etienne

Kapitel: 4. Le cas des sphères paires

DOI: https://doi.org/10.5169/seals-58729

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

obtenue en composant la projection de $B^{2k-2} \times S^1$ sur U_j et τ_j . On remarquera que $\tau_j(x, \theta)$ ne dépend pas de θ car τ_j est invariant par $\bar{\phi}_t$. Les applications

$$(x,\theta) \in \overset{\circ}{B}{}^{2k-2} \times S^1 \mapsto (x, \bar{A}_{\tau_j(x)}(\theta)) \in \overset{\circ}{B}{}^{2k-2} \times S^1$$
$$(x,\theta) \in \overset{\circ}{B}{}^{2k-2} \times S^1 \mapsto (x, \bar{B}_{\tau_j(x)}(\theta)) \in \overset{\circ}{B}{}^{2k-2} \times S^1$$

passent au quotient en des difféomorphismes de U_j à supports compacts. En prolongeant ces difféomorphismes par l'identité en dehors de U_j , on obtient des difféomorphismes \bar{A}_{τ_j} et \bar{B}_{τ_j} de S^{2k-1} qui commutent évidemment avec f. Par ailleurs,

$$[\bar{A}_{\tau_i}, \bar{B}_{\tau_i}](m) = \phi_{\tau_j(m)/N}(m)$$
.

Le difféomorphisme f coïncide avec $\phi_{1/p}$. Pour terminer la démonstration du lemme, il suffit donc d'écrire la fonction constante N/p comme somme de fonctions τ_i du type précédent:

$$\frac{1}{p} = \frac{1}{N}\tau_1 + \ldots + \frac{1}{N}\tau_q .$$

En effet, on aura alors

$$f = \phi_{1/p} = [\bar{A}_{\tau_1}, \bar{B}_{\tau_1}] \dots [\bar{A}_{\tau_q}, \bar{B}_{\tau_q}] .$$

Pour cela, il suffit d'utiliser une partition de l'unité subordonnée aux U_j et d'en prendre la moyenne sous l'action de S^1 associée à ϕ_t pour la rendre invariante. \square

4. LE CAS DES SPHÈRES PAIRES

Nous identifierons la sphère S^{2k} à l'ensemble des points $(z_1, ..., z_k, t)$ de $\mathbb{C}^k \times \mathbb{R}$ tels que $|z_1|^2 + ... + |z_k|^2 + t^2 = 1$. Comme précédemment, nous fixons un nombre premier p et nous considérons le groupe C_p des difféomorphismes de S^{2k} , isotopes à l'identité, du type:

$$f:(z_1,...,z_k,t)\in S^{2k}\mapsto (w_1z_1,...,w_kz_k,t)\in S^{2k}$$
,

où les w_i sont des racines p-èmes de l'unité.

Supposons encore par l'absurde qu'il existe un morphisme

$$\sigma : \mathrm{Diff}_0^{\infty}(S^{2k}) \to \mathrm{Diff}_0^1(B^{2k+1})$$

qui prolonge les difféomorphismes de la sphère à la boule.

54 E. GHYS

LEMME 4.1. Il existe un unique arc I dans B^{2k+1} connectant les points N = (0, ..., 0, 1) et S = (0, ..., 0, -1) et formé de points fixés par tous les éléments de σC_p . Cet arc ne dépend pas de p.

Démonstration. Comme précédemment, si aucun des w_i n'est égal à 1, le difféomorphisme f a exactement deux points fixes sur la sphère S^{2k} (les points N et S). La théorie de Smith permet alors de montrer que l'ensemble des points fixes de $\sigma(f)$ est un arc connectant N et S. Un homéomorphisme d'ordre fini d'un intervalle qui fixe les extrémités est nécessairement l'identité. Il résulte de ce fait, de la commutativité de C_p et du fait que les f pour lesquels aucun w_i n'est égal à 1 engendrent C_p qu'il existe un arc I formé de points fixes par tous les éléments de σC_p .

Puisque C_p et C_q commutent (si p et q sont deux nombres premiers quelconques), l'arc I ne dépend pas du choix de p.

Soit x_0 un point de I. Considérons la différentielle de $\sigma(C_p)$ en x_0 . On obtient ainsi un morphisme

$$D: C_p \to GL(T_{x_0}B^{2k+1}) \simeq GL(2k+1, \mathbf{R})$$
.

LEMME 4.2. A conjugaison près, on peut supposer que l'image de D coïncide avec le groupe $\overline{C_p}$ des applications linéaires de $\mathbf{R}^{2k+1} \simeq \mathbf{C}^k \times \mathbf{R}$ du type:

$$(z_1,...,z_k,t) \in \mathbb{C}^k \times \mathbb{R} \mapsto (\mu_1 z_1,...,\mu_k z_k,t) \in \mathbb{C}^k \times \mathbb{R}$$

où les μ_j sont des racines p-èmes de l'unité.

Démonstration. Identique à celle de 3.2.

On choisit p > n et f un élément de C_p tels que D(f) soit une application linéaire du type précédent pour laquelle les μ_j sont distincts deux à deux et différents de 1. D'après ce que nous avons vu, l'ensemble des points fixes de $\sigma(f)$ coïncide alors avec I.

La démonstration se sépare ici de celle décrite au paragraphe précédent. En effet, l'élément f n'est certainement pas un produit de commutateurs dans le groupe $\mathrm{Diff}_0^\infty(S^{2k},f)$ des difféomorphismes de classe C^∞ , isotopes à l'identité et commutant avec f. Ceci résulte du fait que la différentielle d'un élément de $\mathrm{Diff}_0^\infty(S^{2k},f)$ au point N est diagonale de sorte qu'un produit de commutateurs a une différentielle égale à l'identité en N, contrairement à f. C'est précisément ce fait qui a servi de base à la démonstration du théorème

lorsque n est impair et qui nous empêche donc de généraliser la preuve au cas où n est pair.

Soit $\mathrm{Diff}_0^\infty(S^{2k},N,S)$ le groupe des difféomorphismes de S^{2k} , coïncidant avec l'identité au voisinage de N et S et isotopes à l'identité par une isotopie à support compact dans $S^{2k} - \{N, S\}$. Notre premier but sera de montrer que $\sigma \mathrm{Diff}_0^\infty(S^{2k},N,S)$ fixe I point par point. Nous en déduirons l'existence d'un point x_0 de I fixe par tout le groupe $\sigma \mathrm{Diff}_0^\infty(S^{2k})$ et il sera facile d'en déduire une contradiction.

On se fixe deux nombres premiers distincts p et q et deux éléments f_1 et f_2 de C_p et C_q respectivement, du type précédent. Soit $\mathrm{Diff}_0^\infty(S^{2k}, N, S, f_i)$ le sous-groupe de $\mathrm{Diff}_0^\infty(S^{2k}, N, S)$ formé des éléments commutant avec f_i et isotopes à l'identité par une isotopie commutant avec $f_i(i=1,2)$.

LEMME 4.3. Les groupes $\sigma \operatorname{Diff}_0^{\infty}(S^{2k}, N, S, f_i)$ (i = 1, 2) fixent I point par point. De plus, les différentielles de ces difféomorphismes aux points de I sont égales à l'identité.

Démonstration. Ce groupe préserve globalement l'ensemble des points fixes de $\sigma(f_i)$, c'est-à-dire I. L'action de f_i sur $S^{2k} - \{N, S\}$ est libre. Un difféomorphisme de $V_i = S^{2k} - \{N, S\}/(f_i)$ qui est l'identité au voisinage des deux bouts, et qui est isotope à l'identité par une isotopie à support compact, se relève de manière unique en un élément de $\mathrm{Diff}_0^\infty(S^{2k}, N, S, f_i)$. En d'autres termes, $\mathrm{Diff}_0^\infty(S^{2k}, N, S, f_i)$ est isomorphe au groupe $\mathrm{Diff}_{c,0}^\infty(V_i)$ des difféomorphismes de V_i de classe C^∞ , à supports compacts, isotopes à l'identité par une isotopie à support compact. On a donc un morphisme

$$\operatorname{Diff}_{c,0}^{\infty}(V_i) \to \operatorname{Diff}_0^{\infty}(I)$$
.

Il s'agit de montrer que ce morphisme est trivial.

Un théorème de W. Thurston [7] affirme que $\mathrm{Diff}_{c,0}^{\infty}(V_i)$ est un groupe simple. Il nous suffit donc de trouver un élément non trivial de $\mathrm{\sigma Diff}_0^{\infty}(S^{2k}, N, S, f_i)$ qui fixe I point par point pour en conclure qu'il en est de même pour tous les éléments.

Soit ϕ un élément de $\mathrm{Diff}_0^\infty(S^{2k},N,S,f_i)$ qui ne commute pas avec $f_j(j\in\{1,2\}\ \mathrm{et}\ j\neq i)$. Puisque $\sigma(\phi)$ préserve globalement I et que $\sigma(f_j)$ fixe I point par point, le commutateur $\sigma(\phi f_j \phi^{-1} f_j^{-1})$ fixe I point par point. Il suffit alors de remarquer que $\phi f_j \phi^{-1} f_j^{-1}$ coïncide avec l'identité au voisinage de N, S, commute avec f_i , est isotope à l'identité par une isotopie commutant avec f_i et à support dans $S^{2k} - \{N, S\}$. Nous avons ainsi trouvé un élément non trivial dans le noyau du morphisme considéré et ce morphisme est donc bien trivial.

56 E. GHYS

En fixant un point x_0 de I et en considérant la différentielle en x_0 d'un élément de $Diff_0^{\infty}(S^{2k}, N, S, f_i)$, on obtient un morphisme d'un groupe simple à valeurs dans le groupe abélien Z, centralisateur de $D(f_i)$ dans $GL(2k+1, \mathbf{R})$. Ces différentielles sont donc toutes égales à l'identité.

LEMME 4.4. Le groupe $\operatorname{Diff}_0^{\infty}(S^{2k}, N, S)$ est engendré par les deux sous-groupes $\operatorname{Diff}_0^{\infty}(S^{2k}, N, S, f_i)$ (i = 1, 2). Ainsi, les éléments de $\sigma \operatorname{Diff}_0^{\infty}(S^{2k}, N, S)$ fixent I point par point et leurs différentielles sont égales à l'identité en ces points.

Démonstration. Je remercie C. Bavard à qui je dois cette démonstration. Soit ϕ un difféomorphisme d'ordre pq d'une variété M. On suppose que l'action associée de $\mathbb{Z}/pq\mathbb{Z}$ sur M est libre. Soit $U \subset M$ un ouvert tel que les $\phi^i(U)$ soient disjoints deux à deux (où l'exposant i est à lire dans $\mathbb{Z}/pq\mathbb{Z}$). Si $g_0, g_1, ..., g_{pq-1}$ sont pq difféomorphismes de M à supports dans U, on notera $\{g_0, g_1, ..., g_{pq-1}\}$ le difféomorphisme suivant de M:

$$g_0 \circ (\varphi^{-1} \circ g_1 \circ \varphi^1) \circ (\varphi^{-2} \circ g_2 \circ \varphi^2) \circ \dots \circ (\varphi^{(-pq+1)} \circ g_{pq-1} \circ \varphi^{(pq-1)})$$
.

On remarquera que tous les facteurs de cette composition commutent. Fixons deux difféomorphismes g et h de M à supports dans U et définissons 6pq difféomorphismes a_j^i et $b_j^i (1 \le i \le 3, 0 \le j \le pq - 1)$ par:

$$a_{j}^{1} = g$$
 $a_{j}^{2} = id$ $a_{j}^{3} = h^{-1}$ $si \ j \equiv 0$ $(mod \ p)$
 $a_{j}^{1} = h^{-1}$ $a_{j}^{2} = g$ $a_{j}^{3} = id$ $si \ j \not\equiv 0$ $(mod \ p)$
 $b_{j}^{1} = h$ $b_{j}^{2} = g^{-1}$ $b_{j}^{3} = id$ $si \ j \equiv 0$ $(mod \ q)$
 $b_{j}^{1} = g^{-1}$ $b_{j}^{2} = id$ $si \ j \not\equiv 0$ $(mod \ q)$.

On pose alors, pour i = 1, 2, 3,

$$A_i = \{a_0^i, ..., a_{pq-1}^i\}$$
 et $B_i = \{b_0^i, ..., b_{pq-1}^i\}$.

On remarque que les trois difféomorphismes A_i commutent avec ϕ^p alors que les B_i commutent avec ϕ^q .

Une vérification simple (que le lecteur pourra faire d'abord lorsque p=2 et q=3) montre que

$$A_1B_1A_2B_2A_3B_3 = ghg^{-1}h^{-1}$$
.

Ainsi, nous avons montré que le commutateur de deux difféomorphismes à supports dans U est un produit de difféomorphismes de M commutant avec ϕ^p ou ϕ^q .

Appliquons cette technique à la situation du lemme. Dans ce cas, l'action de $\mathbb{Z}/pq\mathbb{Z}$ considérée est engendrée par f_1 et f_2 d'ordres respectifs p et q, agissant sur $S^{2k} - \{N, S\}$. Nous obtenons que si g et h sont deux difféomorphismes de $\mathrm{Diff}_0^\infty(S^{2k}, N, S)$ à supports dans un ouvert U assez petit de $S^{2k} - \{N, S\}$, le commutateur [g, h] appartient au groupe engendré par les sous-groupes $\mathrm{Diff}_0^\infty(S^{2k}, N, S, f_i)$ (i = 1, 2). Pour conclure, il suffit de remarquer que ces commutateurs engendrent $\mathrm{Diff}_0^\infty(S^{2k}, N, S)$. Ceci résulte de deux faits. Tout d'abord, si les ouverts U_j recouvrent $S^{2k} - \{N, S\}$, les groupes $\mathrm{Diff}_{0,c}^\infty(U_j) \subset \mathrm{Diff}_0^\infty(S^{2k}, N, S)$ engendrent $\mathrm{Diff}_0^\infty(S^{2k}, N, S)$; c'est le lemme de fragmentation de [6]. D'autre part, d'après le théorème de W. Thurston déjà mentionné, les groupes $\mathrm{Diff}_{0,c}^\infty(U_i)$ sont des groupes simples et donc sont engendrés par les commutateurs. \square

Soit s l'involution isotope à l'identité définie par

$$s(x_1+iy_1,x_2+iy_2,...,x_k+iy_k,t)=(x_1-iy_1,-x_2-iy_2,...,-x_k-iy_k,-t)$$
.

Elle commute avec C_2 de sorte que $\sigma(s)$ préserve I globalement. De plus, s échange S et N et il existe donc un unique point x_0 de I qui est fixe par $\sigma(s)$. Soit W et E les points (-1,0,...,0) et (1,0,...,0) de S^{2k} . Il est clair que l'arc analogue à I joignant W à E, formé des points fixes de $\sigma(s)$, contient x_0 . Les deux groupes $\sigma \operatorname{Diff}_0^{\infty}(S^{2k}, N, S)$ et $\sigma \operatorname{Diff}_0^{\infty}(S^{2k}, E, W)$ fixent donc x_0 et leurs différentielles en x_0 sont triviales.

LEMME 4.5. Les groupes $\mathrm{Diff}_0^\infty(S^{2k},N,S)$ et $\mathrm{Diff}_0^\infty(S^{2k},E,W)$ engendrent $\mathrm{Diff}_0^\infty(S^{2k})$.

Démonstration. Soit f un élément de $\mathrm{Diff}_0^\infty(S^{2k})$. Soit g_1 un élément de $\mathrm{Diff}_0^\infty(S^{2k}, E, W)$ qui coïncide avec f au voisinage des points N et S et posons $g_2 = g_1^{-1} \circ f$. On a alors $g_2 \in \mathrm{Diff}_0^\infty(S^{2k}, N, S)$ et $f = g_1 \circ g_2$.

La contradiction cherchée est maintenant claire. Le groupe $\sigma \operatorname{Diff}_0^{\infty}(S^{2k})$ tout entier fixe x_0 et sa différentielle en x_0 est triviale. Ceci est absurde puisque les éléments d'ordre fini distincts de l'identité (par exemple ceux de $\sigma(C_p)$) ne peuvent avoir une différentielle égale à l'identité en un point fixe. Ceci termine la preuve du théorème dans le cas où n est pair.

5. Quelques remarques

Le résultat obtenu dans cette note suggère immédiatement une question plus générale. Si V est une variété à bord non vide ∂V , dans quelles