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obtenue en composant la projection de B¥*-2x S' sur U; et 1;. On
remarquera que T,;(x, 0) ne dépend pas de 0 car T, est invariant par ¢;. Les
applications

e — ]
(X, 9) e B¥*-2x Sl (X,Atj(x)(e)) e B2k-2 x St
(x,0) € B*-2 % Sl (x, Btj(x,(e)) g B*-2 x §!

passent au quotient en des difféomorphismes de U; a supports compacts. En
prolongeant ces difféomorphismes par l’identité en dehors de U;, on
obtient des difféomorphismes /Lj et ETJ. de S2¥-1 qui commutent évidemment
avec f. Par ailleurs,

[/irjsérj] (m) = q)rj(m)/N(m) .

Le difféomorphisme f coincide avec ¢;,,. Pour terminer la démonstration du
lemme, il suffit donc d’écrire la fonction constante N/p comme somme de
fonctions t; du type précédent:

1 1 1
—=—T 4+ ... +—=1.
p N N
En effet, on aura alors
f=01,=1[4:,B,]...[4:,B: ] .

Pour cela, il suffit d’utiliser une partition de I'unité subordonnée aux U; et
d’en prendre la moyenne sous I’action de S! associée a ¢, pour la rendre
invariante. [

4. LE CAS DES SPHERES PAIRES

Nous identifierons la sphére S2¢ a I’ensemble des points (z;, ..., 2k, ) de
Ct x R tels que |z; |2+ ... + | zx|? + 2 = 1. Comme précédemment, nous
fixons un nombre premier p et nous considérons le groupe C, des difféo-
morphismes de S2*, isotopes a I’identité, du type:

S @1y ees Zhs t) € S (WiZy, ..., WiZis ) € S,

ou les w; sont des racines p-émes de I’unité.
Supposons encore par 1’absurde qu’il existe un morphisme

o : Diff{ (S2%) — Diff (B2 +1)

qui prolonge les difféomorphismes de la sphére a la boule.
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LEMME 4.1. [l existe un unique arc I dans B?**! connectant les
points N = (0,...,0,1) et S=(0,...,0, —1) et formé de points fixés par
tous les éléments de oC,. Cet arc ne dépend pas de p.

Démonstration. Comme précédemment, si aucun des w; n’est égal a 1, le
difféomorphisme f a exactement deux points fixes sur la sphére S?* (les
points N et S). La théorie de Smith permet alors de montrer que I’ensemble
des points fixes de o(f) est un arc connectant N et S. Un homéomorphisme
d’ordre fini d’un intervalle qui fixe les extrémités est nécessairement I’identité.
Il résulte de ce fait, de la commutativit¢ de C, et du fait que les f pour
lesquels aucun w; n’est égal a 1 engendrent C, qu’il existe un arc I formé de
points fixes par tous les éléments de cC,.

Puisque C, et C, commutent (si p et g sont deux nombres premiers
quelconques), 1’arc I ne dépend pas du choix de p. [

Soit x, un point de /. Considérons la différentielle de 6(C,) en x,. On
obtient ainsi un morphisme

D:C, — GL(T,,B**') = GL2k + 1,R) .

LEMME 4.2. A conjugaison pres, on peut supposer que [’image de D
coincide avec le groupe C, des applications linéaires de R*+! = C¥ x R
du type:

(Zla ..-,Zk,t) e CAx R (ulzla“'a Mkaaf) e C* xR

ou les |; sont des racines p-emes de [l’unité.

Démonstration. 1dentique a celle de 3.2. [

On choisit p > n et f un élément de C, tels que D(f) soit une application
linéaire du type précédent pour laquelle les p; sont distincts deux a deux et
différents de 1. D’apres ce que nous avons vu, I’ensemble des points fixes de
o(f) coincide alors avec 1. '

La démonstration se sépare ici de celle décrite au paragraphe précédent.
En effet, ’élément f n’est certainement pas un produit de commutateurs dans
le groupe Diff; (S?4, f) des difféomorphismes de classe C*, isotopes a
I’identité et commutant avec f. Ceci résulte du fait que la différentielle d’un
élément de Diff; (S?%, f) au point N est diagonale de sorte qu’un produit de
commutateurs a une différentielle égale a I’identité en N, contrairement a f.
C’est précisément ce fait qui a servi de base a la démonstration du théoréme
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lorsque # est impair et qui nous empéche donc de généraliser la preuve au cas
ou # est pair.

Soit Diff{ (S%, N, S) le groupe des difféomorphismes de S2*, coincidant
avec I’identité au voisinage de N et S et isotopes a I’identité par une isotopie
4 support compact dans S* — {N, S}. Notre premier but sera de montrer que
o Diffy (S2%, N, S) fixe I point par point. Nous en déduirons ’existence d’un
point x, de I fixe par tout le groupe oDiffy (S2#) et il sera facile d’en déduire
une contradiction.

On se fixe deux nombres premiers distincts p et g et deux éléments f; et
f> de C, et C, respectivement, du type précédent. Soit Diff 5 (S?*,N, S, fi) le
sous-groupe de Diffy (S2*, N, S) formé des élements commutant avec fi et
isotopes a I’identité par une isotopie commutant avec f;(i=1,2).

LEMME 4.3. Les groupes oDIiffy (S**,N, S, f;) (i=1,2) fixent I point
par point. De plus, les différentielles de ces difféomorphismes aux points
de I sont égales a l’identité.

Démonstration. Ce groupe préserve globalement I’ensemble des points
fixes de o(/f;), c’est-a-dire I. L’action de f; sur S** — {N, S} est libre. Un
difféomorphisme de V; = S2¢ — {N, S}/ (f;) qui est I’identité au voisinage des
deux bouts, et qui est isotope a 1’identité par une isotopie a support compact,
se releve de maniére unique en un élément de Diff; (S24,N, S, f;). En
d’autres termes, Diffy’ (S, N, S, f;) est isomorphe au groupe Diff; ((V;) des
difféomorphismes de V; de classe C*=, a supports compacts, isotopes a
I'identité par une isotopie & support compact. On a donc un morphisme

DiffZ o(V;) = Diffg (1) .

Il s’agit de montrer que ce morphisme est trivial.

Un théoreme de W. Thurston [7] affirme que Diff7 ,(V;) est un groupe
simple. Il nous suffit donc de trouver un élément non trivial de
oDiff§ (S2*, N, S, f;) qui fixe I point par point pour en conclure qu’il en est
de méme pour tous les éléments. _

Soit ¢ un €lément de Diffy(S?*,N, S, f;) qui ne commute pas avec
fi(je{l,2}etj #i). Puisque o(¢) préserve globalement 7 et que o(f;) fixe I
point par point, le commutateur o(¢f;d ~!f j_l) fixe I point par point. Il
suffit alors de remarquer que ¢.f;¢ ' f j—’ coincide avec I’identité au voisinage
de N, S, commute avec f;, est isotope a 1’identité par une isotopie commutant
avec f; et a support dans S2¢ — {N, S}. Nous avons ainsi trouvé un élément

non trivial dans le noyau du morphisme considéré et ce morphisme est donc
bien trivial.
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En fixant un point xy de I et en considérant la différentielle en x, d’un
élément de Diff; (S?%, N, S, f;), on obtient un morphisme d’un groupe simple
a valeurs dans le groupe abélien Z, centralisateur de D(f;) dans
GL(2k + 1,R). Ces différentielles sont donc toutes égales a 1’identité. L]

LEMME 4.4. Le groupe Diff;(S**,N,S) est engendré par les
deux sous-groupes Diff; (S?),N, S, fi)(i=1,2). Ainsi, les éléments de
o Diffy (S**,N, S) fixent I point par point et leurs différentielles sont
égales a l’identité en ces points.

Démonstration. Je remercie C. Bavard a qui je dois cette démonstration.

Soit ¢ un difféomorphisme d’ordre pg d’une variété M. On suppose que
I’action associée de Z/pgZ sur M est libre. Soit U C M un ouvert tel que les
¢ (V) soient disjoints deux a deux (ou ’exposant i est a lire dans Z/pqZ). Si
805815 -.>&pg—1 SO0t pg difféomorphismes de M a supports dans U, on notera
{80,815 ---»8q-1} le difféomorphisme suivant de M:

2o (@ togiop)o(dp-20g,002) 0 ... o(p(-ra+Dog,, 0pwi-D),

On remarquera que tous les facteurs de cette composition commutent. Fixons
deux difféomorphismes g et # de M a supports dans U et définissons 6pg
difféomorphismes a; et bi(1 <i<3,0<j< pg—1) par:

a; =g a; =1id a; =h-! si j=0 (mod p)
a;=h-! a;=g a; = id si j#0 (mod p)
b, =h bl =g-! b; =id sij=0 (mod q)
b =g"! b? =id b} = h sij#0 (mod q) .

On pose alors, pour i = 1,2,3,
Aiz{aé,...,a;q_l} et Bi’:{bz)a‘“’b;q—l}‘

On remarque que les trois difféomorphismes A; commutent avec ¢p# alors que
les B, commutent avec ¢¥9.

Une vérification simple (que le lecteur pourra faire d’abord lorsque p = 2
et ¢ = 3) montre que

A1B1A232A3B3 = ghg"h‘l .

Ainsi, nous avons montré que le commutateur de deux difféomorphismes
a supports dans U est un produit de difféomorphismes de M commutant avec

$? ou ¢F.

N
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Appliquons cette technique a la situation du lemme. Dans ce cas, ’action
de Z/pgZ considérée est engendrée par f; et f, d’ordres respectifs p et g,
agissant sur S2¢ — {N, S}. Nous obtenons que si g et # sont deux difféo-
morphismes de Diffy (S, N, S) a supports dans un ouvert U assez petit de
S2k — {N, S}, le commutateur [g, #] appartient au groupe engendré par les
sous-groupes Diffe (S2¢, N, S, f;) (i=1,2). Pour conclure, il suffit de
remarquer que ces commutateurs engendrent Diff; (S24, N, S). Ceci résulte de
deux faits. Tout d’abord, si les ouverts U; recouvrent S* — {N, S}, les
groupes Diff .(U;) C Diff7 (S2%, N, S) engendrent Diff(S%,N, S); c’est le
lemme de fragmentation de [6]. D’autre part, d’aprés le théoréme de
W. Thurston déja mentionné, les groupes Diffy (U;) sont des groupes
simples et donc sont engendrés par les commutateurs. L]

Soit s I’involution isotope a I’identité définie par

S+ L, Doy ey X+ Dy ) = (X1 — V1, =X — D2y eeey — X — iV, — 1) .

Elle commute avec C, de sorte que o(s) préserve I globalement. De plus,
s échange S et N et il existe donc un unique point x, de I qui est fixe par ¢ (s).
Soit W et E les points (— 1,0, ...,0) et (1,0,...,0) de S2*. 1l est clair que ’arc
analogue a / joignant W a E, formé des points fixes de o(s), contient x,. Les
deux groupes o Diff; (S%*, N, S) et oDiff; (S2*, E, W) fixent donc x, et leurs
différentielles en x, sont triviales.

LEMME 4.5. Les groupes Diffy(S*,N,S) et Diffy(S%*,E, W)
engendrent Diff (S%).

Démonstration. Soit f un élément de Diff (S2¢). Soit g, un élément de
Diff (S2*, E, W) qui coincide avec f au voisinage des points N et S et posons
g =g, ' °f. Onaalors g, € Diff7(S2%*,N,S) et f =g, 0g,. L[]

La contradiction cherchée est maintenant claire. Le groupe o Diff (S%)
tout entier fixe x, et sa différentielle en x, est triviale. Ceci est absurde puis-
que les €léments d’ordre fini distincts de I’identité (par exemple ceux de
6(C,)) ne peuvent avoir une différentielle égale & I’identité en un point fixe.
Ceci termine la preuve du théoréme dans le cas ol # est pair.

5. QUELQUES REMARQUES

Le résultat obtenu dans cette note suggére immédiatement une question
plus générale. Si V est une variété a bord non vide o0V, dans quelles



	4. Le cas des sphères paires

