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DIFFEOMORPHISMES DE LA SPHERE 49

Supposons maintenant par 1’absurde qu’il existe un morphisme
o: Diff> (S!) — Diff(B?)

qui prolonge les difféomorphismes du cercle au disque. Notons u I’élément 1
de Z/pZ engendrant le centre de G,. Le difféomorphisme c(i(u)) de B? est
d’ordre p. Il est conjugué & une rotation d’ordre p d’apres 2.1 et fixe donc
un unique point x, de B2.

Puisque u est central dans G,, tous les éléments de 6(G,) fixent xo. Par
passage a la différentielle en x,, on construit donc un morphisme

D:G,— GL(T,,B*) = GL(2,R) .

A conjugaison prés, on peut supposer que D(u) est une rotation d’ordre p.

LEMME 2.3. Si p >3, lecentralisateur d’une rotation d’ordre p dans
GL(2,R) est abélien.

Démonstration. Ce centralisateur coincide en effet avec le groupe de
similitudes de R2. [

La démonstration du théoréme lorsque n = 1 est maintenant facile. Le
morphisme D, étant a valeurs dans le centralisateur de D(u), a une image
abélienne. Il en résulte que D est trivial sur le groupe des commutateurs de
G, et donc sur u d’apres 2.2. Mais ceci est absurde puisque D(u) est conjugué
a une rotation d’ordre p.

On remarquera que nous n’avons utilisé I’hypothese sur ¢ que pour pouvoir
affirmer que I’ordre de o (i(1)) est exactement p. Nous avons donc montré en
fait un résultat plus fort: le groupe G, et, a fortiori, Diff§(S!), ne se
plongent pas dans Diff (l)(Bz). Si ’on tient compte du résultat (difficile) selon
lequel Diff; (S!) est un groupe simple [7], et donc qu’un morphisme de
source Diffy (S!) est injectif ou trivial, on déduit:

THEOREME. [l n’existe aucun morphisme non trivial de Diff; (S') vers
Diff,(B2).

3. LE CAS DES SPHERES IMPAIRES

Si n s’écrit sous la forme 2k — 1, nous identifierons la sphére S* avec
Pensemble des points (zi, ..., 2¢) de C* tels que |z, |* + ... + |z * = 1. Soit p
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un nombre premier. Nous noterons C, le sous-groupe de Diff; (S2¢-1) formé
des difféomorphismes du type

Fi@iy ez € SH1 (Wizy, ., wiz) € ST,

ou wy, ..., w, sont des racines p-émes de ’unité. Bien sir, C, est un groupe
isomorphe a (Z/pZ)*.
Supposons par 1’absurde qu’il existe un morphisme

c: Diffg (S - 1) — Diff(B)

qui prolonge les difféomorphismes de la sphére a la boule.

LEMME 3.1. [l existe un unique point x, intérieur @ B?** qui est fixe
par o(C,) .

Démonstration. Rappelons d’abord qu’un difféomorphisme périodique
de période p est localement linéarisable au voisinage d’un point fixe (voir par
exemple [2]). Il en résulte que ’ensemble des points fixes d’un tel difféo-
morphisme est une sous-variété. Lorsque la variété ambiante est la sphére S”,
la sous-variété des points fixes, si elle n’est pas vide, a la méme homologie
modulo p qu’une sphere de dimension d avec 0 < d < n. C’est un exemple
classique d’application de la théorie de Smith: voir par exemple [2].

Soit f un élément de C, tel qu’aucun des w; qui lui correspondent ne soit
égal a 1. Ainsi, f n’a pas de point fixe sur S?¢~!. Le difféomorphisme o (f)
de B?* a bien slir au moins un point fixe intérieur & B?*. En collant deux
copies du difféomorphisme o(f) de B?* le long du bord S?*-!, on obtient un
difféomorphisme F de S?%¢, double de o(f). Ce difféomorphisme F est
d’ordre p, sans point fixe sur S%~! et posseéde au moins un point fixe dans
chacun des deux hémisphéres bordés par S?-1. L’ensemble de ses points
fixes n’est donc pas connexe. Il résulte du rappel que nous venons de faire que
I’ensemble des points fixes de F a ’homologie modulo p d’une sphere de
dimension 0 et que c’est en fait une spheére de dimension 0, c’est-a-dire un
ensemble a deux éléments! Autrement dit, o(f) a un unique point fixe x,
dans B2,

Le lemme est alors une conséquence de la commutativité de C, et du fait
que les f pour lesquels aucun w; n’est égal a 1 engendrent C,. [

Considérons la différentielle de o(C,) en x;. On obtient ainsi un
morphisme

D: C,~ GL(T,B*) = GL(2k,R) .

2
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LEMME 3.2. A conjugaison pres, on peut supposer que ’image par D
de C, coincide avec le sous-groupe C, formé des applications linéaires
de R?* = C* du type

(Zla'“,zk) € CkH (HIZI, eeey szk) € Ck ’

avec |\; racine p-eme de ['unité.

Démonstration. Le fait que D(C,) soit, a conjugaison pres, contenu
dans a] résulte de la classification des sous-groupes finis commutatifs de
GL (2k, R) dont tous les éléments sont d’ordre p. Nous avons déja rappelé
qu’un difféomorphisme d’ordre fini est localement conjugué a sa différentielle
au voisinage d’un point fixe. Il en résulte qu’un difféomorphisme d’ordre fini
d’une variété connexe ne peut avoir une différentielle égale a I’identit¢ en un
point fixe a moins que ce difféomorphisme ne soit I’identité. En d’autres
termes, D est injective et on a donc D(C,) = _C; (a conjugaison prés). [

Remarquons que nous n’affirmons pas que si f € C, est défini par
(Wi, ...,wy), alors le k-uplet (u,,...,u;) qui définit D(f) coincide avec
Wiy ooy Wi).

On choisit p > k et f un élément de C, tels que D(f) soit une application
linéaire du type:

(Zis o5 Z) P (L1215 oees WiZk)

ou les p; sont distincts deux a deux et différents de 1. Ceci implique que X,
est un point fixe isolé de o (f) et les considérations du lemme 3.1 entrainent
que X, est le seul point fixe de o (f).

LEMME 3.3. Le centralisateur Z de D(f) dans GLQk,R) est
abélien.

Démonstration. Tout élément de Z est diagonal, car il préserve les
directions propres de D(f). [

Soit Diff; (S% -1, f) le groupe des difféomorphismes de S2¢-! de classe
C> commutant avec f et isotopes & I’identité par une isotopie commutant
avec f. Le groupe oDiffg (S2¥-1, f) C Diffy(B"+!) fixe évidemment x, et la
différentielle en x, est dans Z. On a donc un morphisme

D: Diff>(S%-!, f) - Z

qui envoie f sur un élément non trivial.
La contradiction cherchée est dans le lemme suivant, analogue au
lemme 2.2. Il ne serait pas difficile de déduire ce lemme d’un théoréme profond
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de W. Thurston sur la simplicité de certains groupes de difféomorphismes. Il

nous semble cependant intéressant de démontrer le lemme de maniére comple-
tement explicite.

LEMME 3.4. L’élément [ appartient au groupe des commutateurs de

| Diffe(S2- 1, £).

Démonstration. Soit wy, ..., w, les racines de 1’unité telles que
S @iy 2k) = Wize, een, WiZi)

Puisque 6(f) ne fixe que le point x, dans B”+!, le difféomorphisme f n’a
pas de point fixe dans S” c’est-a-dire que les w; sont tous différents de 1.
Fixons des entiers non nuls #,, ..., 1, tels que:

w;, = expQinn;/p) j=1,...,k.

| Soit ¢, le flot périodique (¢, = id) défini sur S2%¢-! par:

& (21, ..., 2) = (expQRinn)zy, ..., expRinngt)zy) -

; Onafz(bl/p.

Soit N le plus petit multiple commun de p, n,, ..., n,. Ainsi 1/p et toutes

' les périodes des orbites périodiques de ¢, sont des multiples entiers de 1/N.

Comme pour tout flot périodique sans point fixe, on peut recouvrir Sk —!

| par un nombre fini d’ouverts U, «trivialisants» pour le fibré de Seifert
3 ., fx o x pps : o
associé. Plus précisément, U; est difféomorphe au quotient de B? -2 x S!

par un difféomorphisme périodique du type
S o
(uly --°,uk—196) € ézk—Z X Sl = (alula ...,Otk_luk_l,WG) e BZk_2 X S1

ou a,...,0_1,w sont des racines N-emes de I’unité. Dans ces coordonnées,
O
le flot ¢, se reléve a B?¥-2 x S! par

&)t(ul’ --'9uk—l,e) = (u13°"auk—laexp(2int)e) .

Rappelons que nous avons construit au paragraphe precedent des courbes
A, et B, dans G = PSL(2 R) (avec t€]0, 27t[) et leurs relevés A et B dans
G... Notons A, et B, les projections de A et B, dans Gy. Les éléments
At et B, peuvent étre considérés comme des difféomorphismes du cercle S'!
commutant avec la rotation d’angle 2n/N. De plus, [ﬁ,,ﬁ,] est une rotation
d’angle z/N.

Soit 7;: S2¥~1 — [0, 2n[ une fonction de elasse C> a support compact dans
U; et invariante par ¢,. On note aussi T;: B2k 2 x S — [0,2n[ la fonction
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obtenue en composant la projection de B¥*-2x S' sur U; et 1;. On
remarquera que T,;(x, 0) ne dépend pas de 0 car T, est invariant par ¢;. Les
applications

e — ]
(X, 9) e B¥*-2x Sl (X,Atj(x)(e)) e B2k-2 x St
(x,0) € B*-2 % Sl (x, Btj(x,(e)) g B*-2 x §!

passent au quotient en des difféomorphismes de U; a supports compacts. En
prolongeant ces difféomorphismes par l’identité en dehors de U;, on
obtient des difféomorphismes /Lj et ETJ. de S2¥-1 qui commutent évidemment
avec f. Par ailleurs,

[/irjsérj] (m) = q)rj(m)/N(m) .

Le difféomorphisme f coincide avec ¢;,,. Pour terminer la démonstration du
lemme, il suffit donc d’écrire la fonction constante N/p comme somme de
fonctions t; du type précédent:

1 1 1
—=—T 4+ ... +—=1.
p N N
En effet, on aura alors
f=01,=1[4:,B,]...[4:,B: ] .

Pour cela, il suffit d’utiliser une partition de I'unité subordonnée aux U; et
d’en prendre la moyenne sous I’action de S! associée a ¢, pour la rendre
invariante. [

4. LE CAS DES SPHERES PAIRES

Nous identifierons la sphére S2¢ a I’ensemble des points (z;, ..., 2k, ) de
Ct x R tels que |z; |2+ ... + | zx|? + 2 = 1. Comme précédemment, nous
fixons un nombre premier p et nous considérons le groupe C, des difféo-
morphismes de S2*, isotopes a I’identité, du type:

S @1y ees Zhs t) € S (WiZy, ..., WiZis ) € S,

ou les w; sont des racines p-émes de I’unité.
Supposons encore par 1’absurde qu’il existe un morphisme

o : Diff{ (S2%) — Diff (B2 +1)

qui prolonge les difféomorphismes de la sphére a la boule.
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