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PROLONGEMENTS DES DIFFEOMORPHISMES
DE LA SPHERE

par Etienne GHYS

1. INTRODUCTION

Soit B"+! la boule unité fermée dans R7+!(n>1) et S” la sphére unité.
Soit Difflg (8™ et Diff’g (B"+1) les groupes des difféomorphismes de classe L=
de S” et B"+! respectivement qui sont C*-isotopes a I'identité (0 <k < ).
Par restriction au bord, on a un morphisme de groupes:

p: Difff (Bn+1) - Diff§(S") .
Il est bien connu que p est surjectif. En effet, soit f un élément de Diffg(S”)

et f,(te[0,1]) une Ck-isotopie entre f, =id et f; = f. On peut bien sir
supposer que f; = id pour 7 assez petit de sorte que ’application définie par:

F:Bn+1~_)Bn+l
X
Fe)=|x|.r — pour x#0,
[l x|l “X“
FO) =0,

est un difféomorphisme de classe C*, isotope a I’identité, dont la restriction
au bord de B"*! coincide avec f.

Dans le cas des homéomorphismes, c’est-a-dire lorsque k£ =0, le
morphisme p admet une section évidente. Le prolongement radial d’un

homéomorphisme f de la sphere S” est ’homéomorphisme o(f) de B”*!
défini par:

X

cs(f)(x)=||x||.f(”—x~”) pour x#0,
c(f)(©0)=0.

Ce prolongement ¢ définit un morphisme de groupes qui est une section
de p. Bien sir o(f) n’est généralement pas différentiable en 0 méme si f est

de classe C=. Le but de cette note est de montrer que cette difficulté ne peut
pas €tre évitée lorsque k > 1.
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THEOREME. [/ n’existe aucun morphisme de groupes ¢ de Diff; (S")
vers Diffy(B"+') tel que, pour tout f de Diffy(S"), le difféo-
morphisme o(f) soit un prolongement de f a la boule.

Insistons sur le fait que dans I’énoncé du théoréme on ne suppose pas que
- le morphisme o est continu; il s’agit @ priori d’un morphisme de groupes
abstraits.

| Voici un exemple d’une situation contraire. Considérons le cercle comme
bord de la bande de Moebius M. Il se trouve que, dans ce cas, il existe un
- morphisme o de Diff; (S!) vers le groupe Diff; (M) des difféomorphismes de
classe C* de M isotopes a I’identité tel que, pour tout f de Diff; (S?), le
 difféomorphisme o(f) prolonge f a la bande M. Pour cela, on considere le
- disque unité ouvert B2 de R? comme plongé dans le plan projectif réel P2.
 Le complémentaire de B? dans P? est une bande de Moebius M dont le
 bord est le cercle unité S'. Deux points de S!', éventuellement confondus,
 définissent deux tangentes dans P2 qui se coupent en un point de M.
. Réciproquement, par un point de M passent deux tangentes a S! (confondues
| si le point considéré est sur S'). Ainsi M s’identifie & I’espace des paires de
 points (éventuellement confondus) sur un cercle et le bord de M correspond
aux paires de points confondus. Il est maintenant clair qu’un difféo-
- morphisme f du cercle S! définit naturellement un difféomorphisme o (f)
de M qui prolonge f a la bande M.

| La démonstration du théoréeme lorsque n = 1 est élémentaire et va servir
de modele pour le cas général. Nous avons cru utile de détailler d’abord ce
- cas particulier au paragraphe 2. Une lecture sommaire de cette note pourrait
d’ailleurs se limiter a ce paragraphe. On étudie alors le cas ou n est un entier
impair quelconque au paragraphe 3 puis le cas ou z est pair au paragraphe 4.
Le paragraphe 5 est consacré a des remarques genérales inspirées par le
théoréme.

2. LEcasn=1

Nous commencerons par un lemme ¢lémentaire. La démonstration que
nous en proposons est rapide mais elle utilise des outils puissants d’analyse.
I1 est possible par ailleurs d’en donner une démonstration topologique
(voir [4]).
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