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L’Enseignement Mathématique, t. 37 (1991), p. 45-59

PROLONGEMENTS DES DIFFEOMORPHISMES
DE LA SPHERE

par Etienne GHYS

1. INTRODUCTION

Soit B"+! la boule unité fermée dans R7+!(n>1) et S” la sphére unité.
Soit Difflg (8™ et Diff’g (B"+1) les groupes des difféomorphismes de classe L=
de S” et B"+! respectivement qui sont C*-isotopes a I'identité (0 <k < ).
Par restriction au bord, on a un morphisme de groupes:

p: Difff (Bn+1) - Diff§(S") .
Il est bien connu que p est surjectif. En effet, soit f un élément de Diffg(S”)

et f,(te[0,1]) une Ck-isotopie entre f, =id et f; = f. On peut bien sir
supposer que f; = id pour 7 assez petit de sorte que ’application définie par:

F:Bn+1~_)Bn+l
X
Fe)=|x|.r — pour x#0,
[l x|l “X“
FO) =0,

est un difféomorphisme de classe C*, isotope a I’identité, dont la restriction
au bord de B"*! coincide avec f.

Dans le cas des homéomorphismes, c’est-a-dire lorsque k£ =0, le
morphisme p admet une section évidente. Le prolongement radial d’un

homéomorphisme f de la sphere S” est ’homéomorphisme o(f) de B”*!
défini par:

X

cs(f)(x)=||x||.f(”—x~”) pour x#0,
c(f)(©0)=0.

Ce prolongement ¢ définit un morphisme de groupes qui est une section
de p. Bien sir o(f) n’est généralement pas différentiable en 0 méme si f est

de classe C=. Le but de cette note est de montrer que cette difficulté ne peut
pas €tre évitée lorsque k > 1.
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THEOREME. [/ n’existe aucun morphisme de groupes ¢ de Diff; (S")
vers Diffy(B"+') tel que, pour tout f de Diffy(S"), le difféo-
morphisme o(f) soit un prolongement de f a la boule.

Insistons sur le fait que dans I’énoncé du théoréme on ne suppose pas que
- le morphisme o est continu; il s’agit @ priori d’un morphisme de groupes
abstraits.

| Voici un exemple d’une situation contraire. Considérons le cercle comme
bord de la bande de Moebius M. Il se trouve que, dans ce cas, il existe un
- morphisme o de Diff; (S!) vers le groupe Diff; (M) des difféomorphismes de
classe C* de M isotopes a I’identité tel que, pour tout f de Diff; (S?), le
 difféomorphisme o(f) prolonge f a la bande M. Pour cela, on considere le
- disque unité ouvert B2 de R? comme plongé dans le plan projectif réel P2.
 Le complémentaire de B? dans P? est une bande de Moebius M dont le
 bord est le cercle unité S'. Deux points de S!', éventuellement confondus,
 définissent deux tangentes dans P2 qui se coupent en un point de M.
. Réciproquement, par un point de M passent deux tangentes a S! (confondues
| si le point considéré est sur S'). Ainsi M s’identifie & I’espace des paires de
 points (éventuellement confondus) sur un cercle et le bord de M correspond
aux paires de points confondus. Il est maintenant clair qu’un difféo-
- morphisme f du cercle S! définit naturellement un difféomorphisme o (f)
de M qui prolonge f a la bande M.

| La démonstration du théoréeme lorsque n = 1 est élémentaire et va servir
de modele pour le cas général. Nous avons cru utile de détailler d’abord ce
- cas particulier au paragraphe 2. Une lecture sommaire de cette note pourrait
d’ailleurs se limiter a ce paragraphe. On étudie alors le cas ou n est un entier
impair quelconque au paragraphe 3 puis le cas ou z est pair au paragraphe 4.
Le paragraphe 5 est consacré a des remarques genérales inspirées par le
théoréme.

2. LEcasn=1

Nous commencerons par un lemme ¢lémentaire. La démonstration que
nous en proposons est rapide mais elle utilise des outils puissants d’analyse.
I1 est possible par ailleurs d’en donner une démonstration topologique
(voir [4]).
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LEMME 2.1. Soit f un difféomorphisme de classe C' du disque B?
qui est d’ordre fini et respecte ’orientation. Alors f est Cl-conjugué a une
rotation euclidienne du disque B?.

Démonstration. Par moyennisation, on construit une métrique rieman-
nienne sur B? invariante par f. Le disque B? muni de cette métrique est
conformément équivalent au disque unité de C. Ceci résulte d’une part de
I’existence de coordonnées isothermes sur les surfaces et d’autre part du
théoréeme d’uniformisation de Riemann. Le lemme est alors une conséquence
de la classification des difféomorphismes holomorphes du disque unité. [

Le groupe G = PSL(2,R) opére par difféomorphismes projectifs sur la
droite projective réelle P!, difféomorphe au cercle S!'. Soit G, le revétement
universel de G qui est aussi le groupe des relevés des éléments de G au
revétement universel de P!, difféomorphe a la droite R. On a une extension
centrale:

0-Z—>G.—>G—1.

Le sous-groupe Z de G, correspond aux relevés de 1’identité, c’est-a-dire aux
translations d’amplitudes entiéres de la droite.

Soit p un entier supérieur ou égal a 2 et G, le revétement a p feuillets
de G, constitué des relevés des éléments de G au revétement & p feuillets de
P! = S, lui aussi difféomorphe & S'. On a ainsi un plongement:

i: G, —~ Diff; (S!) .
Le groupe G, est une extension centrale:
0—-Z/pL—->G,»G—1.

C’est aussi le quotient de G, par le sous-groupe central pZ.

Le lemme suivant est apparenté a la non trivialité de ’extension de G par
Z définissant G.,, soulignée pour la premiére fois par J. Milnor [5]. La
preuve que nous en proposons est inspirée de [1].

LEMME 2.2. Le sous-groupe Z/pZ de G, est contenu dans le groupe
des commutateurs de G,.

Démonstration. Soit a,B,y,8 quatre points du disque de Poincaré D2
dont les distances mutuelles vérifient

d(a,p) =d(y,8) et d(a,8) =d@B,y).

Soit A I'isométrie directe du disque de Poincaré qui envoie o et B sur § et y
et B celle qui envoie a et & sur B et y. Le commutateur [A,B] = ABA-'B-!
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~ fixe le point y; c’est donc une rotation de centre y. Ce commutateur envoie
le segment joignant y a B(y) = BA(B) sur le segment joignant y 3 AB(B). La
| figure suivante montre que I’angle entre ces deux segments est la somme des
angles intérieurs du quadrilatére opy3.

A(d) 5 o

A(y)

et B
AB(Y) AB(B) B(Y) ®

| D’apres une propriété bien connue de géométrie hyperbolique, cette somme
est égale au complément a 27 de ’aire du quadrilatére apyd. Si ’on choisit
 convenablement I’orientation de ce guadrilatére, 1’angle de la rotation [A, B]
est égal a ’aire de afyd et il peut donc prendre toutes les valeurs strictement
inférieures a 2w lorsque o, B, 7y, 8 varient dans D?. Rappelons que G s’inter-
- préte comme groupe des isométries directes du disque de Poincaré D?;
I’action sur P! que nous étudions apparaissant comme action sur le bord de
D?. Une rotation de D? correspond, sur P! = S§!, 4 une transformation
projective conjuguée a une rotation euclidienne du cercle S! de méme angle.
On constate donc qu’il est possible de construire deux courbes de classe C*®

tel0,2rn[ A, e G,
te[0,2r][— B, e G,

avec A, = By = id et telles que [A,, B;] soit la rotation d’angle t.

Ces courbes se relévent dans G, en des courbes A, et B, avec Ao = id
= Bo et il est clair que 1’élément [A,[,B,t]2 est ’élément 1 du sous-groupe Z
de G.. En passant au quotient par pZ, nous avons ainsi exprimé le géné-
rateur 1 de Z/pZ dans G, comme un produit de deux commutateurs. [
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Supposons maintenant par 1’absurde qu’il existe un morphisme
o: Diff> (S!) — Diff(B?)

qui prolonge les difféomorphismes du cercle au disque. Notons u I’élément 1
de Z/pZ engendrant le centre de G,. Le difféomorphisme c(i(u)) de B? est
d’ordre p. Il est conjugué & une rotation d’ordre p d’apres 2.1 et fixe donc
un unique point x, de B2.

Puisque u est central dans G,, tous les éléments de 6(G,) fixent xo. Par
passage a la différentielle en x,, on construit donc un morphisme

D:G,— GL(T,,B*) = GL(2,R) .

A conjugaison prés, on peut supposer que D(u) est une rotation d’ordre p.

LEMME 2.3. Si p >3, lecentralisateur d’une rotation d’ordre p dans
GL(2,R) est abélien.

Démonstration. Ce centralisateur coincide en effet avec le groupe de
similitudes de R2. [

La démonstration du théoréme lorsque n = 1 est maintenant facile. Le
morphisme D, étant a valeurs dans le centralisateur de D(u), a une image
abélienne. Il en résulte que D est trivial sur le groupe des commutateurs de
G, et donc sur u d’apres 2.2. Mais ceci est absurde puisque D(u) est conjugué
a une rotation d’ordre p.

On remarquera que nous n’avons utilisé I’hypothese sur ¢ que pour pouvoir
affirmer que I’ordre de o (i(1)) est exactement p. Nous avons donc montré en
fait un résultat plus fort: le groupe G, et, a fortiori, Diff§(S!), ne se
plongent pas dans Diff (l)(Bz). Si ’on tient compte du résultat (difficile) selon
lequel Diff; (S!) est un groupe simple [7], et donc qu’un morphisme de
source Diffy (S!) est injectif ou trivial, on déduit:

THEOREME. [l n’existe aucun morphisme non trivial de Diff; (S') vers
Diff,(B2).

3. LE CAS DES SPHERES IMPAIRES

Si n s’écrit sous la forme 2k — 1, nous identifierons la sphére S* avec
Pensemble des points (zi, ..., 2¢) de C* tels que |z, |* + ... + |z * = 1. Soit p
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un nombre premier. Nous noterons C, le sous-groupe de Diff; (S2¢-1) formé
des difféomorphismes du type

Fi@iy ez € SH1 (Wizy, ., wiz) € ST,

ou wy, ..., w, sont des racines p-émes de ’unité. Bien sir, C, est un groupe
isomorphe a (Z/pZ)*.
Supposons par 1’absurde qu’il existe un morphisme

c: Diffg (S - 1) — Diff(B)

qui prolonge les difféomorphismes de la sphére a la boule.

LEMME 3.1. [l existe un unique point x, intérieur @ B?** qui est fixe
par o(C,) .

Démonstration. Rappelons d’abord qu’un difféomorphisme périodique
de période p est localement linéarisable au voisinage d’un point fixe (voir par
exemple [2]). Il en résulte que ’ensemble des points fixes d’un tel difféo-
morphisme est une sous-variété. Lorsque la variété ambiante est la sphére S”,
la sous-variété des points fixes, si elle n’est pas vide, a la méme homologie
modulo p qu’une sphere de dimension d avec 0 < d < n. C’est un exemple
classique d’application de la théorie de Smith: voir par exemple [2].

Soit f un élément de C, tel qu’aucun des w; qui lui correspondent ne soit
égal a 1. Ainsi, f n’a pas de point fixe sur S?¢~!. Le difféomorphisme o (f)
de B?* a bien slir au moins un point fixe intérieur & B?*. En collant deux
copies du difféomorphisme o(f) de B?* le long du bord S?*-!, on obtient un
difféomorphisme F de S?%¢, double de o(f). Ce difféomorphisme F est
d’ordre p, sans point fixe sur S%~! et posseéde au moins un point fixe dans
chacun des deux hémisphéres bordés par S?-1. L’ensemble de ses points
fixes n’est donc pas connexe. Il résulte du rappel que nous venons de faire que
I’ensemble des points fixes de F a ’homologie modulo p d’une sphere de
dimension 0 et que c’est en fait une spheére de dimension 0, c’est-a-dire un
ensemble a deux éléments! Autrement dit, o(f) a un unique point fixe x,
dans B2,

Le lemme est alors une conséquence de la commutativité de C, et du fait
que les f pour lesquels aucun w; n’est égal a 1 engendrent C,. [

Considérons la différentielle de o(C,) en x;. On obtient ainsi un
morphisme

D: C,~ GL(T,B*) = GL(2k,R) .

2
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LEMME 3.2. A conjugaison pres, on peut supposer que ’image par D
de C, coincide avec le sous-groupe C, formé des applications linéaires
de R?* = C* du type

(Zla'“,zk) € CkH (HIZI, eeey szk) € Ck ’

avec |\; racine p-eme de ['unité.

Démonstration. Le fait que D(C,) soit, a conjugaison pres, contenu
dans a] résulte de la classification des sous-groupes finis commutatifs de
GL (2k, R) dont tous les éléments sont d’ordre p. Nous avons déja rappelé
qu’un difféomorphisme d’ordre fini est localement conjugué a sa différentielle
au voisinage d’un point fixe. Il en résulte qu’un difféomorphisme d’ordre fini
d’une variété connexe ne peut avoir une différentielle égale a I’identit¢ en un
point fixe a moins que ce difféomorphisme ne soit I’identité. En d’autres
termes, D est injective et on a donc D(C,) = _C; (a conjugaison prés). [

Remarquons que nous n’affirmons pas que si f € C, est défini par
(Wi, ...,wy), alors le k-uplet (u,,...,u;) qui définit D(f) coincide avec
Wiy ooy Wi).

On choisit p > k et f un élément de C, tels que D(f) soit une application
linéaire du type:

(Zis o5 Z) P (L1215 oees WiZk)

ou les p; sont distincts deux a deux et différents de 1. Ceci implique que X,
est un point fixe isolé de o (f) et les considérations du lemme 3.1 entrainent
que X, est le seul point fixe de o (f).

LEMME 3.3. Le centralisateur Z de D(f) dans GLQk,R) est
abélien.

Démonstration. Tout élément de Z est diagonal, car il préserve les
directions propres de D(f). [

Soit Diff; (S% -1, f) le groupe des difféomorphismes de S2¢-! de classe
C> commutant avec f et isotopes & I’identité par une isotopie commutant
avec f. Le groupe oDiffg (S2¥-1, f) C Diffy(B"+!) fixe évidemment x, et la
différentielle en x, est dans Z. On a donc un morphisme

D: Diff>(S%-!, f) - Z

qui envoie f sur un élément non trivial.
La contradiction cherchée est dans le lemme suivant, analogue au
lemme 2.2. Il ne serait pas difficile de déduire ce lemme d’un théoréme profond
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de W. Thurston sur la simplicité de certains groupes de difféomorphismes. Il

nous semble cependant intéressant de démontrer le lemme de maniére comple-
tement explicite.

LEMME 3.4. L’élément [ appartient au groupe des commutateurs de

| Diffe(S2- 1, £).

Démonstration. Soit wy, ..., w, les racines de 1’unité telles que
S @iy 2k) = Wize, een, WiZi)

Puisque 6(f) ne fixe que le point x, dans B”+!, le difféomorphisme f n’a
pas de point fixe dans S” c’est-a-dire que les w; sont tous différents de 1.
Fixons des entiers non nuls #,, ..., 1, tels que:

w;, = expQinn;/p) j=1,...,k.

| Soit ¢, le flot périodique (¢, = id) défini sur S2%¢-! par:

& (21, ..., 2) = (expQRinn)zy, ..., expRinngt)zy) -

; Onafz(bl/p.

Soit N le plus petit multiple commun de p, n,, ..., n,. Ainsi 1/p et toutes

' les périodes des orbites périodiques de ¢, sont des multiples entiers de 1/N.

Comme pour tout flot périodique sans point fixe, on peut recouvrir Sk —!

| par un nombre fini d’ouverts U, «trivialisants» pour le fibré de Seifert
3 ., fx o x pps : o
associé. Plus précisément, U; est difféomorphe au quotient de B? -2 x S!

par un difféomorphisme périodique du type
S o
(uly --°,uk—196) € ézk—Z X Sl = (alula ...,Otk_luk_l,WG) e BZk_2 X S1

ou a,...,0_1,w sont des racines N-emes de I’unité. Dans ces coordonnées,
O
le flot ¢, se reléve a B?¥-2 x S! par

&)t(ul’ --'9uk—l,e) = (u13°"auk—laexp(2int)e) .

Rappelons que nous avons construit au paragraphe precedent des courbes
A, et B, dans G = PSL(2 R) (avec t€]0, 27t[) et leurs relevés A et B dans
G... Notons A, et B, les projections de A et B, dans Gy. Les éléments
At et B, peuvent étre considérés comme des difféomorphismes du cercle S'!
commutant avec la rotation d’angle 2n/N. De plus, [ﬁ,,ﬁ,] est une rotation
d’angle z/N.

Soit 7;: S2¥~1 — [0, 2n[ une fonction de elasse C> a support compact dans
U; et invariante par ¢,. On note aussi T;: B2k 2 x S — [0,2n[ la fonction
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obtenue en composant la projection de B¥*-2x S' sur U; et 1;. On
remarquera que T,;(x, 0) ne dépend pas de 0 car T, est invariant par ¢;. Les
applications

e — ]
(X, 9) e B¥*-2x Sl (X,Atj(x)(e)) e B2k-2 x St
(x,0) € B*-2 % Sl (x, Btj(x,(e)) g B*-2 x §!

passent au quotient en des difféomorphismes de U; a supports compacts. En
prolongeant ces difféomorphismes par l’identité en dehors de U;, on
obtient des difféomorphismes /Lj et ETJ. de S2¥-1 qui commutent évidemment
avec f. Par ailleurs,

[/irjsérj] (m) = q)rj(m)/N(m) .

Le difféomorphisme f coincide avec ¢;,,. Pour terminer la démonstration du
lemme, il suffit donc d’écrire la fonction constante N/p comme somme de
fonctions t; du type précédent:

1 1 1
—=—T 4+ ... +—=1.
p N N
En effet, on aura alors
f=01,=1[4:,B,]...[4:,B: ] .

Pour cela, il suffit d’utiliser une partition de I'unité subordonnée aux U; et
d’en prendre la moyenne sous I’action de S! associée a ¢, pour la rendre
invariante. [

4. LE CAS DES SPHERES PAIRES

Nous identifierons la sphére S2¢ a I’ensemble des points (z;, ..., 2k, ) de
Ct x R tels que |z; |2+ ... + | zx|? + 2 = 1. Comme précédemment, nous
fixons un nombre premier p et nous considérons le groupe C, des difféo-
morphismes de S2*, isotopes a I’identité, du type:

S @1y ees Zhs t) € S (WiZy, ..., WiZis ) € S,

ou les w; sont des racines p-émes de I’unité.
Supposons encore par 1’absurde qu’il existe un morphisme

o : Diff{ (S2%) — Diff (B2 +1)

qui prolonge les difféomorphismes de la sphére a la boule.



54 E. GHYS

LEMME 4.1. [l existe un unique arc I dans B?**! connectant les
points N = (0,...,0,1) et S=(0,...,0, —1) et formé de points fixés par
tous les éléments de oC,. Cet arc ne dépend pas de p.

Démonstration. Comme précédemment, si aucun des w; n’est égal a 1, le
difféomorphisme f a exactement deux points fixes sur la sphére S?* (les
points N et S). La théorie de Smith permet alors de montrer que I’ensemble
des points fixes de o(f) est un arc connectant N et S. Un homéomorphisme
d’ordre fini d’un intervalle qui fixe les extrémités est nécessairement I’identité.
Il résulte de ce fait, de la commutativit¢ de C, et du fait que les f pour
lesquels aucun w; n’est égal a 1 engendrent C, qu’il existe un arc I formé de
points fixes par tous les éléments de cC,.

Puisque C, et C, commutent (si p et g sont deux nombres premiers
quelconques), 1’arc I ne dépend pas du choix de p. [

Soit x, un point de /. Considérons la différentielle de 6(C,) en x,. On
obtient ainsi un morphisme

D:C, — GL(T,,B**') = GL2k + 1,R) .

LEMME 4.2. A conjugaison pres, on peut supposer que [’image de D
coincide avec le groupe C, des applications linéaires de R*+! = C¥ x R
du type:

(Zla ..-,Zk,t) e CAx R (ulzla“'a Mkaaf) e C* xR

ou les |; sont des racines p-emes de [l’unité.

Démonstration. 1dentique a celle de 3.2. [

On choisit p > n et f un élément de C, tels que D(f) soit une application
linéaire du type précédent pour laquelle les p; sont distincts deux a deux et
différents de 1. D’apres ce que nous avons vu, I’ensemble des points fixes de
o(f) coincide alors avec 1. '

La démonstration se sépare ici de celle décrite au paragraphe précédent.
En effet, ’élément f n’est certainement pas un produit de commutateurs dans
le groupe Diff; (S?4, f) des difféomorphismes de classe C*, isotopes a
I’identité et commutant avec f. Ceci résulte du fait que la différentielle d’un
élément de Diff; (S?%, f) au point N est diagonale de sorte qu’un produit de
commutateurs a une différentielle égale a I’identité en N, contrairement a f.
C’est précisément ce fait qui a servi de base a la démonstration du théoréme

2
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lorsque # est impair et qui nous empéche donc de généraliser la preuve au cas
ou # est pair.

Soit Diff{ (S%, N, S) le groupe des difféomorphismes de S2*, coincidant
avec I’identité au voisinage de N et S et isotopes a I’identité par une isotopie
4 support compact dans S* — {N, S}. Notre premier but sera de montrer que
o Diffy (S2%, N, S) fixe I point par point. Nous en déduirons ’existence d’un
point x, de I fixe par tout le groupe oDiffy (S2#) et il sera facile d’en déduire
une contradiction.

On se fixe deux nombres premiers distincts p et g et deux éléments f; et
f> de C, et C, respectivement, du type précédent. Soit Diff 5 (S?*,N, S, fi) le
sous-groupe de Diffy (S2*, N, S) formé des élements commutant avec fi et
isotopes a I’identité par une isotopie commutant avec f;(i=1,2).

LEMME 4.3. Les groupes oDIiffy (S**,N, S, f;) (i=1,2) fixent I point
par point. De plus, les différentielles de ces difféomorphismes aux points
de I sont égales a l’identité.

Démonstration. Ce groupe préserve globalement I’ensemble des points
fixes de o(/f;), c’est-a-dire I. L’action de f; sur S** — {N, S} est libre. Un
difféomorphisme de V; = S2¢ — {N, S}/ (f;) qui est I’identité au voisinage des
deux bouts, et qui est isotope a 1’identité par une isotopie a support compact,
se releve de maniére unique en un élément de Diff; (S24,N, S, f;). En
d’autres termes, Diffy’ (S, N, S, f;) est isomorphe au groupe Diff; ((V;) des
difféomorphismes de V; de classe C*=, a supports compacts, isotopes a
I'identité par une isotopie & support compact. On a donc un morphisme

DiffZ o(V;) = Diffg (1) .

Il s’agit de montrer que ce morphisme est trivial.

Un théoreme de W. Thurston [7] affirme que Diff7 ,(V;) est un groupe
simple. Il nous suffit donc de trouver un élément non trivial de
oDiff§ (S2*, N, S, f;) qui fixe I point par point pour en conclure qu’il en est
de méme pour tous les éléments. _

Soit ¢ un €lément de Diffy(S?*,N, S, f;) qui ne commute pas avec
fi(je{l,2}etj #i). Puisque o(¢) préserve globalement 7 et que o(f;) fixe I
point par point, le commutateur o(¢f;d ~!f j_l) fixe I point par point. Il
suffit alors de remarquer que ¢.f;¢ ' f j—’ coincide avec I’identité au voisinage
de N, S, commute avec f;, est isotope a 1’identité par une isotopie commutant
avec f; et a support dans S2¢ — {N, S}. Nous avons ainsi trouvé un élément

non trivial dans le noyau du morphisme considéré et ce morphisme est donc
bien trivial.
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En fixant un point xy de I et en considérant la différentielle en x, d’un
élément de Diff; (S?%, N, S, f;), on obtient un morphisme d’un groupe simple
a valeurs dans le groupe abélien Z, centralisateur de D(f;) dans
GL(2k + 1,R). Ces différentielles sont donc toutes égales a 1’identité. L]

LEMME 4.4. Le groupe Diff;(S**,N,S) est engendré par les
deux sous-groupes Diff; (S?),N, S, fi)(i=1,2). Ainsi, les éléments de
o Diffy (S**,N, S) fixent I point par point et leurs différentielles sont
égales a l’identité en ces points.

Démonstration. Je remercie C. Bavard a qui je dois cette démonstration.

Soit ¢ un difféomorphisme d’ordre pg d’une variété M. On suppose que
I’action associée de Z/pgZ sur M est libre. Soit U C M un ouvert tel que les
¢ (V) soient disjoints deux a deux (ou ’exposant i est a lire dans Z/pqZ). Si
805815 -.>&pg—1 SO0t pg difféomorphismes de M a supports dans U, on notera
{80,815 ---»8q-1} le difféomorphisme suivant de M:

2o (@ togiop)o(dp-20g,002) 0 ... o(p(-ra+Dog,, 0pwi-D),

On remarquera que tous les facteurs de cette composition commutent. Fixons
deux difféomorphismes g et # de M a supports dans U et définissons 6pg
difféomorphismes a; et bi(1 <i<3,0<j< pg—1) par:

a; =g a; =1id a; =h-! si j=0 (mod p)
a;=h-! a;=g a; = id si j#0 (mod p)
b, =h bl =g-! b; =id sij=0 (mod q)
b =g"! b? =id b} = h sij#0 (mod q) .

On pose alors, pour i = 1,2,3,
Aiz{aé,...,a;q_l} et Bi’:{bz)a‘“’b;q—l}‘

On remarque que les trois difféomorphismes A; commutent avec ¢p# alors que
les B, commutent avec ¢¥9.

Une vérification simple (que le lecteur pourra faire d’abord lorsque p = 2
et ¢ = 3) montre que

A1B1A232A3B3 = ghg"h‘l .

Ainsi, nous avons montré que le commutateur de deux difféomorphismes
a supports dans U est un produit de difféomorphismes de M commutant avec

$? ou ¢F.

N
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Appliquons cette technique a la situation du lemme. Dans ce cas, ’action
de Z/pgZ considérée est engendrée par f; et f, d’ordres respectifs p et g,
agissant sur S2¢ — {N, S}. Nous obtenons que si g et # sont deux difféo-
morphismes de Diffy (S, N, S) a supports dans un ouvert U assez petit de
S2k — {N, S}, le commutateur [g, #] appartient au groupe engendré par les
sous-groupes Diffe (S2¢, N, S, f;) (i=1,2). Pour conclure, il suffit de
remarquer que ces commutateurs engendrent Diff; (S24, N, S). Ceci résulte de
deux faits. Tout d’abord, si les ouverts U; recouvrent S* — {N, S}, les
groupes Diff .(U;) C Diff7 (S2%, N, S) engendrent Diff(S%,N, S); c’est le
lemme de fragmentation de [6]. D’autre part, d’aprés le théoréme de
W. Thurston déja mentionné, les groupes Diffy (U;) sont des groupes
simples et donc sont engendrés par les commutateurs. L]

Soit s I’involution isotope a I’identité définie par

S+ L, Doy ey X+ Dy ) = (X1 — V1, =X — D2y eeey — X — iV, — 1) .

Elle commute avec C, de sorte que o(s) préserve I globalement. De plus,
s échange S et N et il existe donc un unique point x, de I qui est fixe par ¢ (s).
Soit W et E les points (— 1,0, ...,0) et (1,0,...,0) de S2*. 1l est clair que ’arc
analogue a / joignant W a E, formé des points fixes de o(s), contient x,. Les
deux groupes o Diff; (S%*, N, S) et oDiff; (S2*, E, W) fixent donc x, et leurs
différentielles en x, sont triviales.

LEMME 4.5. Les groupes Diffy(S*,N,S) et Diffy(S%*,E, W)
engendrent Diff (S%).

Démonstration. Soit f un élément de Diff (S2¢). Soit g, un élément de
Diff (S2*, E, W) qui coincide avec f au voisinage des points N et S et posons
g =g, ' °f. Onaalors g, € Diff7(S2%*,N,S) et f =g, 0g,. L[]

La contradiction cherchée est maintenant claire. Le groupe o Diff (S%)
tout entier fixe x, et sa différentielle en x, est triviale. Ceci est absurde puis-
que les €léments d’ordre fini distincts de I’identité (par exemple ceux de
6(C,)) ne peuvent avoir une différentielle égale & I’identité en un point fixe.
Ceci termine la preuve du théoréme dans le cas ol # est pair.

5. QUELQUES REMARQUES

Le résultat obtenu dans cette note suggére immédiatement une question
plus générale. Si V est une variété a bord non vide o0V, dans quelles
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conditions existe-t-il un morphisme de Diffy (8V) vers Diff; (V) qui
«prolonge les difféomorphismes a l’intérieur»? Nous avons vu qu’un tel
morphisme existe si V est une bande de Moebius et n’existe pas si V est une
boule. Le lecteur n’aura maintenant aucune difficulté a traiter le cas général
ou V est une surface compacte a bord. Qu’en est-il par contre si V est un corps
a anses de genre g (i.e. le domaine de R?3 bordé par une surface de genre g
plongée de manieére habituelle)?

De mani¢re analogue, on peut s’intéresser aux morphismes entre groupes
de difféomorphismes de variétés fermées (i.e. compactes sans bord). Voici deux
exemples.

On peut identifier I’espace projectif complexe CP” au quotient de (S2)”
par ’action du groupe symétrique. Cette identification peut étre obtenue de
la facon suivante. Au point de coordonnées homogeénes [ay:a;:...:a,] de
CP", on associe les n zéros du polyndme ayz” + ... + a, dans C U {o} = §2
qui sont définis & ’ordre prés. Il est facile de vérifier qu’un difféomorphisme
de classe C*= de S? meéne ainsi a un difféomorphisme de classe C* de CP” et
on a donc un morphisme naturel:

Diff; (S?) — Diff; (CP") .

Une deuxiéme construction générale s’obtient de la facon suivante. Si V'
est une variété fermée et si PTV désigne le projectifié du fibré tangent a V,
on a un morphisme obtenu par différentielle:

Diff; (V) — Diffy (PTV) .

On notera que PTV est fermée. Ces exemples suggerent la question qui suit:

QUESTION. Soit V|, et V, deux variétés fermées telles qu’il existe un
morphisme non trivial de Diffg (Vy) vers Diffg(V;). Peut-on affirmer
que la dimension de V, est inférieure ou égale a celle de V,?

Les cas d’isomorphismes entre groupes de difféomorphismes ont été étudiés
dans [3]: Diffy (V1) et Diff; (V>) ne sont isomorphes que si V; et V, sont
difféomorphes.

Signalons enfin que les méthodes utilisées dans cet article tombent en défaut
dans le contexte analytique réel (sauf lorsque n = 1).
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