
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1991)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROLONGEMENTS DES DIFFÉOMORPHISMES DE LA SPHÈRE

Autor: Ghys, Etienne

DOI: https://doi.org/10.5169/seals-58729

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-58729
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


L'Enseignement Mathématique, t. 37 (1991), p. 45-59

PROLONGEMENTS DES DIFFÉOMORPHISMES

DE LA SPHÈRE

par Etienne Ghys

1. Introduction

Soit Bn + l la boule unité fermée dans R" + 1 (n ^ 1) et S" la sphère unité.

Soit Diffus") et DiffJ(J5l, + 1) les groupes des difféomorphismes de classe Ck

de Sn et Bn + l respectivement qui sont Ck-isotopes à l'identité (0^£^oo).
Par restriction au bord, on a un morphisme de groupes:

p:Diff£(£" + 1)-+Diff£(S")

Il est bien connu que p est surjectif. En effet, soit / un élément de Diffo(S")
et ft(te[0,1]) une Ck-isotopie entre f0 id et fx /. On peut bien sûr

supposer que ft id pour t assez petit de sorte que l'application définie par:

p. ßn + 1 ßn+ 1

F(x) =\\x\\. fM j pour x*0

F(0)0

est un difféomorphisme de classe Ck, isotope à l'identité, dont la restriction
au bord de Bn + l coïncide avec /.

Dans le cas des homéomorphismes, c'est-à-dire lorsque k 0, le

morphisme p admet une section évidente. Le prolongement radial d'un
homéomorphisme / de la sphère Sn est l'homéomorphisme o(/) de Bn + l

défini par:

O(f) (x) llxll./ (ï^-jjj p°ur

o (/) (0) 0

Ce prolongement o définit un morphisme de groupes qui est une section
de p. Bien sûr o(/) n'est généralement pas différentiable en 0 même si / est
de classe C°°. Le but de cette note est de montrer que cette difficulté ne peut
pas être évitée lorsque k ^ 1.
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Théorème. Il n'existe aucun morphisme de groupes o de Diff^^S")
vers DiffJ(2?M +1) tel que, pour tout f de Diff^S"), le difféo-
morphisme o(/) soit un prolongement de f à la boule.

Insistons sur le fait que dans l'énoncé du théorème on ne suppose pas que
le morphisme o est continu; il s'agit a priori d'un morphisme de groupes
abstraits.

Voici un exemple d'une situation contraire. Considérons le cercle comme
bord de la bande de Moebius M. Il se trouve que, dans ce cas, il existe un
morphisme o de Diff^^S1) vers le groupe Diff^°(M) des difféomorphismes de

classe C°° de M isotopes à l'identité tel que, pour tout / de Diff^OS1)» le

difféomorphisme o(/) prolonge / à la bande M. Pour cela, on considère le
o

disque unité ouvert B2 de R2 comme plongé dans le plan projectif réel P2.
o

Le complémentaire de B2 dans P2 est une bande de Moebius M dont le

bord est le cercle unité S1. Deux points de S1, éventuellement confondus,
définissent deux tangentes dans P2 qui se coupent en un point de M.
Réciproquement, par un point de M passent deux tangentes à S1 (confondues
si le point considéré est sur S1). Ainsi M s'identifie à l'espace des paires de

points (éventuellement confondus) sur un cercle et le bord de M correspond
aux paires de points confondus. Il est maintenant clair qu'un
difféomorphisme f du cercle S1 définit naturellement un difféomorphisme o(/)
de M qui prolonge / à la bande M.

La démonstration du théorème lorsque n 1 est élémentaire et va servir
de modèle pour le cas général. Nous avons cru utile de détailler d'abord ce

cas particulier au paragraphe 2. Une lecture sommaire de cette note pourrait
d'ailleurs se limiter à ce paragraphe. On étudie alors le cas où n est un entier

impair quelconque au paragraphe 3 puis le cas où n est pair au paragraphe 4.

Le paragraphe 5 est consacré à des remarques générales inspirées par le

théorème.

2. Le cas n 1

Nous commencerons par un lemme élémentaire. La démonstration que

nous en proposons est rapide mais elle utilise des outils puissants d'analyse.

Il est possible par ailleurs d'en donner une démonstration topologique

(voir [4]).
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Lemme2.1. Soit f un difféomorphisme de classe C1 du disque B2

qui est d'ordre fini et respecte l'orientation. Alors f est C1 -conjugué à une

rotation euclidienne du disque B2.

Démonstration. Par moyennisation, on construit une métrique rieman-
nienne sur B2 invariante par f. Le disque B2 muni de cette métrique est

conformément équivalent au disque unité de C. Ceci résulte d'une part de

l'existence de coordonnées isothermes sur les surfaces et d'autre part du

théorème d'uniformisation de Riemann. Le lemme est alors une conséquence
de la classification des difféomorphismes holomorphes du disque unité.

Le groupe G PSL{2,R) opère par difféomorphismes projectifs sur la

droite projective réelle P1, difféomorphe au cercle S1. Soit Gœ le revêtement

universel de G qui est aussi le groupe des relevés des éléments de G au
revêtement universel de P1, difféomorphe à la droite R. On a une extension
centrale :

O^Z^Goo-^G-M
Le sous-groupe Z de Gœ correspond aux relevés de l'identité, c'est-à-dire aux
translations d'amplitudes entières de la droite.

Soit p un entier supérieur ou égal à 2 et Gp le revêtement à p feuillets
de G, constitué des relevés des éléments de G au revêtement à p feuillets de
P1 - S\ lui aussi difféomorphe à S1. On a ainsi un plongement:

/: G,-Diffus1)
Le groupe Gp est une extension centrale:

0 —> Z/pZ —> Gp G —> 1

C'est aussi le quotient de Gœ par le sous-groupe central pZ.
Le lemme suivant est apparenté à la non trivialité de l'extension de G par

Z définissant G«*, soulignée pour la première fois par J. Milnor [5]. La
preuve que nous en proposons est inspirée de [1].

Lemme 2.2. Le sous-groupe Z/pZ de Gp est contenu dans le groupe
des commutateurs de Gp.

Démonstration. Soit a,ß,y,ö quatre points du disque de Poincaré D2
dont les distances mutuelles vérifient

d(cL, ß) d(y, 8) et d(a, 8) d($, y)

Soit A l'isométrie directe du disque de Poincaré qui envoie a et ß sur ô et y
et B celle qui envoie a et ô sur ß et y. Le commutateur [A, B] ABA - lB ~1
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fixe le point y; c'est donc une rotation de centre y. Ce commutateur envoie
le segment joignant y à B(y) BA($) sur le segment joignant y à AB{$). La
figure suivante montre que l'angle entre ces deux segments est la somme des

angles intérieurs du quadrilatère aßyö.

D'après une propriété bien connue de géométrie hyperbolique, cette somme
est égale au complément à 2n de l'aire du quadrilatère aßyö. Si l'on choisit
convenablement l'orientation de ce quadrilatère, l'angle de la rotation [A, B]
est égal à l'aire de aßyö et il peut donc prendre toutes les valeurs strictement

inférieures à 2n lorsque a,ß,y, ö varient dans D2. Rappelons que G s'interprète

comme groupe des isométries directes du disque de Poincaré D2;
l'action sur Pl que nous étudions apparaissant comme action sur le bord de

D2. Une rotation de D2 correspond, sur Px — S1, à une transformation
projective conjuguée à une rotation euclidienne du cercle S1 de même angle.

On constate donc qu'il est possible de construire deux courbes de classe C°°

t e [0,27t[ At e G

t e [0,2n[ h* Bt e G

avec A0 B0 id et telles que [At,Bt] soit la rotation d'angle t.
Ces courbes se relèvent dans Gœ en des courbes At et Bt avec A0 id

B0 et il est clair que l'élément [Àn,Bn]2 est l'élément 1 du sous-groupe Z
de Goo. En passant au quotient par pZ, nous avons ainsi exprimé le

générateur 1 de Z/pZ dans Gp comme un produit de deux commutateurs.
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Supposons maintenant par l'absurde qu'il existe un morphisme

o: Diff^0(S1) DiffJC#2)

qui prolonge les difféomorphismes du cercle au disque. Notons u l'élément 1

de Z/pZ engendrant le centre de Gp. Le difféomorphisme a(/(«)) de B2 est

d'ordre p. Il est conjugué à une rotation d'ordre p d'après 2.1 et fixe donc

un unique point x0 de B2.

Puisque u est central dans Gp, tous les éléments de o(Gp) fixent x0. Par

passage à la différentielle en x0, on construit donc un morphisme

D: Gp-* GL(TXqB2) — GL(2,R)

A conjugaison près, on peut supposer que D(u) est une rotation d'ordre p.

Lemme 2.3. Si p ^ 3, le centralisateur d'une rotation d'ordre p dans

GL (2,R) est abélien.

Démonstration. Ce centralisateur coïncide en effet avec le groupe de

similitudes de R2.

La démonstration du théorème lorsque n 1 est maintenant facile. Le

morphisme D, étant à valeurs dans le centralisateur de D(u), a une image
abélienne. Il en résulte que D est trivial sur le groupe des commutateurs de

Gp et donc sur u d'après 2.2. Mais ceci est absurde puisque D(u) est conjugué
à une rotation d'ordre p.

On remarquera que nous n'avons utilisé l'hypothèse sur o que pour pouvoir
affirmer que l'ordre de o(i(u)) est exactement p. Nous avons donc montré en

fait un résultat plus fort: le groupe Gp et, a fortiori, Diffq(S1), ne se

plongent pas dans DiffJC#2). Si l'on tient compte du résultat (difficile) selon

lequel Diff^OS1) est un groupe simple [7], et donc qu'un morphisme de

source Diff^OS1) est injectif ou trivial, on déduit:

Théorème. Il n'existe aucun morphisme non trivial de Diff^OS1) vers
DiffJOB2).

3. Le cas des sphères impaires

Si n s'écrit sous la forme 2k - 1, nous identifierons la sphère Sn avec
l'ensemble des points (z\, de Ck tels que | Zi |2 + + | zk |2 1. Soit p
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un nombre premier. Nous noterons Cp le sous-groupe de DiffJ0(S2*-1) formé
des difféomorphismes du type

/: (zu -~,Zk) e S2k~l ^ (wlZi,...,wkzk) e S2k~l

où wu wk sont des racines /7-èmes de l'unité. Bien sûr, Cp est un groupe
isomorphe à (Z/pZ)k.

Supposons par l'absurde qu'il existe un morphisme

o: Diff^CS2*-1) Diffl0(B2k)

qui prolonge les difféomorphismes de la sphère à la boule.

Lemme 3.1. Il existe un unique point x0 intérieur à B2k qui est fixe
par o(Cp)

Démonstration. Rappelons d'abord qu'un difféomorphisme périodique
de période p est localement linéarisable au voisinage d'un point fixe (voir par
exemple [2]). Il en résulte que l'ensemble des points fixes d'un tel
difféomorphisme est une sous-variété. Lorsque la variété ambiante est la sphère Sn,

la sous-variété des points fixes, si elle n'est pas vide, a la même homologie
modulo p qu'une sphère de dimension d avec 0 ^ d ^ n. C'est un exemple
classique d'application de la théorie de Smith: voir par exemple [2].

Soit / un élément de Cp tel qu'aucun des wt qui lui correspondent ne soit

égal à 1. Ainsi, / n'a pas de point fixe sur S2k~l. Le difféomorphisme g(/)
de B2k a bien sûr au moins un point fixe intérieur à B2k. En collant deux

copies du difféomorphisme g(/) de B2k le long du bord S2k~l, on obtient un
difféomorphisme F de S2k, double de o(/). Ce difféomorphisme F est

d'ordre p, sans point fixe sur S2k~l et possède au moins un point fixe dans

chacun des deux hémisphères bordés par S2k~K L'ensemble de ses points
fixes n'est donc pas connexe. Il résulte du rappel que nous venons de faire que
l'ensemble des points fixes de F a l'homologie modulo p d'une sphère de

dimension 0 et que c'est en fait une sphère de dimension 0, c'est-à-dire un
ensemble à deux éléments! Autrement dit, o(/) a un unique point fixe x0

dans B2k.

Le lemme est alors une conséquence de la commutativité de Cp et du fait

que les / pour lesquels aucun wt n'est égal à 1 engendrent Cp.

Considérons la différentielle de c(Cp) en x0. On obtient ainsi un

morphisme

D: Cp GL(TX0B2k) - GL (2k, R)
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Lemme 3.2. A conjugaison près, on peut supposer que l'image par D
de Cp coïncide avec le sous-groupe Cp formé des applications linéaires

de R2* — Ck du type

(zu...,zk) eCk^ ([iiZi,.,.,\ikzk) e Ck

avec (il/ racine p-ème de l'unité.
Démonstration. Le fait que D{CP) soit, à conjugaison près, contenu

dans Cp résulte de la classification des sous-groupes finis commutatifs de

GL {2k, R) dont tous les éléments sont d'ordre p. Nous avons déjà rappelé

qu'un difféomorphisme d'ordre fini est localement conjugué à sa différentielle

au voisinage d'un point fixe. Il en résulte qu'un difféomorphisme d'ordre fini
d'une variété connexe ne peut avoir une différentielle égale à l'identité en un
point fixe à moins que ce difféomorphisme ne soit l'identité. En d'autres

termes, D est injective et on a donc D{CP) Cp (à conjugaison près).

Remarquons que nous n'affirmons pas que si f e Cp est défini par
(wi,..., wk), alors le £-uplet (m,..., qui définit D(f coïncide avec

(wu...,wk).
On choisit p > k et / un élément de Cp tels que D{f) soit une application

linéaire du type:

(Zi,...fZk)^ {\iiZu...,\lkZk)

où les (4/ sont distincts deux à deux et différents de 1. Ceci implique que x0
est un point fixe isolé de o(/) et les considérations du lemme 3.1 entraînent
que x0 est le seul point fixe de o(/).

Lemme 3.3. Le centralisateur Z de D(f) dans GL(2k,R) est
abélien.

Démonstration. Tout élément de Z est diagonal, car il préserve les
directions propres de D{f).

Soit Diff^S2*-1,/) le groupe des difféomorphismes de S2k~l de classe
C00 commutant avec / et isotopes à l'identité par une isotopie commutant
avec /. Le groupe gDiffus2*"1,/) C Diff*(£" + 1) fixe évidemment x0 et la
différentielle en x0 est dans Z. On a donc un morphisme

D: Diff^(S2*-1,/) -> Z

qui envoie / sur un élément non trivial.
La contradiction cherchée est dans le lemme suivant, analogue au

lemme 2.2. Il ne serait pas difficile de déduire ce lemme d'un théorème profond
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de W. Thurston sur la simplicité de certains groupes de difféomorphismes. Il
nous semble cependant intéressant de démontrer le lemme de manière complètement

explicite.

Lemme 3.4. L'élément f appartient au groupe des commutateurs de

DiffJJ0 (S2k~l, /).
Démonstration. Soit Wi,...,wk les racines de l'unité telles que

f(Zu...,Zk) (WiZi,...,WkZk)

Puisque o(/) ne fixe que le point x0 dans Bn + l, le difféomorphisme / n'a
pas de point fixe dans Sn c'est-à-dire que les wt sont tous différents de 1.

Fixons des entiers non nuls nx,..., nk tels que:

Wj txp(2innj/p) j 1, ...,k

Soit 0, le flot périodique (01 id) défini sur S2k~l par:

<\>t(z\, ...,zk) (exp(2/7r^iOzi, ...,exp(2innkt)zk) •

On a / 01/p.
Soit N le plus petit multiple commun de p, nx, ...,nk. Ainsi l/p et toutes

les périodes des orbites périodiques de 0, sont des multiples entiers de 1 /N.
Comme pour tout flot périodique sans point fixe, on peut recouvrir Slk~l

par un nombre fini d'ouverts U; «trivialisants» pour le fibré de Seifert
o

associé. Plus précisément, Uj est difféomorphe au quotient de B2k~2 x S1

par un difféomorphisme périodique du type

(m,, 1,0) e B2k'2x S1M- (aim,, ...,ak-Xuk-i,wô) e B2k~2 x S1

où oq 1, w sont des racines 7V-èmes de l'unité. Dans ces coordonnées,
le flot 0/ se relève à B2k~2 x S1 par

,0) (wi,.exp(2/rc06) •

Rappelons que nous avons construit au paragraphe précédent des courbes

At et Bt dans G PSL(2,R) (avec /e[0,27i[) et leurs relevés Ät et Bt dans

Goo. Notons Àt et Bt les projections de At et Bt dans GN. Les éléments

Ät et Bt peuvent être considérés comme des difféomorphismes du cercle S1

commutant avec la rotation d'angle 2n/N. De plus, [At,Bt] est une rotation
d'angle t/N.

Soit t,-: S2k~1 [0,271 [ une fonction de classe C00 à support compact dans
J o

Uj et invariante par 0,. On note aussi Tj:B2k~2 x S1 -> [0,2n[ la fonction
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obtenue en composant la projection de B2k 2 x S1 sur U} et Xj. On

remarquera que Xj(x, 0) ne dépend pas de 0 car Xj est invariant par <f)/. Les

applications

(x,0) 6 B2k~2 (x,iT.w(0)) e B2k-2 x S1

(x, 0) e B2k-2 x S1 (x, BTj(x)(0)) e B2k~2 x S1

passent au quotient en des difféomorphismes de Uj à supports compacts. En

prolongeant ces difféomorphismes par l'identité en dehors de Uj, on

obtient des difféomorphismes ÄTj et BTj de S2k~l qui commutent évidemment

avec /. Par ailleurs,

[ÀXj,BXj] {m) (\\j(m)/N(w) •

Le difféomorphisme f coïncide avec §\/p. Pour terminer la démonstration du

lemme, il suffit donc d'écrire la fonction constante N/p comme somme de

fonctions Tj du type précédent:

1 1 1

— — X\ + ~\ Xq

p N N

En effet, on aura alors

/ /p l/dtj?Bxj] [ÂXg,BXg]

Pour cela, il suffit d'utiliser une partition de l'unité subordonnée aux Uj et

d'en prendre la moyenne sous l'action de S1 associée à 0, pour la rendre

invariante.

4. Le cas des sphères paires

Nous identifierons la sphère S2k à l'ensemble des points (z\, ..*9Zk, 0 de

LxR tels que | Zi |2 + + | zk |2 + t2 1. Comme précédemment, nous
fixons un nombre premier p et nous considérons le groupe Cp des

difféomorphismes de S2k, isotopes à l'identité, du type:

/: (Z\,...,Zk,t)e S2k^ (WiZi,..eS2k

où les Wj sont des racines p-èmes de l'unité.
Supposons encore par l'absurde qu'il existe un morphisme

g: Diff"(S2<:) ^ DiffJ(52*+1)

qui prolonge les difféomorphismes de la sphère à la boule.
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Lemme 4.1. Il existe un unique arc I dans B2k+l connectant les

points N (0,..., 0,1) et S (0,..., 0, - 1) et formé de points fixés par
tous les éléments de oCp. Cet arc ne dépend pas de p.

Démonstration. Comme précédemment, si aucun des wz- n'est égal à 1, le

difféomorphisme / a exactement deux points fixes sur la sphère S2k (les

points N et S). La théorie de Smith permet alors de montrer que l'ensemble
des points fixes de o (/) est un arc connectant N et S. Un homéomorphisme
d'ordre fini d'un intervalle qui fixe les extrémités est nécessairement l'identité.
Il résulte de ce fait, de la commutativité de Cp et du fait que les / pour
lesquels aucun w, n'est égal à 1 engendrent Cp qu'il existe un arc / formé de

points fixes par tous les éléments de oCp.
Puisque Cp et Cq commutent (si p et q sont deux nombres premiers

quelconques), l'arc / ne dépend pas du choix de p.

Soit x0 un point de I. Considérons la différentielle de o(Cp) en x0. On
obtient ainsi un morphisme

D:CP^ GL(TXoB2k+l) ^ GL(2k+\,R)

Lemme 4.2. A conjugaison près, on peut supposer que l'image de D
coïncide avec le groupe Cp des applications linéaires de R2/:+1 - CUR
du type:

(zi,...,zk,t) eC^xRH (pizi,...,p^,0 e Ck x R

où les \Xj sont des racines p-èmes de l'unité.

Démonstration. Identique à celle de 3.2.

On choisit p > n et / un élément de Cp tels que D(f) soit une application
linéaire du type précédent pour laquelle les |ll, sont distincts deux à deux et

différents de 1. D'après ce que nous avons vu, l'ensemble des points fixes de

o(/) coïncide alors avec I.
La démonstration se sépare ici de celle décrite au paragraphe précédent.

En effet, l'élément / n'est certainement pas un produit de commutateurs dans

le groupe Diff~(S2Ä:, /) des difféomorphismes de classe C00, isotopes à

l'identité et commutant avec /. Ceci résulte du fait que la différentielle d'un
élément de Diffq (S2k, /) au point N est diagonale de sorte qu'un produit de

commutateurs a une différentielle égale à l'identité en N, contrairement à /.
C'est précisément ce fait qui a servi de base à la démonstration du théorème
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lorsque n est impair et qui nous empêche donc de généraliser la preuve au cas

où n est pair.
Soit DiffQ(S2k,N,S) le groupe des difféomorphismes de S2k, coïncidant

avec l'identité au voisinage de TV et S et isotopes à l'identité par une isotopie

à support compact dans S2k — {N, 5}. Notre premier but sera de montrer que

o Diff^(S2^, TV, S) fixe / point par point. Nous en déduirons l'existence d'un

point x0 de / fixe par tout le groupe a Diff (S2k) et il sera facile d'en déduire

une contradiction.
On se fixe deux nombres premiers distincts p et q et deux éléments f\ et

f2 de Cp et Cq respectivement, du type précédent. Soit DiffJ0 (S2k, N, S, //) le

sous-groupe de DiffJ0(S2k,N, S) formé des éléments commutant avec /z et

isotopes à l'identité par une isotopie commutant avec /,(/ 1,2).

Lemme4.3. Les groupes oDiff~(S2/:, TV, S, fi) (f 1,2) fixent I point
par point. De plus, les différentielles de ces difféomorphismes aux points
de I sont égales à l'identité.

Démonstration. Ce groupe préserve globalement l'ensemble des points
fixes de o(//), c'est-à-dire I. L'action de fi sur S2k - {A^S} est libre. Un
difféomorphisme de Vt S2k - {N, S}/(fi) qui est l'identité au voisinage des

deux bouts, et qui est isotope à l'identité par une isotopie à support compact,
se relève de manière unique en un élément de Diff(S2k,N, S, fi). En
d'autres termes, DiffJ°0S2/:,N, S, /z) est isomorphe au groupe Diff"0(F}) des

difféomorphismes de Vt de classe C00, à supports compacts, isotopes à

l'identité par une isotopie à support compact. On a donc un morphisme

Diff-0(Vi)-DiffZ(D
Il s'agit de montrer que ce morphisme est trivial.

Un théorème de W. Thurston [7] affirme que Diff^0(U;) est un groupe
simple. Il nous suffit donc de trouver un élément non trivial de

oDiff^0(S2k,N, S, fi) qui fixe / point par point pour en conclure qu'il en est
de même pour tous les éléments.

Soit $ un élément de Diff (S2k, N, S, fi) qui ne commute pas avec

fj(je{ 1,2} et y ^ i). Puisque o((|)) préserve globalement / et que o(fj) fixe /
point par point, le commutateur o^/^ ~ lffl) fixe / point par point. Il
suffit alors de remarquer que fyfjty ~ lff1 coïncide avec l'identité au voisinage
de N, S, commute avec /z, est isotope à l'identité par une isotopie commutant
avec fi et à support dans S2k - {N, S}. Nous avons ainsi trouvé un élément
non trivial dans le noyau du morphisme considéré et ce morphisme est donc
bien trivial.
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En fixant un point x0 de I et en considérant la différentielle en x0 d'un
élément de Diff^°(52/r,N, S, /,), on obtient un morphisme d'un groupe simple
à valeurs dans le groupe abélien Z, centralisateur de D(ft) dans

GL(2k + 1,R). Ces différentielles sont donc toutes égales à l'identité.

Lemme 4.4. Le groupe Diff^°(*S2yt,N, S) est engendré par les

deux sous-groupes Diff~(S2*,N, S, /,-)(/= 1,2). Ainsi, les éléments de

oDiff^°(S2/:, N, S) fixent I point par point et leurs différentielles sont
égales à l'identité en ces points.

Démonstration. Je remercie C. Bavard à qui je dois cette démonstration.
Soit $ un difféomorphisme d'ordre pq d'une variété M. On suppose que

l'action associée de Z/pqZ sur M est libre. Soit U C M un ouvert tel que les

ty'(U) soient disjoints deux à deux (où l'exposant i est à lire dans Z/pqZ). Si

go,gi, ->,gpq-i sont pq difféomorphismes de M à supports dans U, on notera

{go,Si > '"^gpq-i} le difféomorphisme suivant de M:

£o°((|>_lo£io0OoM)~2og2o(|)2)0 o(<\>(-pv+Vogpq_lo($)(p<i-i))

On remarquera que tous les facteurs de cette composition commutent. Fixons
deux difféomorphismes g et h de M à supports dans U et définissons 6pq
difféomorphismes alj et bj(l < i ^ 3,0 ^pq- 1) par:

aJ g a] id a) - h~l si j0 (mod p)

a) h-1 a] g a)id si j # 0 (mod p)

bI h I00II b]id si j0 (mod q)

b) £_1 b2 id b) h si j # 0 (mod q)

On pose alors, pour i 1,2,3,

X <= {«o, ...,a'pg_i}et

On remarque que les trois difféomorphismes At commutent avec $p alors que
les Bi commutent avec §q.

Une vérification simple (que le lecteur pourra faire d'abord lorsque p 2

et q 3) montre que

AlBlA2B2A3B3 ghg~l h~1

Ainsi, nous avons montré que le commutateur de deux difféomorphismes
à supports dans U est un produit de difféomorphismes de M commutant avec
<\>p ou (\>q.
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Appliquons cette technique à la situation du lemme. Dans ce cas, l'action
de Z/pqZ considérée est engendrée par fx et f2 d'ordres respectifs p et q,

agissant sur S2k - {N, S}. Nous obtenons que si g et h sont deux difféo-

morphismes de Diff"(S2A:, A3 S) à supports dans un ouvert U assez petit de

S2k - {A, S}, le commutateur [g, h] appartient au groupe engendré par les

sous-groupes DiffJ°(52/:, A, 5,/,) (/= 1,2). Pour conclure, il suffit de

remarquer que ces commutateurs engendrent Diff~(S2A:, A, S). Ceci résulte de

deux faits. Tout d'abord, si les ouverts Uj recouvrent S2k - {N, 5}, les

groupes Diff£c(£7/) C Diff~(S2*, A, S) engendrent Diff"0S2/e, A, S); c'est le

lemme de fragmentation de [6]. D'autre part, d'après le théorème de

W. Thurston déjà mentionné, les groupes Diff£<.(£/,•) sont des groupes
simples et donc sont engendrés par les commutateurs.

Soit 5 l'involution isotope à l'identité définie par

s(xl + iyux2 + iy2>..>>xk + iyk,t) {xx - iyx, - x2 - iy2xk - iyk, - t)

Elle commute avec C2 de sorte que 0(5) préserve / globalement. De plus,
5 échange S et A et il existe donc un unique point x0 de I qui est fixe par 0(5").

Soit W et E les points - 1,0,..., 0) et (1,0,..., 0) de S2k. Il est clair que l'arc
analogue à / joignant W à E, formé des points fixes de 0(5), contient x0. Les
deux groupes oDiffJ0(S2k,N} S) et oDiff"(S2*,2iE, W) fixent donc x0 et leurs
différentielles en x0 sont triviales.

Lemme 4.5. Les groupes Diffus2*, A, S) et Diff®CS2*,£, W)
engendrent Diff^ (S2k).

Démonstration. Soit / un élément de Diffo(S2k). Soit gj un élément de

Diff" (S2k,E, W) qui coïncide avec / au voisinage des points A et S et posons
S2 gîl° f- On a alors g2 e Diff^0 (S2k,N} S) et / ~ gi°g2.

La contradiction cherchée est maintenant claire. Le groupe a Diffo(S2k)
tout entier fixe x0 et sa différentielle en x0 est triviale. Ceci est absurde puisque

les éléments d'ordre fini distincts de l'identité (par exemple ceux de
a(Cp)) ne peuvent avoir une différentielle égale à l'identité en un point fixe.
Ceci termine la preuve du théorème dans le cas où n est pair.

5. Quelques remarques

Le résultat obtenu dans cette note suggère immédiatement une question
plus générale. Si V est une variété à bord non vide dV, dans quelles
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conditions existe-t-il un morphisme de Diff^(ôF) vers DiffJ°(F) qui
«prolonge les difféomorphismes à l'intérieur»? Nous avons vu qu'un tel

morphisme existe si V est une bande de Moebius et n'existe pas si V est une
boule. Le lecteur n'aura maintenant aucune difficulté à traiter le cas général
où V est une surface compacte à bord. Qu'en est-il par contre si Vest un corps
à anses de genre g (i.e. le domaine de R3 bordé par une surface de genre g
plongée de manière habituelle)?

De manière analogue, on peut s'intéresser aux morphismes entre groupes
de difféomorphismes de variétés fermées (i.e. compactes sans bord). Voici deux

exemples.
On peut identifier l'espace projectif complexe CP" au quotient de (S2)n

par l'action du groupe symétrique. Cette identification peut être obtenue de

la façon suivante. Au point de coordonnées homogènes [a0 : ax:... : an\ de

CP", on associe les n zéros du polynôme a0zn + + a„ dans C u {00} ~ S2

qui sont définis à l'ordre près. Il est facile de vérifier qu'un difféomorphisme
de classe C°° de S2 mène ainsi à un difféomorphisme de classe C°° de CP" et

on a donc un morphisme naturel:

Diff^S2) ^ Diff~(CP")

Une deuxième construction générale s'obtient de la façon suivante. Si V
est une variété fermée et si PTV désigne le projectifié du fibré tangent à V,

on a un morphisme obtenu par différentielle:

Diff~(L) Diff~CPTV)

On notera que PTV est fermée. Ces exemples suggèrent la question qui suit:

Question. Soit Vx et V2 deux variétés fermées telles qu'il existe un

morphisme non trivial de Diff"(Fi) vers Diff"(K2). Peut-on affirmer
que la dimension de Vx est inférieure ou égale à celle de V2?

Les cas d'isomorphismes entre groupes de difféomorphismes ont été étudiés

dans [3]: Diff"(Fi) et Diff~(L2) ne sont isomorphes que si V\ et V2 sont

difféomorphes.
Signalons enfin que les méthodes utilisées dans cet article tombent en défaut

dans le contexte analytique réel (sauf lorsque n 1).
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