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40 I. EFRAT

we get

~ ~ I Vi(0)V2(0)((tf - l)2 + 4# sin2(0))tf0
2%

0

and since FW2 - F^2 we obtain (6).

5. Spectral decomposition

Let E be the space of functions Fy with vj/ e L2([0,7t]). It follows from §4

that E is a subspace of L2(F), invariant with respect to T. Further, let R be

the two dimensional subspace generated by the discrete spectrum according to
Corollary 3.7.

Theorem 5.1. We have a direct sum decomposition into invariant
subspaces

L2(F) R ® E

Proof. The two spaces are easily seen to be orthogonal. We show that
E1 R. Let geL2(F) such that <g,Fw> =0 for all \|/, i.e.,

0 —-—g(0) — I i(q + 1) sin 0\|/ (0)<i0
q + 1 27T

+ Ü g(n) — I \|/(0)/(sin((« + 1)0) - q sin((« - l)0))d0<7
n 1 27t J

00

g(0)\j/(l) + Y g(n)(w+ 1) - q<v(n - 1 2

n 1

Therefore
00 _» 00 _n-\

g(0)ij/(l) + Y g(n)\\i(n+ 1 Y + 2

n 1 n 0

or (as \|/(0) 0)

2

Y g(n -1 )${n)q2
n- 1

2

Since vj/ e L2([0,7t]) and g e L2(F), this can be viewed as an equality of inner

products in the space I2 of square integrable sequences. Now as \j/ varies over
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L2([0,7i]), the sequences {\j/(X)} vary over I2. Since the latter is a Hilbert

space, it follows that for all n,

g(n - 1) g(n + 1)

Let a - (g(0) + £(1)), b ]- (g(0) - g(lj). Then
2 2

g(n) a + (- 1 )nb

a typical member of R.

Corollary 5.2. The spectrum of T on L2(F) is the subset of R

described in the Introduction.

We wish to make this decomposition explicit, that is, given g e E to find
the \j/ such that g (compare [H]). Let 0(0) be the characteristic function
of [00,00 + /*] C [0,7i]. Then

I P 0o + ^
__

A(") — I Mn)dQ
Je0

By the Plancherel formula (6),

<g,Fç> <g,—I Mn)dB>
271 Je0

1 f"
=— I M/(0)(1)(Ö)((<7 - l)2 + 4#sin20)<i0

271 Jo

I |»e0 + /2

— I ¥(0)(fe - l)2 + 4qsin2Q)dQ
271 J

e0

Supposing further that g belongs in the dense subspace E n Ll(F), we divide
by h and let h -> 0 to obtain

< & 7e0 > V(öo)((<7 - I)2 + 4gsin20)/27T

Hence:

Theorem 5.3. iq and u2 be the orthonormal basis of R given
by
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Then the spectral resolution of L2(F) reads

(7)

În
dû

< g, /o > Un)
0 (q - l)2 + 4gsin20

We end this paper by showing that, as one might expect from the theory
of Eisenstein series, the eigenfunctions can be parametrized as a family of
functions that depend holomorphically on a complex parameter. Precisely, let

E(n,s) qns(qs~l - ql~s) + q«1 ~s\qs - q ~s)

Then E(n,s) is entire in s and satisfies the functional equation

E(n, s) - E(n, 1 - s)

Furthermore, a direct computation shows that

(TE)(n,s) {qs + ql~s)E(n,s)

There are two ways in which X qs + qx~s can be real. Write s o + it.

If t then X (- 1 )k(q° + ql~°), and in particular
log q

X q + 1 (X - (q + 1))

if o 1 and k is even (k is odd). Otherwise we must have o - If we write
2

0
t we obtain our X 2]/#cos0.

logg
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