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40 I. EFRAT

we get

1 T
— % s v1(0®)w2(8) ((g — 1)2 + 4gsin2(0))do ,
0

and since ﬁw; = — Fy, we obtain (6).

5. SPECTRAL DECOMPOSITION

Let E be the space of functions F, with y € L2([0, ]). It follows from §4
that E is a subspace of L?(F), invariant with respect to 7. Further, let R be
the two dimensional subspace generated by the discrete spectrum according to
Corollary 3.7.

THEOREM 5.1. We have a direct sum decomposition into invariant
subspaces

L*(F)=R®E.

Proof. The two spaces are easily seen to be orthogonal. We show that
E+ =R. Let ge L%(F) such that <g, F,> = 0 for all vy, i.e.,

1 1 ("
0=——g(0)— 5 i(qg+ 1)sinOy(6)d6
qg+1 27

T n

w(8)i(sin((n + 1)8) — g sin(( — 1)8))dbq >

n

=@M+ L e @@+ 1) - gl - 1))q 2.

n=1

> 1
+ nz=:1 g(n) 5; §

Therefore

n-1

d@¥(M) + L emn+Dg 2= L g+ Dimg >,

n=1 =0

or (as W(0) = 0)
n-—1 o0 n—1

Y gn-Dimg *> = ¥ g+ Dimg °
n=1

n=1

Since y € L2([0,]) and g € L?(F), this can be viewed as an equality of inner
products in the space /? of square integrable sequences. Now as y varies over
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L%([0,n]), the sequences {\{(n)} vary over /2. Since the latter is a Hilbert
space, it follows that for all #,

gn—-1)=gn+1).
1
Let a = % (e(0)+g1),b = 5 ((0) — g(1)). Then

gy =a+ (=1D"b,

a typical member of R.

COROLLARY 5.2. The spectrum of T on L?*(F) is the subset of R
described in the Introduction.

We wish to make this decomposition explicit, that is, given g € E to find

the v such that g = F,, (compare [H]). Let ¢(0) be the characteristic function
of [8y,00 + A] C [0,r]. Then

1 Bo+h
Fyo(n) = — S Sfe(n)db .
21

8o
By the Plancherel formula (6),

90+h -
<gFy> = <g,~2— s So(n)d6 >
T

8o
1 ("
=— | v®o®) ((¢—1)%+4gsin26)dd
27 Jo
1 "Bo+h
= = v(0)((g — 1)2 + 4gsin26)deo .
2T J o,

Supposing further that g belongs in the dense subspace E n L!(F), we divide
by £ and let 2 — 0 to obtain

<&, feo> = y(80) ((g — 1)? + 4gsin26)/2x .

Hence:

THEOREM 5.3. Let u, and wu, be the orthonormal basis of R given
by
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Then the spectral resolution of L2*(F) reads

(7

n L do
gn) = Y <gu>un +2n < g fo> fo(n) —
i=1,2 . (g —1)?+ 4qgsin?0

We end this paper by showing that, as one might expect from the theory
of Eisenstein series, the eigenfunctions f; can be parametrized as a family of
functions that depend holomorphically on a complex parameter. Precisely, let

E(n,s) = q™(q*~'—q'~°) + ¢"'~9(q* — q~) .
Then E(n, s) is entire in s and satisfies the functional equation
En,s)=—-En,1-ys).
Furthermore, a direct computation shows that
(TE)(n,s) = (¢°+ q' ~°)E(n,s) .
There are two ways in which A = g5+ ¢!~5 can be real. Write s = ¢ + if.

kn
If # =——then A = (—1)%(g°+ q'~°), and in particular
logg
A=g+1(h=—(g+1))

: : : : 1
if o = 1 and k is even (k is odd). Otherwise we must have ¢ = 3" If we write

0
t = —— we obtain our A = 2}/gcosH.

logg
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