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38 I. EFRAT

Then, for n > 1,

n

fe(n) = qu((q + 1)sinB cos (n0) — (g — 1) cos B sin (n0))

5 z
©) = g2i(sin((n + 1)0) — gsin((n — 1)8)) ,

and

7o(0) = (g+ 1)isin® .

PROPOSITION 3.6. The functions fg, 0< 06 <m, arenotin L2(F).
Proof. 1t is sufficient to show that
(g + 1)sinbcos(nb) — (¢ — 1)cosBsin(nb) 0 as n— o,
This is the dot product of the two vectors
v; = ((g + 1)sin®, — (g — 1)cosB) and v, = (cos(nh), sin(noh)) .

Since v, is not a constant function of n, we see that cosine of the angle
between v; and v, is bounded away from O for arbitrarily large n.

Combining Propositions 3.5 and 3.6 we conclude

COROLLARY 3.7. The discrete spectrum of T consists of the numbers
+ (g + 1), whose corresponding eigenfunctions (given in Example 3.1) span
two one-dimensional eigenspaces of LZ2(F).

Unlike the typical f, with | A|> 2}/q, those with | A |< 2}/q satisfy

fo = 0(g?) .

Our goal now is to show that these are approximate eigenfunctions that
can be used to completely decompose L?(F).

4. CONTINUOUS SPECTRA

We wish to embed L?([0, x]) with an appropriate measure into L2(F). To
this end, let v € L2([0,]) and fy(n) be extended as odd functions of
0 e [— 7w, ], and define

1 |7 ~
Fy(n) = e j v (0)fe(m)db .

T

— T
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THEOREM 4.1. F, is in L2*(F) and we have the Plancherel formula
(6) <:PL19PL2:> = <:Wda“h:> ’
where the inner product on the right is

1 i
. f Wi (0)v2(0) (¢ — 1)* + 4gsin*6)db .

0

Proof. We first note that
— 5 W (0) (isin((n + 1)8)) — gisin((n — 1)8))d8 = qy(n — 1) — Y(n + 1),
T

where (n) is the n-th Fourier coefficient of . Therefore

1 A A
<Fy,Fy,>=——(g+ D2y, (1)y,(1)
qg+1

+ El (@2Wi(n— Din(n— 1) — g§(n + D§(n — 1)
—qyi(n = Dm+ 1) + (1 + D + 1)

= (g + DY) + g2 Y §1(n) P (n)
n=90

~a(S0mi0-2 + L6 +2) + 500
n= =0 n=2

n

Now

U =2) + (n +2) = 20(n) ~ 4(ysin?)"(n) .

Therefore we have

(g + D) + g2 ¥ G (n) ()

n=1

- q(2 Z \'ﬁl(n)ﬁ\/z(n) -4 Z \/ﬁl(n)(lmsinz)'\(n))
n=1 n=1

~q(= MW=+ §:000:2) + ¥ G160 — 4,0)80) .
n=1

Recalling Parseval’s formula

. A I (" A
; Vi(n)y,(n) = ™ j v1(0)y,(0)do

0
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we get

1 T
— % s v1(0®)w2(8) ((g — 1)2 + 4gsin2(0))do ,
0

and since ﬁw; = — Fy, we obtain (6).

5. SPECTRAL DECOMPOSITION

Let E be the space of functions F, with y € L2([0, ]). It follows from §4
that E is a subspace of L?(F), invariant with respect to 7. Further, let R be
the two dimensional subspace generated by the discrete spectrum according to
Corollary 3.7.

THEOREM 5.1. We have a direct sum decomposition into invariant
subspaces

L*(F)=R®E.

Proof. The two spaces are easily seen to be orthogonal. We show that
E+ =R. Let ge L%(F) such that <g, F,> = 0 for all vy, i.e.,

1 1 ("
0=——g(0)— 5 i(qg+ 1)sinOy(6)d6
qg+1 27

T n

w(8)i(sin((n + 1)8) — g sin(( — 1)8))dbq >

n

=@M+ L e @@+ 1) - gl - 1))q 2.

n=1

> 1
+ nz=:1 g(n) 5; §

Therefore

n-1

d@¥(M) + L emn+Dg 2= L g+ Dimg >,

n=1 =0

or (as W(0) = 0)
n-—1 o0 n—1

Y gn-Dimg *> = ¥ g+ Dimg °
n=1

n=1

Since y € L2([0,]) and g € L?(F), this can be viewed as an equality of inner
products in the space /? of square integrable sequences. Now as y varies over




	4. CONTINUOUS SPECTRA

