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38 I. EFRAT

Then, for n ^ 1,

n

fs(n) q2i((q+ 1)sin9cos(«9) - (r/ - 1)cos9sin(«9))

(5) n

q2i(sm(fn + 1)0) - qsm({n - 1)0))

and

MO) (q+ l)/sin0

Proposition 3.6. The functions /e,0 < 0 < n, are not in L2{F).

Proof. It is sufficient to show that

(q + l)sin0cos(/20) - (q - 1) cos 0 sin(>70) 0 as n - oo

This is the dot product of the two vectors

((q + l)sin0, - (q - l)cos0) and v2 (cos(>20), sin(nQ))

Since u2 is not a constant function of n, we see that cosine of the angle
between V\ and v2 is bounded away from 0 for arbitrarily large n.

Combining Propositions 3.5 and 3.6 we conclude

Corollary 3.7. The discrete spectrum of T consists of the numbers

±(q + 1), whose corresponding eigenfunctions (given in Example 3.1) span
two one-dimensional eigenspaces of L2(F).

Unlike the typical fx with | X | > 2jfq, those with | X | < 2]/q satisfy

Our goal now is to show that these are approximate eigenfunctions that
can be used to completely decompose L2{F).

We wish to embed L2([0,7u]) with an appropriate measure into L2(F). To
this end, let \j/ e L2([0,7t]) and fe(n) be extended as odd functions of
0 e [—7u,7c], and define

n

h 0(q2)

4. Continuous spectra

2n - n



AUTOMORPHIC SPECTRA 39

Theorem 4.1. Fv is in L2{F) and we have the Plancherel formula

(6) <FVl,FV2> <\|/i,\|/2>

where the inner product on the right is

fVi(0)v2(0)((tf- I)2 + 4gsin20)c?0
Jo

Proof. We first note that

— I \|/(0)(/sin((« + 1)0)) - qisin((n - 1)0))é/0 q\\f(n - 1) - \j)(n + 1)
I* in

where \j/(X) is the n-th Fourier coefficient of \j/. Therefore

<FM,l,FW2> l)2y,(l)y2(l)
q+ 1

oo

+ E (q2$\(n - l)y2(n - 1) - q$\{n + \)§2(n - 1)
n 1

- ?Vi(« - 1)V2 (n+ 1) + Vi + l)\j/2 + 1))

oo

(<7 + l)Vi(l)V2(l) + E Vi(")V2(n)
n= 0

°° oo oo

- qCLVi(n)y2(n -2) +E Vi(«)V2(n + 2)) + E Vi(«)v2(«)
n 2 n-0 n 2

Now

\\f(n - 2) + \j/(« + 2) 2\{/(X) - 4(\{/sin2)A (n)

Therefore we have

(q + 1) M/i (1)M/2(1) + q2Y,
n 1

0° 00

- ç(2 X! Vi(«)V2(") - 4 £ Vi(«)(\|/2sin2)A(«))
» 1 n=1

00

~ <7(~V|/i(l)v|/2( — 1) + \|/i(0)\j/2(2)) + £ - ¥1(1)^2(1).
/? 1

Recalling Parseval's formula

00

a T 1 f71
E vi(«)V2(«) — vi(0)V2(0)c?0

2n Jo



40 I. EFRAT

we get

~ ~ I Vi(0)V2(0)((tf - l)2 + 4# sin2(0))tf0
2%

0

and since FW2 - F^2 we obtain (6).

5. Spectral decomposition

Let E be the space of functions Fy with vj/ e L2([0,7t]). It follows from §4

that E is a subspace of L2(F), invariant with respect to T. Further, let R be

the two dimensional subspace generated by the discrete spectrum according to
Corollary 3.7.

Theorem 5.1. We have a direct sum decomposition into invariant
subspaces

L2(F) R ® E

Proof. The two spaces are easily seen to be orthogonal. We show that
E1 R. Let geL2(F) such that <g,Fw> =0 for all \|/, i.e.,

0 —-—g(0) — I i(q + 1) sin 0\|/ (0)<i0
q + 1 27T

+ Ü g(n) — I \|/(0)/(sin((« + 1)0) - q sin((« - l)0))d0<7
n 1 27t J

00

g(0)\j/(l) + Y g(n)(w+ 1) - q<v(n - 1 2

n 1

Therefore
00 _» 00 _n-\

g(0)ij/(l) + Y g(n)\\i(n+ 1 Y + 2

n 1 n 0

or (as \|/(0) 0)

2

Y g(n -1 )${n)q2
n- 1

2

Since vj/ e L2([0,7t]) and g e L2(F), this can be viewed as an equality of inner

products in the space I2 of square integrable sequences. Now as \j/ varies over
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