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36 I. EFRAT

00 00

/(l)g(0)+ £ qf(n)g(n+ l)<7-<"+1> + £
n 0 « 2

/(l)g(O) + /(O)g(D + I /(«)g(« + 1)«-"
«=1

oo

+ 9 I f(n)g(n -~ /(1)^(0)

/(O)g(l) + S (f(n)qg(n- 1) + f(n)g(n + 1 <f, Tg>
n 0

3. Eigenfunctions

An automorphic eigenfunction of T on X with eigenvalue A, is a function
on F that satisfies

V(0) (* + 1)/(1)

VOO qf(n - 1) + f(n + 1) n ^ 1

//(" + 1)\ / ^ \If we write u(n) I and normalize u(0) I we obtain
\ /(") I <7+ 1/

the recursion

w(X) Anu(0)

with

-(î v)-
Let Xi, x2 - (X ± lA2 - Aq) be the characteristic roots of A and assume

2

that X\ =£ x2, i.e., that X 1= ± 2}\fq. Solving the recursion we get

Proposition 3.1. The eigenfunctions on F with eigenvalue X are the

multiples of the function

(4) fx(n)
—-—(X(xï-x"2)-q(q+l)(xï ')) if n ^ 1

Xi - x2

q + 1 if n 0
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Example 3.2. If X q + 1 then x{ q, x2 1 and

Q + 1
>

generating the space of constant functions, If X — (q + 1), then

f-ig+l)(n) (-iy(q+l).
Example 3.3. When X 2}fq we can solve directly to get

n

fi\q(n) (q+ 1 - -l)n)g2,
and similarly

n

f-2V-g(n) (-iy(q+l-(q-l)n)q~2.
Remark 3.4. Since our tree is bipartite, we expect fx to be related to f-x

by a factor of (-1)" (compare [B, §8]). This can be seen from (4).

Proposition 3.5. The only eigenvalues X with | X | > 2j/q for which
fx is in L2(F) are X ± (q + 1).

Proof. Recalling (2) we see that if fxeL2(F) then
n

fx (n)o(q2) as -> oo

Now

(-^1 - X2)fx(n) x"-1(hci - q{q+ 1)) - x\~1(Xx2 - + 1))

Assuming with no loss of generality that | ]/q, — < ]/q, then

f
l"v'i

x2~'(Xx2 - q(q + 1)) o(g2), so that we must have

Xxi - q(q +1) 0

i.e., X= ±{q+1). Conversely, fq+l and f-(q + l) are clearly in L2(F).

We turn our attention to X with | | < Then x2 xlt\xi\
and we let x, j/qeie. Then X2\/qcosQ,0 < 0 < We renormalize
and define

?_xi~x2 _~
2]/q

Vqcos6
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Then, for n ^ 1,

n

fs(n) q2i((q+ 1)sin9cos(«9) - (r/ - 1)cos9sin(«9))

(5) n

q2i(sm(fn + 1)0) - qsm({n - 1)0))

and

MO) (q+ l)/sin0

Proposition 3.6. The functions /e,0 < 0 < n, are not in L2{F).

Proof. It is sufficient to show that

(q + l)sin0cos(/20) - (q - 1) cos 0 sin(>70) 0 as n - oo

This is the dot product of the two vectors

((q + l)sin0, - (q - l)cos0) and v2 (cos(>20), sin(nQ))

Since u2 is not a constant function of n, we see that cosine of the angle
between V\ and v2 is bounded away from 0 for arbitrarily large n.

Combining Propositions 3.5 and 3.6 we conclude

Corollary 3.7. The discrete spectrum of T consists of the numbers

±(q + 1), whose corresponding eigenfunctions (given in Example 3.1) span
two one-dimensional eigenspaces of L2(F).

Unlike the typical fx with | X | > 2jfq, those with | X | < 2]/q satisfy

Our goal now is to show that these are approximate eigenfunctions that
can be used to completely decompose L2{F).

We wish to embed L2([0,7u]) with an appropriate measure into L2(F). To
this end, let \j/ e L2([0,7t]) and fe(n) be extended as odd functions of
0 e [—7u,7c], and define

n

h 0(q2)

4. Continuous spectra

2n - n
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