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34 - 1. EFRAT

In these coordinates we can write down the g + 1 vertices of X that
h

are adjacent to a typical vertex (

Zn+1 X tn—l o+
‘ s . X , ¢tek.
0 1 0 1

The group Gg acts on the tree X as a group of automorphisms. We can
therefore define a graph structure on the quotient F for the action of I' on X.

X
1) . They are

THEOREM 1.2 ([S], [W]). The quotient graph F = I'\X s given by (the
cosets of)

so that F is the tree

| +
1

0

-+

w

2
t X . .
In fact, the vertex o 1 corresponds to n, and so if n > 1, its

tn—!—l X
neighbor ( " 1) corresponds to n + 1 while the other g neighbors

are represented by n — 1. If n = 0, all neighbors correspond to 1.

2. THE OPERATOR T

Let p be the Haar measure on Gg normalized so that p(Go) = q(qg — 1).
We compute the measure of F induced from p. Since '

F=T\X =T\Gg/Go
we have
I\Gg = U;ersGo
where
sGo = {T'su|ueGp} C T\Gg .

The point measure at s will be the measure of sG, in the quotient space
I'NGk. Now we have a correspondence
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SGO = S~1rsS\GO ’

where I', = T’ N sGps ~! is the finite subgroup of I' that stabilizes s. Thus

B 1(Go)
n(sGo) = T

1 0 .
It is not hard to check that if s = (O 1) then | T | = g(g?— 1), while

"0

for s =
5

) , n>=1,|Iy|=(g—1g"*'. We therefore put mass

: at the vertex 0 and g " at the vertices n = 1,2,..., so that if f
q+

and g are functions on F = {0,1,2,...} then
_ 1 _ > _
2) <f,g> = s S gdu =———Q+ ” fOg0) + Y f(mgmg .
F n=1

The algebra of operators on functions on the tree X that commute with
the automorphisms of X is generated by the operator
(THE = X f6)
s’ is adjacent to s
(see [C2]). The operator (g + 1)I — T is the Laplacian on X.

If f is I'-automorphic, and therefore can be thought of as a function on
F, then T operates on f by

gfmn—0D+ f(n+1), if n>1,

3 T =
) (17) () {(q-l—l)f(l), if n=0.

PROPOSITION 2.1. T is a self-adjoint operator on L*(F) with respect
to the measure \.

Proof. If the series | f|? converges, then Cauchy’s inequality implies

that the four series in | 7./ || * also converge. Thus 7 maps L2(F) into itself.
Now

1
<Tf,g>=——0(q+1)f(1)g)
qg+1

+ Y (gf(n—1Dgm) + f(n+ Dgn)g "
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=f(Mg®+ Y gfmgn+1g-+*v+ Y f(ngh—1)g-"-Y
n=0 n=2
= f(1)g0) + f(0)g(1) + ;1 fmgn+1)g-"
+q ), f(mgn—1g—"— f(1)g0)
n=1

= fO)g)+ Y (f(mggn—1)+ f(mgn+1)g-"=<f,Tg> .
n=0

3. EIGENFUNCTIONS

An automorphic eigenfunction of 7 on X with eigenvalue A is a function
on F that satisfies

AfO)=(g+DfD),
Af(ny=qfn—1D+ f(n+1), n=1.

f(n+1)

If we write u(n) = (
Sf(n)

) and normalize u(0) = ( ) , We obtain

q+1
the recursion

u(n) = A*u(0)

with

1
| Let x,x = 5 (A £ }/A? — 4q) be the characteristic roots of 4 and assume

that x; # X, i.e., that A # + 2|/q. Solving the recursion we get

| PROPOSITION 3.1. The eigenfunctions on F with eigenvalue A are the
| multiples of the function

5 n__ o nmy n-1_ .n-1 .
(4) fk(n) ={x - x (k(xl x2) Q(q + 1)(x1 x2 )) 5 lf n 2 1

g+1 if n=0.
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