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34 I. EFRAT

In these coordinates we can write down the <7+1 vertices of X that
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are adjacent to a typical vertex | They are
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The group GK acts on the tree X as a group of automorphisms. We can
therefore define a graph structure on the quotient F for the action of T on X.

Theorem 1.2 ([S], [W]). The quotient graph F T\X is given by (the
cosets of)

n ^ 0

so that F is the tree

I 1
:

1 f-
0 12 3

(tm x\In fact, the vertex I I corresponds to n, and so if n ^ 1, its

(tn
+1 x \

^

I corresponds to n + 1 while the other q neighbors

are represented by n - 1. If n 0, all neighbors correspond to 1.

2. The operator T

Let (i be the Haar measure on GK normalized so that \x(G0) q(q - 1).

We compute the measure of F induced from p. Since

F =T\X =T\Gk/G0

we have

T\Gx useFsGo

where

sG0 {Tsu I u e G0} C T\GK

The point measure at s will be the measure of sG0 in the quotient space

T\Gk. Now we have a correspondence
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sG0 — s~lTss\G0

where Ts T n sGös ~1 is the finite subgroup of T that stabilizes s\ Thus

^ N
MGo),(SGo),_.

It is not hard to check that if s I I then | Ts | q(q2 - 1), while

c :i •

-c :i
for 5 I I n ^ 1, I Ts I (q - l)qn +1. We therefore put mass

1

at the vertex 0 and q~n at the vertices n= 1,2,..., so that if /q + 1

and g are functions on F {0,1,2,...} then

(2) <f,g> f fgd[i—/(0)g(0) + £
Jf <7+1

The algebra of operators on functions on the tree X that commute with
the automorphisms of X is generated by the operator

(Tf)(5)=I /(*')
s' is adjacent to 5

(see [C2]). The operator (q +1)7-7 is the Laplacian on
If / is T-automorphic, and therefore can be thought of as a function on

F, then T operates on / by

(3) {Tf) (n)
qf(n - 1) + f(n+ 1) if ^ 1

(<7 +!)/(!), if 0.

Proposition 2.1. T is a self-adjoint operator on L2(F) with respect
to the measure p.

Proof. If the series ||/||2 converges, then Cauchy's inequality implies
that the four series in || Tf ||2 also converge. Thus T maps L2{F) into itself.
Now

<Tf,g> ——- (q+ 1)/(l)g(0)
q+ 1

+ S (qf(n-l)g(n) +f{n + l)g(n))q~"
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00 00

/(l)g(0)+ £ qf(n)g(n+ l)<7-<"+1> + £
n 0 « 2

/(l)g(O) + /(O)g(D + I /(«)g(« + 1)«-"
«=1

oo

+ 9 I f(n)g(n -~ /(1)^(0)

/(O)g(l) + S (f(n)qg(n- 1) + f(n)g(n + 1 <f, Tg>
n 0

3. Eigenfunctions

An automorphic eigenfunction of T on X with eigenvalue A, is a function
on F that satisfies

V(0) (* + 1)/(1)

VOO qf(n - 1) + f(n + 1) n ^ 1

//(" + 1)\ / ^ \If we write u(n) I and normalize u(0) I we obtain
\ /(") I <7+ 1/

the recursion

w(X) Anu(0)

with

-(î v)-
Let Xi, x2 - (X ± lA2 - Aq) be the characteristic roots of A and assume

2

that X\ =£ x2, i.e., that X 1= ± 2}\fq. Solving the recursion we get

Proposition 3.1. The eigenfunctions on F with eigenvalue X are the

multiples of the function

(4) fx(n)
—-—(X(xï-x"2)-q(q+l)(xï ')) if n ^ 1

Xi - x2

q + 1 if n 0
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