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AUTOMORPHIC SPECTRA 33

3. The above describes a decomposition L*(F) =R @ E (Theorem 5.1),
made explicit in Theorem 5.3 (compare [L]). In particular, the spectrum of T
on L2*(F) is

discrete continuous discrete
— - |
—(g+1) -2)/q 2//q g+1

1. THE TREE OF PGL,(K)

The material in this section is adapted from Serre [S] and Weil [W].
An O-lattice in K? is a set

L = {av; +pv; | a,p €O}

with v, 0, a basis for K2. We can associate to L the matrix (v;,0;) € GL,(K)
and different choices of bases vy, v, will give cosets in GL,(K)/ GL,(0). Two
lattices L and L’ are said to be equivalent if L’ = aL for some a € K*. We
thus have a natural correspondence between equivalence classes of O-lattices
in K? and points in X.

We define a graph structure on X. Let A and A’ be two equivalence classes
of lattices. We say that A and A’ are adjacent if there exist representatives
L eA,L e A’ such that

(1) L"CL and L/L =k.

THEOREM 1.1 ([S]). The graph whose set of vertices is X and whose
edges are the pairs (A, ') satisfying (1) is the (infinite) (g + 1)-regular tree.

We seek a more explicit realization of X. Let B be the Borel subgroup of
Gy consisting of the matrices whose bottom row is (0, 1). Then the Iwasawa
decomposition is

Gk = BG, ,

but it is not difficult to see that in fact any coset in X has a representative

of the form
AL X
0 1

with x € K and a uniquely determined n € Z.
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In these coordinates we can write down the g + 1 vertices of X that
h

are adjacent to a typical vertex (

Zn+1 X tn—l o+
‘ s . X , ¢tek.
0 1 0 1

The group Gg acts on the tree X as a group of automorphisms. We can
therefore define a graph structure on the quotient F for the action of I' on X.

X
1) . They are

THEOREM 1.2 ([S], [W]). The quotient graph F = I'\X s given by (the
cosets of)

so that F is the tree

| +
1

0

-+

w

2
t X . .
In fact, the vertex o 1 corresponds to n, and so if n > 1, its

tn—!—l X
neighbor ( " 1) corresponds to n + 1 while the other g neighbors

are represented by n — 1. If n = 0, all neighbors correspond to 1.

2. THE OPERATOR T

Let p be the Haar measure on Gg normalized so that p(Go) = q(qg — 1).
We compute the measure of F induced from p. Since '

F=T\X =T\Gg/Go
we have
I\Gg = U;ersGo
where
sGo = {T'su|ueGp} C T\Gg .

The point measure at s will be the measure of sG, in the quotient space
I'NGk. Now we have a correspondence
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