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AUTOMORPHIC SPECTRA ON THE TREE OF PGL2

by Isaac Efrat 1

0. Introduction

Our aim in this paper is to give a complete development of the spectral

theory of functions on the Bruhat-Tits building attached to PGL2 of a

function field over a finite field, which are automorphic with respect to the

associated modular group. This set-up may be viewed as the simplest,
nontrivial case to which the theory of automorphic forms on GL2 ([JL])
applies. Using only elementary means, we derive an explicit description of the

resulting theory, with emphasis on the underlying spectral decomposition and
the distinction between discrete and continuous spectra. This approach has in
turn been instrumental in our recent work on the existence problem of cusp
forms and their deformation theory ([El], [E2]).

To describe this set-up in some detail, let k be the finite field with
q elements. The norm at infinity of the field of rational functions k(t) is

given by

I f / g I q deg(/) - deg(g)

where / and g are polynomials in k[t]. The completion with respect to this
norm is the field K of Laurent series in t~l

CO

Y, a„t~n anek,
n= -N

and those for which N ^ 0 form the maximal compact subring O of the local
integers in K.

Consider the group GK PGL2(K) of all 2 x 2 invertible matrices over
K modulo the scalar matrices. The subgroup

G0 PGL2(0)

J) Supported by M.S.R.I. grant 8120790.



32 I. EFRAT

is a maximal compact subgroup, which gives rise to the metric space

X Gk/Go

on which GK acts via isometries. Thus the subgroup T of all elements with
polynomial entries is a discrete subgroup that acts on X, resulting in a quotient
F T\X. By an automorphic function we mean a T-invariant function on X,
which is therefore just a function on F.

There is a natural operator T on finitely supported functions on X, which

generates the Hecke algebra of operators that commute with the isometries
of X. This operator has been studied by Cartier ([Cl], [C2]) with emphasis on
its spherical and harmonic functions. Here we bring T into play and study the

spectral theory of T as an operator on L2(E). Specifically, it is our aim to
give an explicit basis of L2(F) consisting of automorphic functions that are

eigenfunctions of T.

This set-up stands in precise analogy with the classical situation of the
modular group SL2{Z) acting on the upper half plane H. The operator T
is then analogous to the Laplace-Beltrami operator of H. It is known
(see [I], [T] for expositions) that in this case we have a decomposition into
invariant subspaces

L2(E) R@C@E.
Here R © C (resp. E) is the subspace spanned by discrete (resp. continuous)

eigenfunctions. More precisely, R is simply the one-dimensional space of
constant functions. C is the span of the non-constant discrete eigenfunctions,
which here are all cusp forms, meaning that they decay rapidly at the cusp of
SL2(T)\H. This space can be shown to be infinite dimensional. Lastly, E is

generated by functions E(z, 1/2 + it) where E(z,s) with z e H, s e C is the

Eisenstein series attached to SL2(Z).

Bearing this analogy in mind, our main results are:

1. The discrete eigenfunctions of T generate a two-dimensional sub-

space R, explicitly given by Proposition 3.5. In particular, T admits no

cusp forms. This is a special case of much more general dimension formulae

(see [D], [HLW], [Sch]).

2. The eigenfunctions in the continuous spectrum span a subspace E which

is an isometric image of T2([0,7i]) with respect to the measure

— ((q - l)2 + 4gsin20)<i0
2%

(Theorem 4.1).
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3. The above describes a decomposition L2(F) R © E (Theorem 5.1),

made explicit in Theorem 5.3 (compare [L]/ In particular, the spectrum of T

on L2(F) is

discrete continuous discrete

I —————— : 1

- (q + 1) -2]/q 2]/q q+ 1

1. The tree of PGL2(K)

The material in this section is adapted from Serre [S] and Weil [W].
An O-lattice in K2 is a set

L {aui + $u21 a, ß e O}

with ux, v2 a basis for K2. We can associate to L the matrix (hi, v2) e GL2{K)
and different choices of bases vuv2 will give cosets in GL2(K)/GL2(G). Two
lattices L and L' are said to be equivalent if L' aL for some a e Kx We

thus have a natural correspondence between equivalence classes of O-lattices
in K2 and points in X.

We define a graph structure on X. Let A and A' be two equivalence classes

of lattices. We say that A and A' are adjacent if there exist representatives

leAT'eA' such that

(1) TCI and L/L' k

Theorem 1.1 ([S]). The graph whose set of vertices is X and whose
edges are the pairs (A, AO satisfying (1) is the (infinite) (q + 1 )-regular tree.

We seek a more explicit realization of X. Let B be the Borel subgroup of
Gk consisting of the matrices whose bottom row is (0,1). Then the Iwasawa
decomposition is

G* BG0

but it is not difficult to see that in fact any coset in X has a representative
of the form

with xeK and a uniquely determined n e Z.
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In these coordinates we can write down the <7+1 vertices of X that

(tn x\
are adjacent to a typical vertex | They are

Ç e k

' tn x \

,0 lj "

ltn + l x \ ltn~x fyn + x\
[ o i r i o i r

The group GK acts on the tree X as a group of automorphisms. We can
therefore define a graph structure on the quotient F for the action of T on X.

Theorem 1.2 ([S], [W]). The quotient graph F T\X is given by (the
cosets of)

n ^ 0

so that F is the tree

I 1
:

1 f-
0 12 3

(tm x\In fact, the vertex I I corresponds to n, and so if n ^ 1, its

(tn
+1 x \

^

I corresponds to n + 1 while the other q neighbors

are represented by n - 1. If n 0, all neighbors correspond to 1.

2. The operator T

Let (i be the Haar measure on GK normalized so that \x(G0) q(q - 1).

We compute the measure of F induced from p. Since

F =T\X =T\Gk/G0

we have

T\Gx useFsGo

where

sG0 {Tsu I u e G0} C T\GK

The point measure at s will be the measure of sG0 in the quotient space

T\Gk. Now we have a correspondence
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sG0 — s~lTss\G0

where Ts T n sGös ~1 is the finite subgroup of T that stabilizes s\ Thus

^ N
MGo),(SGo),_.

It is not hard to check that if s I I then | Ts | q(q2 - 1), while

c :i •

-c :i
for 5 I I n ^ 1, I Ts I (q - l)qn +1. We therefore put mass

1

at the vertex 0 and q~n at the vertices n= 1,2,..., so that if /q + 1

and g are functions on F {0,1,2,...} then

(2) <f,g> f fgd[i—/(0)g(0) + £
Jf <7+1

The algebra of operators on functions on the tree X that commute with
the automorphisms of X is generated by the operator

(Tf)(5)=I /(*')
s' is adjacent to 5

(see [C2]). The operator (q +1)7-7 is the Laplacian on
If / is T-automorphic, and therefore can be thought of as a function on

F, then T operates on / by

(3) {Tf) (n)
qf(n - 1) + f(n+ 1) if ^ 1

(<7 +!)/(!), if 0.

Proposition 2.1. T is a self-adjoint operator on L2(F) with respect
to the measure p.

Proof. If the series ||/||2 converges, then Cauchy's inequality implies
that the four series in || Tf ||2 also converge. Thus T maps L2{F) into itself.
Now

<Tf,g> ——- (q+ 1)/(l)g(0)
q+ 1

+ S (qf(n-l)g(n) +f{n + l)g(n))q~"
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00 00

/(l)g(0)+ £ qf(n)g(n+ l)<7-<"+1> + £
n 0 « 2

/(l)g(O) + /(O)g(D + I /(«)g(« + 1)«-"
«=1

oo

+ 9 I f(n)g(n -~ /(1)^(0)

/(O)g(l) + S (f(n)qg(n- 1) + f(n)g(n + 1 <f, Tg>
n 0

3. Eigenfunctions

An automorphic eigenfunction of T on X with eigenvalue A, is a function
on F that satisfies

V(0) (* + 1)/(1)

VOO qf(n - 1) + f(n + 1) n ^ 1

//(" + 1)\ / ^ \If we write u(n) I and normalize u(0) I we obtain
\ /(") I <7+ 1/

the recursion

w(X) Anu(0)

with

-(î v)-
Let Xi, x2 - (X ± lA2 - Aq) be the characteristic roots of A and assume

2

that X\ =£ x2, i.e., that X 1= ± 2}\fq. Solving the recursion we get

Proposition 3.1. The eigenfunctions on F with eigenvalue X are the

multiples of the function

(4) fx(n)
—-—(X(xï-x"2)-q(q+l)(xï ')) if n ^ 1

Xi - x2

q + 1 if n 0
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Example 3.2. If X q + 1 then x{ q, x2 1 and

Q + 1
>

generating the space of constant functions, If X — (q + 1), then

f-ig+l)(n) (-iy(q+l).
Example 3.3. When X 2}fq we can solve directly to get

n

fi\q(n) (q+ 1 - -l)n)g2,
and similarly

n

f-2V-g(n) (-iy(q+l-(q-l)n)q~2.
Remark 3.4. Since our tree is bipartite, we expect fx to be related to f-x

by a factor of (-1)" (compare [B, §8]). This can be seen from (4).

Proposition 3.5. The only eigenvalues X with | X | > 2j/q for which
fx is in L2(F) are X ± (q + 1).

Proof. Recalling (2) we see that if fxeL2(F) then
n

fx (n)o(q2) as -> oo

Now

(-^1 - X2)fx(n) x"-1(hci - q{q+ 1)) - x\~1(Xx2 - + 1))

Assuming with no loss of generality that | ]/q, — < ]/q, then

f
l"v'i

x2~'(Xx2 - q(q + 1)) o(g2), so that we must have

Xxi - q(q +1) 0

i.e., X= ±{q+1). Conversely, fq+l and f-(q + l) are clearly in L2(F).

We turn our attention to X with | | < Then x2 xlt\xi\
and we let x, j/qeie. Then X2\/qcosQ,0 < 0 < We renormalize
and define

?_xi~x2 _~
2]/q

Vqcos6
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Then, for n ^ 1,

n

fs(n) q2i((q+ 1)sin9cos(«9) - (r/ - 1)cos9sin(«9))

(5) n

q2i(sm(fn + 1)0) - qsm({n - 1)0))

and

MO) (q+ l)/sin0

Proposition 3.6. The functions /e,0 < 0 < n, are not in L2{F).

Proof. It is sufficient to show that

(q + l)sin0cos(/20) - (q - 1) cos 0 sin(>70) 0 as n - oo

This is the dot product of the two vectors

((q + l)sin0, - (q - l)cos0) and v2 (cos(>20), sin(nQ))

Since u2 is not a constant function of n, we see that cosine of the angle
between V\ and v2 is bounded away from 0 for arbitrarily large n.

Combining Propositions 3.5 and 3.6 we conclude

Corollary 3.7. The discrete spectrum of T consists of the numbers

±(q + 1), whose corresponding eigenfunctions (given in Example 3.1) span
two one-dimensional eigenspaces of L2(F).

Unlike the typical fx with | X | > 2jfq, those with | X | < 2]/q satisfy

Our goal now is to show that these are approximate eigenfunctions that
can be used to completely decompose L2{F).

We wish to embed L2([0,7u]) with an appropriate measure into L2(F). To
this end, let \j/ e L2([0,7t]) and fe(n) be extended as odd functions of
0 e [—7u,7c], and define

n

h 0(q2)

4. Continuous spectra

2n - n
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Theorem 4.1. Fv is in L2{F) and we have the Plancherel formula

(6) <FVl,FV2> <\|/i,\|/2>

where the inner product on the right is

fVi(0)v2(0)((tf- I)2 + 4gsin20)c?0
Jo

Proof. We first note that

— I \|/(0)(/sin((« + 1)0)) - qisin((n - 1)0))é/0 q\\f(n - 1) - \j)(n + 1)
I* in

where \j/(X) is the n-th Fourier coefficient of \j/. Therefore

<FM,l,FW2> l)2y,(l)y2(l)
q+ 1

oo

+ E (q2$\(n - l)y2(n - 1) - q$\{n + \)§2(n - 1)
n 1

- ?Vi(« - 1)V2 (n+ 1) + Vi + l)\j/2 + 1))

oo

(<7 + l)Vi(l)V2(l) + E Vi(")V2(n)
n= 0

°° oo oo

- qCLVi(n)y2(n -2) +E Vi(«)V2(n + 2)) + E Vi(«)v2(«)
n 2 n-0 n 2

Now

\\f(n - 2) + \j/(« + 2) 2\{/(X) - 4(\{/sin2)A (n)

Therefore we have

(q + 1) M/i (1)M/2(1) + q2Y,
n 1

0° 00

- ç(2 X! Vi(«)V2(") - 4 £ Vi(«)(\|/2sin2)A(«))
» 1 n=1

00

~ <7(~V|/i(l)v|/2( — 1) + \|/i(0)\j/2(2)) + £ - ¥1(1)^2(1).
/? 1

Recalling Parseval's formula

00

a T 1 f71
E vi(«)V2(«) — vi(0)V2(0)c?0

2n Jo
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we get

~ ~ I Vi(0)V2(0)((tf - l)2 + 4# sin2(0))tf0
2%

0

and since FW2 - F^2 we obtain (6).

5. Spectral decomposition

Let E be the space of functions Fy with vj/ e L2([0,7t]). It follows from §4

that E is a subspace of L2(F), invariant with respect to T. Further, let R be

the two dimensional subspace generated by the discrete spectrum according to
Corollary 3.7.

Theorem 5.1. We have a direct sum decomposition into invariant
subspaces

L2(F) R ® E

Proof. The two spaces are easily seen to be orthogonal. We show that
E1 R. Let geL2(F) such that <g,Fw> =0 for all \|/, i.e.,

0 —-—g(0) — I i(q + 1) sin 0\|/ (0)<i0
q + 1 27T

+ Ü g(n) — I \|/(0)/(sin((« + 1)0) - q sin((« - l)0))d0<7
n 1 27t J

00

g(0)\j/(l) + Y g(n)(w+ 1) - q<v(n - 1 2

n 1

Therefore
00 _» 00 _n-\

g(0)ij/(l) + Y g(n)\\i(n+ 1 Y + 2

n 1 n 0

or (as \|/(0) 0)

2

Y g(n -1 )${n)q2
n- 1

2

Since vj/ e L2([0,7t]) and g e L2(F), this can be viewed as an equality of inner

products in the space I2 of square integrable sequences. Now as \j/ varies over
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L2([0,7i]), the sequences {\j/(X)} vary over I2. Since the latter is a Hilbert

space, it follows that for all n,

g(n - 1) g(n + 1)

Let a - (g(0) + £(1)), b ]- (g(0) - g(lj). Then
2 2

g(n) a + (- 1 )nb

a typical member of R.

Corollary 5.2. The spectrum of T on L2(F) is the subset of R

described in the Introduction.

We wish to make this decomposition explicit, that is, given g e E to find
the \j/ such that g (compare [H]). Let 0(0) be the characteristic function
of [00,00 + /*] C [0,7i]. Then

I P 0o + ^
__

A(") — I Mn)dQ
Je0

By the Plancherel formula (6),

<g,Fç> <g,—I Mn)dB>
271 Je0

1 f"
=— I M/(0)(1)(Ö)((<7 - l)2 + 4#sin20)<i0

271 Jo

I |»e0 + /2

— I ¥(0)(fe - l)2 + 4qsin2Q)dQ
271 J

e0

Supposing further that g belongs in the dense subspace E n Ll(F), we divide
by h and let h -> 0 to obtain

< & 7e0 > V(öo)((<7 - I)2 + 4gsin20)/27T

Hence:

Theorem 5.3. iq and u2 be the orthonormal basis of R given
by
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Then the spectral resolution of L2(F) reads

(7)

În
dû

< g, /o > Un)
0 (q - l)2 + 4gsin20

We end this paper by showing that, as one might expect from the theory
of Eisenstein series, the eigenfunctions can be parametrized as a family of
functions that depend holomorphically on a complex parameter. Precisely, let

E(n,s) qns(qs~l - ql~s) + q«1 ~s\qs - q ~s)

Then E(n,s) is entire in s and satisfies the functional equation

E(n, s) - E(n, 1 - s)

Furthermore, a direct computation shows that

(TE)(n,s) {qs + ql~s)E(n,s)

There are two ways in which X qs + qx~s can be real. Write s o + it.

If t then X (- 1 )k(q° + ql~°), and in particular
log q

X q + 1 (X - (q + 1))

if o 1 and k is even (k is odd). Otherwise we must have o - If we write
2

0
t we obtain our X 2]/#cos0.

logg
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