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AUTOMORPHIC SPECTRA ON THE TREE OF PGL,

by Isaac EFRAT!)

0. INTRODUCTION

Our aim in this paper is to give a complete development of the spectral
theory of functions on the Bruhat-Tits building attached to PGL, of a
function field over a finite field, which are automorphic with respect to the
associated modular group. This set-up may be viewed as the simplest,
nontrivial case to which the theory of automorphic forms on GL, ([JL})
applies. Using only elementary means, we derive an explicit description of the
resulting theory, with emphasis on the underlying spectral decomposition and
the distinction between discrete and continuous spectra. This approach has in
turn been instrumental in our recent work on the existence problem of cusp
forms and their deformation theory ([El], [E2]).

To describe this set-up in some detail, let & be the finite field with
g elements. The norm at infinity of the field of rational functions k(z) is
given by

| f/g| = gdee)—des(®) |

where f and g are polynomials in £[¢]. The completion with respect to this
norm 1is the field K of Laurent series in ¢!

®
Y ait-", a,ek,
n=-N

and those for which N > 0 form the maximal compact subring O of the local
integers in K.

Consider the group Gx = PGL,(K) of all 2 x 2 invertible matrices over
K modulo the scalar matrices. The subgroup

Go = PGL,(0)

') Supported by M.S.R.I. grant 8120790.
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is a maximal compact subgroup, which gives rise to the metric space
X — GK/ GO

on which Gg acts via isometries. Thus the subgroup I' of all elements with
polynomial entries is a discrete subgroup that acts on X, resulting in a quotient
F = I'\X. By an automorphic function we mean a I'-invariant function on X,
which is therefore just a function on F.

There is a natural operator 7 on finitely supported functions on X, which
generates the Hecke algebra of operators that commute with the isometries
of X. This operator has been studied by Cartier ([C1], [C2]) with emphasis on
its spherical and harmonic functions. Here we bring I" into play and study the
spectral theory of T as an operator on L?(F). Specifically, it is our aim to
give an explicit basis of L2(F) consisting of automorphic functions that are
eigenfunctions of 7.

This set-up stands in precise analogy with the classical situation of the
modular group SL,(Z) acting on the upper half plane H. The operator T
is then analogous to the Laplace-Beltrami operator of H. It is known
(see [I], [T] for expositions) that in this case we have a decomposition into
invariant subspaces

L?F)=R®COE.

Here R @ C (resp. E) is the subspace spanned by discrete (resp. continuous)
eigenfunctions. More precisely, R is simply the one-dimensional space of
constant functions. C is the span of the non-constant discrete eigenfunctions,
which here are all cusp forms, meaning that they decay rapidly at the cusp of
SL,(Z)\ H. This space can be shown to be infinite dimensional. Lastly, E is
generated by functions E(z, 1/2 + it) where E(z,s) with z € H, s € C is the
Eisenstein series attached to SL,(Z).
Bearing this analogy in mind, our main results are:

1. The discrete eigenfunctions of T generate a two-dimensional sub-
space R, explicitly given by Proposition 3.5. In particular, T' admits no
cusp forms. This is a special case of much more general dimension formulae
(see [D], [HLW], [Sch}).

2. The eigenfunctions in the continuous spectrum span a subspace E which

is an isometric image of LZ*([0,m]) with respect to the measure
1
— ((g — 1)* + 4qsin?0)do
27

(Theorem 4.1).
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3. The above describes a decomposition L*(F) =R @ E (Theorem 5.1),
made explicit in Theorem 5.3 (compare [L]). In particular, the spectrum of T
on L2*(F) is

discrete continuous discrete
— - |
—(g+1) -2)/q 2//q g+1

1. THE TREE OF PGL,(K)

The material in this section is adapted from Serre [S] and Weil [W].
An O-lattice in K? is a set

L = {av; +pv; | a,p €O}

with v, 0, a basis for K2. We can associate to L the matrix (v;,0;) € GL,(K)
and different choices of bases vy, v, will give cosets in GL,(K)/ GL,(0). Two
lattices L and L’ are said to be equivalent if L’ = aL for some a € K*. We
thus have a natural correspondence between equivalence classes of O-lattices
in K? and points in X.

We define a graph structure on X. Let A and A’ be two equivalence classes
of lattices. We say that A and A’ are adjacent if there exist representatives
L eA,L e A’ such that

(1) L"CL and L/L =k.

THEOREM 1.1 ([S]). The graph whose set of vertices is X and whose
edges are the pairs (A, ') satisfying (1) is the (infinite) (g + 1)-regular tree.

We seek a more explicit realization of X. Let B be the Borel subgroup of
Gy consisting of the matrices whose bottom row is (0, 1). Then the Iwasawa
decomposition is

Gk = BG, ,

but it is not difficult to see that in fact any coset in X has a representative

of the form
AL X
0 1

with x € K and a uniquely determined n € Z.



34 - 1. EFRAT

In these coordinates we can write down the g + 1 vertices of X that
h

are adjacent to a typical vertex (

Zn+1 X tn—l o+
‘ s . X , ¢tek.
0 1 0 1

The group Gg acts on the tree X as a group of automorphisms. We can
therefore define a graph structure on the quotient F for the action of I' on X.

X
1) . They are

THEOREM 1.2 ([S], [W]). The quotient graph F = I'\X s given by (the
cosets of)

so that F is the tree

| +
1

0

-+

w

2
t X . .
In fact, the vertex o 1 corresponds to n, and so if n > 1, its

tn—!—l X
neighbor ( " 1) corresponds to n + 1 while the other g neighbors

are represented by n — 1. If n = 0, all neighbors correspond to 1.

2. THE OPERATOR T

Let p be the Haar measure on Gg normalized so that p(Go) = q(qg — 1).
We compute the measure of F induced from p. Since '

F=T\X =T\Gg/Go
we have
I\Gg = U;ersGo
where
sGo = {T'su|ueGp} C T\Gg .

The point measure at s will be the measure of sG, in the quotient space
I'NGk. Now we have a correspondence
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SGO = S~1rsS\GO ’

where I', = T’ N sGps ~! is the finite subgroup of I' that stabilizes s. Thus

B 1(Go)
n(sGo) = T

1 0 .
It is not hard to check that if s = (O 1) then | T | = g(g?— 1), while

"0

for s =
5

) , n>=1,|Iy|=(g—1g"*'. We therefore put mass

: at the vertex 0 and g " at the vertices n = 1,2,..., so that if f
q+

and g are functions on F = {0,1,2,...} then
_ 1 _ > _
2) <f,g> = s S gdu =———Q+ ” fOg0) + Y f(mgmg .
F n=1

The algebra of operators on functions on the tree X that commute with
the automorphisms of X is generated by the operator
(THE = X f6)
s’ is adjacent to s
(see [C2]). The operator (g + 1)I — T is the Laplacian on X.

If f is I'-automorphic, and therefore can be thought of as a function on
F, then T operates on f by

gfmn—0D+ f(n+1), if n>1,

3 T =
) (17) () {(q-l—l)f(l), if n=0.

PROPOSITION 2.1. T is a self-adjoint operator on L*(F) with respect
to the measure \.

Proof. If the series | f|? converges, then Cauchy’s inequality implies

that the four series in | 7./ || * also converge. Thus 7 maps L2(F) into itself.
Now

1
<Tf,g>=——0(q+1)f(1)g)
qg+1

+ Y (gf(n—1Dgm) + f(n+ Dgn)g "
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=f(Mg®+ Y gfmgn+1g-+*v+ Y f(ngh—1)g-"-Y
n=0 n=2
= f(1)g0) + f(0)g(1) + ;1 fmgn+1)g-"
+q ), f(mgn—1g—"— f(1)g0)
n=1

= fO)g)+ Y (f(mggn—1)+ f(mgn+1)g-"=<f,Tg> .
n=0

3. EIGENFUNCTIONS

An automorphic eigenfunction of 7 on X with eigenvalue A is a function
on F that satisfies

AfO)=(g+DfD),
Af(ny=qfn—1D+ f(n+1), n=1.

f(n+1)

If we write u(n) = (
Sf(n)

) and normalize u(0) = ( ) , We obtain

q+1
the recursion

u(n) = A*u(0)

with

1
| Let x,x = 5 (A £ }/A? — 4q) be the characteristic roots of 4 and assume

that x; # X, i.e., that A # + 2|/q. Solving the recursion we get

| PROPOSITION 3.1. The eigenfunctions on F with eigenvalue A are the
| multiples of the function

5 n__ o nmy n-1_ .n-1 .
(4) fk(n) ={x - x (k(xl x2) Q(q + 1)(x1 x2 )) 5 lf n 2 1

g+1 if n=0.
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Example 3.2. If A =q + 1 then x, =g, x, =1 and

feri(m)=q+1,

| generating the space of constant functions. If A = — (g + 1), then

fo@en@m =(=D"(g+1).
Example 3.3. When A = 21/5 we can solve directly to get

n

faa(m) = (g+1-(g-1n)g?,

and similarly
n

fonam = (=D)"(g+1-(g-Dn)g?.

~ Remark 3.4. Since our tree is bipartite, we expect f to be related to f_y
by a factor of (—1)” (compare [B, §8]). This can be seen from (4).

PROPOSITION 3.5. The only eigenvalues L\ with |A|> 2)/q for which
Sr isin L2(F) are A= +(g+1).

Proof. Recalling (2) we see that if f, € L2(F) then

filn) = 0(qg?) as n- o .

Now
(=) falm) = xI (= q(g+ D) — x5 ' — g(g + 1) .

Assuming with no loss of generality that |x; | > |/q, | x| = 9 - /q, then

. B

X770, —q(g+ 1) = o(qz), so that we must have

i.e., A= £ (qg+1). Conversely, f,,; and S-@+1) are clearly in L2(F).

We turn our attention to A with [A]< 2)/g. Then x, = %,, | x| = /g
and we let x, =]/ge®. Then A =2)/gcos8,0< 0 <. We renormalize
and define

~ X1 — Xy

fe:—‘ —CS .
21/& f2]/q09
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Then, for n > 1,

n

fe(n) = qu((q + 1)sinB cos (n0) — (g — 1) cos B sin (n0))

5 z
©) = g2i(sin((n + 1)0) — gsin((n — 1)8)) ,

and

7o(0) = (g+ 1)isin® .

PROPOSITION 3.6. The functions fg, 0< 06 <m, arenotin L2(F).
Proof. 1t is sufficient to show that
(g + 1)sinbcos(nb) — (¢ — 1)cosBsin(nb) 0 as n— o,
This is the dot product of the two vectors
v; = ((g + 1)sin®, — (g — 1)cosB) and v, = (cos(nh), sin(noh)) .

Since v, is not a constant function of n, we see that cosine of the angle
between v; and v, is bounded away from O for arbitrarily large n.

Combining Propositions 3.5 and 3.6 we conclude

COROLLARY 3.7. The discrete spectrum of T consists of the numbers
+ (g + 1), whose corresponding eigenfunctions (given in Example 3.1) span
two one-dimensional eigenspaces of LZ2(F).

Unlike the typical f, with | A|> 2}/q, those with | A |< 2}/q satisfy

fo = 0(g?) .

Our goal now is to show that these are approximate eigenfunctions that
can be used to completely decompose L?(F).

4. CONTINUOUS SPECTRA

We wish to embed L?([0, x]) with an appropriate measure into L2(F). To
this end, let v € L2([0,]) and fy(n) be extended as odd functions of
0 e [— 7w, ], and define

1 |7 ~
Fy(n) = e j v (0)fe(m)db .

T

— T
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THEOREM 4.1. F, is in L2*(F) and we have the Plancherel formula
(6) <:PL19PL2:> = <:Wda“h:> ’
where the inner product on the right is

1 i
. f Wi (0)v2(0) (¢ — 1)* + 4gsin*6)db .

0

Proof. We first note that
— 5 W (0) (isin((n + 1)8)) — gisin((n — 1)8))d8 = qy(n — 1) — Y(n + 1),
T

where (n) is the n-th Fourier coefficient of . Therefore

1 A A
<Fy,Fy,>=——(g+ D2y, (1)y,(1)
qg+1

+ El (@2Wi(n— Din(n— 1) — g§(n + D§(n — 1)
—qyi(n = Dm+ 1) + (1 + D + 1)

= (g + DY) + g2 Y §1(n) P (n)
n=90

~a(S0mi0-2 + L6 +2) + 500
n= =0 n=2

n

Now

U =2) + (n +2) = 20(n) ~ 4(ysin?)"(n) .

Therefore we have

(g + D) + g2 ¥ G (n) ()

n=1

- q(2 Z \'ﬁl(n)ﬁ\/z(n) -4 Z \/ﬁl(n)(lmsinz)'\(n))
n=1 n=1

~q(= MW=+ §:000:2) + ¥ G160 — 4,0)80) .
n=1

Recalling Parseval’s formula

. A I (" A
; Vi(n)y,(n) = ™ j v1(0)y,(0)do

0
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we get

1 T
— % s v1(0®)w2(8) ((g — 1)2 + 4gsin2(0))do ,
0

and since ﬁw; = — Fy, we obtain (6).

5. SPECTRAL DECOMPOSITION

Let E be the space of functions F, with y € L2([0, ]). It follows from §4
that E is a subspace of L?(F), invariant with respect to 7. Further, let R be
the two dimensional subspace generated by the discrete spectrum according to
Corollary 3.7.

THEOREM 5.1. We have a direct sum decomposition into invariant
subspaces

L*(F)=R®E.

Proof. The two spaces are easily seen to be orthogonal. We show that
E+ =R. Let ge L%(F) such that <g, F,> = 0 for all vy, i.e.,

1 1 ("
0=——g(0)— 5 i(qg+ 1)sinOy(6)d6
qg+1 27

T n

w(8)i(sin((n + 1)8) — g sin(( — 1)8))dbq >

n

=@M+ L e @@+ 1) - gl - 1))q 2.

n=1

> 1
+ nz=:1 g(n) 5; §

Therefore

n-1

d@¥(M) + L emn+Dg 2= L g+ Dimg >,

n=1 =0

or (as W(0) = 0)
n-—1 o0 n—1

Y gn-Dimg *> = ¥ g+ Dimg °
n=1

n=1

Since y € L2([0,]) and g € L?(F), this can be viewed as an equality of inner
products in the space /? of square integrable sequences. Now as y varies over
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L%([0,n]), the sequences {\{(n)} vary over /2. Since the latter is a Hilbert
space, it follows that for all #,

gn—-1)=gn+1).
1
Let a = % (e(0)+g1),b = 5 ((0) — g(1)). Then

gy =a+ (=1D"b,

a typical member of R.

COROLLARY 5.2. The spectrum of T on L?*(F) is the subset of R
described in the Introduction.

We wish to make this decomposition explicit, that is, given g € E to find

the v such that g = F,, (compare [H]). Let ¢(0) be the characteristic function
of [8y,00 + A] C [0,r]. Then

1 Bo+h
Fyo(n) = — S Sfe(n)db .
21

8o
By the Plancherel formula (6),

90+h -
<gFy> = <g,~2— s So(n)d6 >
T

8o
1 ("
=— | v®o®) ((¢—1)%+4gsin26)dd
27 Jo
1 "Bo+h
= = v(0)((g — 1)2 + 4gsin26)deo .
2T J o,

Supposing further that g belongs in the dense subspace E n L!(F), we divide
by £ and let 2 — 0 to obtain

<&, feo> = y(80) ((g — 1)? + 4gsin26)/2x .

Hence:

THEOREM 5.3. Let u, and wu, be the orthonormal basis of R given
by
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Then the spectral resolution of L2*(F) reads

(7

n L do
gn) = Y <gu>un +2n < g fo> fo(n) —
i=1,2 . (g —1)?+ 4qgsin?0

We end this paper by showing that, as one might expect from the theory
of Eisenstein series, the eigenfunctions f; can be parametrized as a family of
functions that depend holomorphically on a complex parameter. Precisely, let

E(n,s) = q™(q*~'—q'~°) + ¢"'~9(q* — q~) .
Then E(n, s) is entire in s and satisfies the functional equation
En,s)=—-En,1-ys).
Furthermore, a direct computation shows that
(TE)(n,s) = (¢°+ q' ~°)E(n,s) .
There are two ways in which A = g5+ ¢!~5 can be real. Write s = ¢ + if.

kn
If # =——then A = (—1)%(g°+ q'~°), and in particular
logg
A=g+1(h=—(g+1))

: : : : 1
if o = 1 and k is even (k is odd). Otherwise we must have ¢ = 3" If we write

0
t = —— we obtain our A = 2}/gcosH.

logg
REFERENCES

[B] BiGcGs, N. Algebraic Graph Theory. Cambridge University Press, 1974.

[C1] CARTIER, P. Géométrie et analyse sur les arbres. Sém. Bourbaki 1971/2,
exposé 407.

[C2] —— Harmonic analysis on trees. Proc. of Symp. on Pure Mathematics,
vol. XXVI, 1973.

[D] DRINFELD, V.G. Number of two-dimensional irreducible representations of

the fundamental group of a curve over a finite field. Funct. Anal. Appl.
15, 4 (1982), 294-295.

[EO] EFRAT, I. Automorphic spectra on the tree of PGL,. Publ. of MSRI,
No. 08908 (1986).




AUTOMORPHIC SPECTRA 43

—— On the existence of cusp forms over function fields. J. fiir die reine und
angewandte Math. 399 (1989), 173-187.

—— Spectral deformations over graphs of groups. Invent. Math. 102 (1990),
447-462.

HARDER, G., W. LI and R. WEISINGER. Dimensions of spaces of cusp forms
over function fields. J. fiir die reine und angewandte Math. 319 (1980),
73-103.

HEeJHAL, D. The Selberg trace formula for PSL,(R). Springer Lecture
Notes 1001, 1983.

IwaNiEC, H. Non-holomorphic modular forms and their applications. In
Rankin (ed.), Modular Forms, Halsted Press, 1984.

JACQUET, H. and R. LANGLANDS. Automorphic forms on GL(2). Springer
Lecture Notes 114, 1970.

L1, W. Eisenstein series and decomposition theory over function fields.
Math. Ann. 240 (1979), 115-139.

ScHLEICH, T. Einige Bemerkungen zur Spectralzerlegung der Hecke-Algebra
fiir die PGL(2) tber Funktionenkorpern. Bonner Math. Schriften 71
(1974).

SERRE, J.-P. Trees. Springer Verlag, 1980.

TERRAS, A. Harmonic Analysis on Symmetric spaces. Vol. I, Springer
Verlag, 1985.

WEIL, A. On the analogue of the modular group in characteristic p.
Collected Papers, vol. 111, Springer Verlag, 1979.

(Recu le 30 aotit 1990)

Isaac Efrat

Department of Mathematics
University of Maryland
College Park, MD 20742






	AUTOMORPHIC SPECTRA ON THE TREE OF $PGL_2$
	0. Introduction
	1. The tree of $PGL_2(K)$
	2. The operator T
	3. Eigenfunctions
	4. CONTINUOUS SPECTRA
	5. Spectral decomposition
	...


