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PRIMES OF DEGREE ONE 23

= szl[bi]‘leClg. By our induction hypothesis, all [b;] are in C. It
follows that [q] is in C. [

By applying the first half of the proof of the lemma to a prime g of degree
f =1, one can obtain an element x = p + vy € B whose ideal factorization
reads xB = q - H?zlbi for certain primes b, of degree one outside S. It
follows that the inverse class [q] ~! e Clp is a product of classes of primes of
degree one outside S. Thus the classes of the primes of degree one outside S
generate Clp already as a monoid, i.e. without using their inverse classes.

It is not true that every ideal class of B necessarily contains a prime of
degree one with respect to A. As a trivial counterexample, with A = B, one
can a take a Dedekind domain that is not principal and invert all prime ideals
in the principal class. There are no prime ideals in the principal class of the
resulting Dedekind domain. Less trivial examples are found in [6, Ch. III § 15].

Proof of theorem 2. We now take A = Z and B the ring of integers of
F. The possibility of choosing the element x in the lemma in such a way that
it is positive under certain embeddings in the field of real numbers and con-
gruent to 1 modulo any given ideal of A shows that the lemma can also be
used to generate relations in Cl;. The proof is further analogous to that of
theorem 1. [

Remark. Theorem 2 can be generalized to the case that F is a function
field over a finite field. In that case, there is neither a canonical choice for
a ring of integers A C F nor an absolute degree of the primes of 4 with respect
to a base ring Z. For each non-empty finite set of primes 7T of F, one can take
A to be the intersection of valuation rings (4, C F. One defines a con-
ductor of A to be a pair consisting of an integral ideal f of 4 and an open
subgroup H of finite index in the product of the completions HpeTF];k of F.
The ray class group of A modulo such a conductor is defined as the group
of fractional A-ideals that is generated by all primes p/f of 4 modulo the
subgroup of principal ideals Aa for which a = 1 mod*f and o € H under the
natural embedding. If & is the field of constants of F and x is an element of
F\k, one can consider the degree of primes of A with respect to k(x) and show
that ray class groups of A are generated by the classes of primes that are of
degree one in this sense. The details are left to the reader.

3. THE INSEPARABLE CASE

In this section we will show that the separability assumption in theorem 1
cannot be omitted. As we need examples of Dedekind domains having a non-
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trivial class group in order to create situations in which the conclusion of
theorem 1 fails, we will first recall an explicit construction of such examples.
There does not seem to be an adequate reference to the literature for this result,
so we formulate it as a proposition and supply a proof.

Let ge Z[¢] be a non-constant polynomial with coefficients in a field Z,
and define the ring R C Z(¢) by

a
R = {5 ca,beZ[t]: b = g™ for some m >0, and degagdegb} .
For this ring the following holds.

PROPOSITION. The ring R is a Dedekind domain with class group
CI(R) = Z/hZ, where h = gcd{degf:f]|g}.

Proof. We will give a quick geometric proof using a theorem on class
groups from [9] and a completely elementary ring theoretic proof.

For the first proof, let X be the projective line over Z. Each of the distinct
irreducible factors f,, f2,..., f» of g corresponds to a closed point P; of X
that is contained in the open affine subset SpecZ[f] of X. The variety
X\{P,,P,,...,P,} is affine with coordinate ring R. It is a normal variety of
dimension one, so R is a Dedekind domain. By repeated application of pro-
position 11.6.5(c) in [9], it follows that the natural map from CI(X) to
CI(R) = CI(SpecR) is a surjection, and that the kernel is generated by the
classes of the prime divisors {P;} in CI(X). As CI(X) = Z under the degree
map [9, proposition 11.6.4], the proposition follows immediately.

For the second proof, we define for each k € Z the fractional R-ideal

Ck = {g:a,beZ[z‘]:b:g”’ for some m >0 and dega+k<degb} .

One easily checks that ¢, ¢; = ¢xy; for k,[eZ. In particular, one has
¢e = ¢k with ¢ = ¢; for k>0, and since ¢o = R the ideal ¢ is invertible.
As R = ¢+ Z, one has dimz(R/¢) = 1. The invertibility of ¢ implies that
dimz(a/b) = dimy(ca/cb) for any pair a Db of fractional R-ideals of
finite relative Z-dimension, so dimz(R/c¢X) = k for any k > 0.

For any non-zero element xe R, we set d(x) = dimz(R/Rx). We will
prove that d(x) is always finite, and that it is given by the formula
%) dix) = — )Y ordy(x)-degf,

flg irred.

where ord,(x) denotes the number of factors f in x.
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We first prove formula (9) in two special cases. If x = f~1! for some
irreducible divisor f of degree k& of g, then Xx generates ¢k, so
d(f ) =k=deg f and (9) holds. Next, suppose X = a/be R with
a,beZ[t] of equal degree and gcd(a,g) = 1. The natural map
Z[t] =~ Z[t]/aZ[t] maps g to a unit, so it has an extension to the localized ring
Z[t], , which contains R. An element y € R is in the kernel if and only if it
is of the form y = ahg—* with k>0 and heZ[tr] of degree at most
kdegg — dega. Writing y = x(bh/g¥) € xR one sees that an isomorphism
R/xR = Z[t]/aZ[t] is induced, so d(x) = dega = degb and formula (9) holds
again. For the general case one writes an arbitrary non-zero element x € R in
the form x = (a,a,)/b with a,,a,,beZ[t] and gcd(a;,a) = ged(ar, g)
= gced(aya,,b) = 1, and notes that all factors except x%¢¢ in the equation

adegg
(az‘l)degg : (g~1)degal . ydegg = it SR (b—l)degg

gdega]
are products of factors of the special types dealt with above. It is immediate
from the definition of d that if x and y are in R\{0}, we have
d(xy) = d(x) + d(») in the sense that if one of the sides is finite, then so is
the other and the equality holds. Repeated application of this fact now shows
that (9) is valid for our arbitrary element x € R. As a consequence, we see that
d has a unique extension to a homomorphism d: Z(¢)* — Z. Also, since every
fractional ideal contains a principal ideal and is contained in a principal
fractional ideal, we can define the integer dimz(a/b) as dimz(a/(a N b))
— dimz(8/(a b)) for any two fractional R-ideals a and b.

We will finish the proof of the proposition by showing that for any frac-
tional R-ideal b D R, one has b ~ ¢ ~dmz®/B) where ~ denotes equality up to
multiplication by an element from Z*. First of all, this implies that all frac-
tional R-ideals are invertible, so R is a Dedekind ring. Moreover, the ideal class
[c] generates C/(R). The order of [¢] is at least 4 as we have [xR] = [c¢™] for
any xe€Z* and d(x)ehZ by formula (9). We have already seen that
cde/ = f-1R for each irreducible factor f of g, so ¢” is principal and we
obtain the desired result C/(R) = Z/hZ.

We prove the relation b ~ ¢~d4mz6/® by induction on dim(8/R). If
dimz(b/R) = 0 one has b = R and there is nothing to prove. Assume
dimz(b/R) >0, so that bc D c. We claim that there exists zebe\c¢ such
that d(z) < 0. Indeed, every element x € Z(¢) has a partial fraction expansion,
l.e. it can be written as the sum of an element of Z[¢] and a finite k-linear
combination of elements of the form ¢/ f", where f € Z[¢] is an irreducible
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polynomial, neZ., and 0<i<degf. Consequently, Z =S+ ¢ with
S={xeZ@)*:d(x) <0} u {0}, and our claim follows. We have bcz=! D R
and over R its Z-dimension dim(bcz~!/R) = dim(b¢/¢c) — dim(R/¢)
+ dim(R/Rz) = dim(b/R) — 1 + d(z) is strictly smaller than dim(b/R).
Our induction hypothesis gives be ~ ¢dm®/R)+1-d@) = go § ~ ¢~ dimb/R)-d@
~ ¢~ dm@®/R) and we are done. [

degg—1

o ZI[1/g]t/g. 1t follows

that R is the integral closure of the ring Z[1/g] of polynomials in 1/g in the
field Z(¢).

Now suppose that k is a field of characteristic p > 0 and that there exist
o,B €k such that [k(]Z o, 12B): k] = p% In order to construct a counter-
example to theorem 1 for an inseparable extension L/K we choose A and L
as below.

If R is as in the lemma, one sees that R = ),

k(1”B,t) = L > B
k(P) = K D> A = k[ : ]
P —aq

The integral closure B of A in L is the integral closure of k(12'B) [(¢? — a) ~!]
in L, so the proposition applied to Z = k(}2’B) and the irreducible poly-
nomial g = ¢ — a € Z][t] shows that B has a class group of order p. We claim
that B has no primes of degree one over A, so that its class group cannot be
generated by the classes of such primes. For the degree valuation, the residue
class field extension is of degree [k(]VB):k] = p. For all other valuations
of A, it is an extension of the form k(y?) C k(J¥'B,7y), where y denotes the
residue class of ¢. If the degree of this extension is one, then k(y) = k(y?), so
k C k(y) is a separable extension. This contradicts the fact that ]VE € k(y),
| and our claim is proved.

| More generally, the argument above shows that for any non-perfect field
k, one can construct examples of this type: if Bek\k? with p = chark
and ¢ is transcendental over k, take L = k(J¥B)(¢). As k(1ZB) is not
algebraically closed, there exist irreducible polynomials gek(1¥B)[f] of
~ arbitrarily high degree, so the construction above gives us infinitely many
| Dedekind domains B D k(]VE) [1/g] in L having non-trivial class group. As
in our example, the rings B have no primes of degree one with respect to the

subring A = B n k(t?) of which they are the integral closure in L.
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