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20 H. W. LENSTRA AND P. STEVENHAGEN
2. THE SEPARABLE CASE

In this section we will prove the theorems 1 and 2. The proof will depend
on the fact that the extension of fields under consideration is separable. In
section 3 we will construct examples of inseparable extensions for which the
conclusion of theorem 1 does not hold.

Suppose that we are in the situation of theorem 1. As we assume L/K to
be separable, there is an element a € B such that L = K(a). Moreover, there
exists d # 0 in A such that the subring A [a] of B satisfies dB C A[a] C B. For
instance, one can take for d the discriminant of the irreducible polynomial of
a over K. One has B, = A,[a] for the localizations at all primes ptdA, and
. for a prime q in B that lies over such a p, the element o mod ¢ generates the
residue class field B/q over A/yp.

Both theorem 1 and 2 are easy consequences of the following lemma.

i
1
{ LEMMA. Choose d+0 in A such that dB C Ala], and let o be
a prime of B that does not divide dB. If degsq= f > 1, then there
| exists a non-zero element xe€B satisfying

(a) x = 1moddB

(b) Bx =q- szlbi, where %,,...,b, are primes of B of degree
< f that are coprime to dB. :

If, in addition, a finite number of embeddings ¢ of B into the field of
real numbers are given, then the element xe€B can be chosen such that
d(x) >0 for each of these embeddings.

Proof. Let p=qn A, and set B = da. As qfdB, one has B, = A,[f]
and Kummer’s theorem [12, Ch. I §8] implies that there exist
Ug, Uy, ..., Ur_1 €A such that

(1) g=pB+ @ +u, B+ ...+ uP+u)B.
We may assume that
2) x =B+ u B+ U+ ugeq — gt

This follows from (1) if p C g2, and can otherwise be achieved by adding an -
element of p — g2 to uy, if necessary. We shall obtain the required element

X = Bf+ Uf—le—l + uf_ZBf—Z 4 uf—3Bf_3 4 u3B3

) + wPB% + 1B + vy
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by modifying the ‘‘coefficients” us_, and u, of x’. Our first condition
(4) v, = 1 mod dA

will guarantee that xepB + vy C doB + dA + 1 C dB + 1, as required in (a).
The second condition

Vo = Uymodp?
(5)

Ur—1 = uf_lmodpz

implies that xeq — g2, so x # 0 and we have

for certain prime ideals b; # q that do not divide dB. Note also that we
cannot have b; | pB, since this would imply that b; O pB + xB = g.
We will impose an extra condition on each of v, and vy, to ensure that

deg b, < f (i=1,...,1).

Let ge A[X] be the irreducible polynomial of B over K, and- M the splitting
field of g over K. Denote by C the integral closure of A in M. Then g splits
completely as a product H7=1(X— B;) in C[X]. Let the finite set W C C
consist of all sums of f distinct terms from B, B2, ..., Px:

W={Y,Bi:JC{l,2,..,n}, #J=f}.
Our condition on vy, reads
(6) — U1 €W

The ring A4 is infinite, so we can find v,_; satisfying (5) and (6). Given such
an element v,_;, we define a non-zero element

y= 11 w+v-y),
welW
which lies in A4 as it is a symmetric expression in the roots of g, and require that

(7)  vo=0 mod qa for each prime a|yA of A that does not divide dp .

There are only finitely many prime divisors of yA, so there exists v, satisfying
(4), (5) and (7) by the Chinese remainder theorem.

We will now show that our conditions on v, and vy_; imply degsb; < f
for each prime b; occurring in the decomposition of xB. Fix such a prime,
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and put a; = AN H; and B = B mod b;. We have B/b; = (4/q,) [ﬁ] because
b,/dB. Reduction of (3) modulo b; shows that B satisfies an f-th degree
equation '
- 0 =B/ + 0B/~ + ity_,B/~2 + 3B/ + ... + B3

+ B2+ B+ 0y,
so we certainly have degub; < f. In order to arrive at a contradiction,
suppose that equality occurs for our prime b;. Then the polynomial

ho= X'+ 0, X 4l o X2 4 s XT3+ i X3+ 0 X
X +0

is the irreducible polynomial of B in (A/a;)[X]. Since B is also a zero of
Z = g mod a;[X], & divides g in (A/a;)[X], hence also in (C/¢;)[X], where
¢; 1s a prime in C lying over b;. In (C/¢;)[X], the polynomial g splits
completely as a product H;ZI(X ——Bj), with ﬁj = B, mod ¢;. It follows
that £ = [, ,(X—B,), with JC{1,2,...,n} of cardinality f. Comparing
coefficients at X/~!, we find that v;_, = — EjGJBj. By definition of y, we
now have

y= ] Ww+v_DesnA=nq.
weW
As a;fdp, we have v, =0 mod a; by (7). It follows that the irreducible
polynomial fze(A/ai) [X] is divisible by X. This contradicts the fact that
degh = f > 1.

We finally have to show that the element x € B constructed above can be
made positive at a finite number of real embeddings B>— R. This follows
immediately from the fact that (4), (5) and (7) remain valid when we replace
x by x + k?, where k is a suitable element in ydp. This finishes the proof of
the lemma.

Proof of theorem 1. By the approximation theorem, the class group of
B is generated by the primes outside S. Thus, let g be an ideal of B of degree
deg,q = f that is not in S. We are done if we can show that [q] is in the
subgroup C of Clp that is generated by the classes of primes of degree one
that are not in S.

Use induction on f. For f = 1 there is nothing to prove, so take f > 1.
If we choose the element d in the lemma divisible by all primes in S it follows
that there exist primes b; outside S with deg4b; < f such that [q]
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= szl[bi]‘leClg. By our induction hypothesis, all [b;] are in C. It
follows that [q] is in C. [

By applying the first half of the proof of the lemma to a prime g of degree
f =1, one can obtain an element x = p + vy € B whose ideal factorization
reads xB = q - H?zlbi for certain primes b, of degree one outside S. It
follows that the inverse class [q] ~! e Clp is a product of classes of primes of
degree one outside S. Thus the classes of the primes of degree one outside S
generate Clp already as a monoid, i.e. without using their inverse classes.

It is not true that every ideal class of B necessarily contains a prime of
degree one with respect to A. As a trivial counterexample, with A = B, one
can a take a Dedekind domain that is not principal and invert all prime ideals
in the principal class. There are no prime ideals in the principal class of the
resulting Dedekind domain. Less trivial examples are found in [6, Ch. III § 15].

Proof of theorem 2. We now take A = Z and B the ring of integers of
F. The possibility of choosing the element x in the lemma in such a way that
it is positive under certain embeddings in the field of real numbers and con-
gruent to 1 modulo any given ideal of A shows that the lemma can also be
used to generate relations in Cl;. The proof is further analogous to that of
theorem 1. [

Remark. Theorem 2 can be generalized to the case that F is a function
field over a finite field. In that case, there is neither a canonical choice for
a ring of integers A C F nor an absolute degree of the primes of 4 with respect
to a base ring Z. For each non-empty finite set of primes 7T of F, one can take
A to be the intersection of valuation rings (4, C F. One defines a con-
ductor of A to be a pair consisting of an integral ideal f of 4 and an open
subgroup H of finite index in the product of the completions HpeTF];k of F.
The ray class group of A modulo such a conductor is defined as the group
of fractional A-ideals that is generated by all primes p/f of 4 modulo the
subgroup of principal ideals Aa for which a = 1 mod*f and o € H under the
natural embedding. If & is the field of constants of F and x is an element of
F\k, one can consider the degree of primes of A with respect to k(x) and show
that ray class groups of A are generated by the classes of primes that are of
degree one in this sense. The details are left to the reader.

3. THE INSEPARABLE CASE

In this section we will show that the separability assumption in theorem 1
cannot be omitted. As we need examples of Dedekind domains having a non-
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