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390 D. CHÉNIOT

(notamment dans le point (ii) du lemme 9.2). Enfin, l'utilisation d'un pinceau
d'axe ne passant pas par l'origine donnera une situation qui n'est pas purement
locale mais seulement semi-locale qu'il faudra donc traiter soigneusement.

ANNEXE

ISOMORPHISME DE WANG ET ISOMORPHISME DE LERAY

Dans cette annexe, nous donnons une justification sommaire de l'existence et des

propriétés des isomorphismes de Wang et de Leray que nous avons utilisés aux §§4 et 5.

1°. ISOMORPHISME DE WANG

Hsien-Chung Wang a donné pour tout fibré localement trivial sur une ^-sphère des

isomorphismes reliant l'homologie relative de l'espace total modulo une fibre à l'homologie de

cette fibre (cf. [Wg]). Nous nous contenterons ici du cas particulier q 1. Soit donc

n:E^ C

un fibré localement trivial topologique sur un cercle. Soit ceCet posons

Ec n~l(c)

Fixons une orientation de C. On a alors, pour tout k, Yisomorphisme de Wang

(A.l) vE,k:Hk^(Ec)^Hk(E,Ec)

associé à cette orientation de C et portant sur les groupes d'homologie singulière à coefficients
entiers, avec la convention Hk _ \ (Ec) ~ 0 pour k < 1. Nous allons indiquer comment on
peut définir vEtk mais en même temps nous montrerons que l'isomorphisme de Wang se

comporte naturellement par rapport aux sous-fibrés (au sens que nous avons précisé à la fin
du §3), c'est-à-dire que, si E' est un sous-fibré de E avec E'c comme fibre au-dessus de c,

l'isomorphisme vE',k Ie concernant (pour la même orientation de C) fait commuter le

diagramme

vE, kHk_(Ec)ii
(a.2) î ^ r

v£", k

Hk-X(E'C) - Hk{E\E'c)

où les flèches verticales sont induites par inclusion.

Ce que nous allons faire ressemble à [La] 6.4 et correspond d'autre part à la description
informelle que nous avons donnée au §4 (cf. fig. 4.1). Soit co : [0, 1] —> C un lacet basé en

c et dont la classe d'homotopie engendre 7ii(C, c). L'espace topologique E peut être obtenu
à partir de Ec x [0, 1] en recollant Ec x {1} à Ec x {0} au moyen d'un homéomorphisme
caractéristique. Plus précisément, si co* est un lacet simple de C homotope à co, on peut, en
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recollant de proche en proche des trivialisations locales simultanées de E et E' le long de co*,

montrer l'existence d'un morphisme de fibrés

G\EC x [0, 1] ->E

au-dessus de co*: [0, 1] -> C tel que:

(i) G(x, 0) x pour tout x e Ec,

(ii) G(E'C x {?}) E' n n _ 1 (co*(Q) pour tout t e [0, 1]

(iii) G induise des homéomorphismes Ec x [0, 1/2] -> n ~ 1(co*([0, 1/2]))

et Ec x [1/2, 1] ^ 7i - 1(œ*([l/2, 1]))

L'homéomorphisme caractéristique dont nous avons parlé est alors l'application

(x, 1)H>(G(JC, 1), 0)

et l'espace quotient de Ec x [0, 1] obtenu par ce recollement s'envoie homéomorphiquement

sur E en passant au quotient dans G. Il est classique dans la théorie des espaces obtenus par
adjonction (cf. [Gb] chap. 19), de voir que dans ces conditions G induit, pour tout k, un

isomorphisme

(A.3) Gk: Hk(Ec x [0,1],Ecx {0,1 })^Hk(E,Ec)

pourvu que Ec x {0, 1} soit rétracte fort par déformation d'un voisinage dans Ec x [0, 1],

ce qui est bien le cas. Les isomorphismes (A.3) restent en fait inchangés si l'on prend à la

place de co* un autre lacet co** de C homotope à co mais pas forcément simple et à la place
de G un morphisme K de fibrés au-dessus de co** satisfaisant seulement à la condition (i);
en effet, le fibré localement trivial E ayant une base compacte, possède la propriété de relèvement

des homotopies et on peut donc trouver, au-dessus d'une homotopie h de co* vers co**,

une homotopie H de G vers K qui vérifie la condition H(EC x {0,1} x [0, 1]) C Ec (cf. [Sp]
2.7.14 et 2.8.10). Les isomorphismes (A.3) sont donc entièrement déterminés par le choix de

l'orientation sur C.

Maintenant, la formule de Künneth appliquée au produit Ec x ([0, 1], {0, 1}) donne,

pour tout k, un isomorphisme

Hk — i{Ec) (x) H\([0, 1], {0, 1}) ^ Hk{Ec x [0, l],Ec x {0, 1})

qui à tout élément décomposable z® ü fait correspondre z x û, produit-croix homologique
de z par ü. Le groupe //i([0, 1], {0, 1}) étant libre sur le générateur privilégié

#0 e #i([0, 1], {0, 1}) classe du cycle relatif singulier Id[o, q

on obtient alors l'isomorphisme

Hk- i(Ec) Hk{Ec X [0, 1 ],EC x {0, 1})

z^ z x â0

En composant cet isomorphisme avec l'isomorphisme (A.3) on aboutit à une expression
explicite de l'isomorphisme de Wang vEfk que nous voulons définir:
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(A. 4) vE,k'- Hk- \ {EC) -»• Hk(E, Ec)

z ^ Gk(z x fl0)

expression qui, nous l'avons vu, ne dépend que de l'orientation choisie sur C.

D'autre part, si nous prenons G satisfaisant aux conditions (i), (ii) et (iii) ci-dessus, sa

restriction à E'c X [0, 1] induit une application

qui a les mêmes propriétés vis-à-vis de E' que G vis-à-vis de E. L'isomorphisme de Wang

V£". k pour E' associé à la même orientation de C s'exprime donc par la formule (A.4) avec

G' à la place de G et la commutativité du diagramme (A.2) résulte alors de la naturalité du

produit-croix homologique (cf. [Sp] 5.3.11).

Nous examinons maintenant le cas d'un fibré trivial où E F x C et où n est la

projection sur le second facteur. Nous allons montrer que l'isomorphisme de Wang \>E,k se

réduit alors à un produit-croix

(A.5) ^E.kiz*)zx[Cû](c,{c)) pour zeHk.x(F),
où [co](c,{c}) désigne la classe d'homologie dans H\{C,{c}) de co considéré comme
1-simplexe (cycle) singulier relatif de C modulo {c} et z* désigne l'élément correspondant
à z dans l'isomorphisme Hk~ \ {F) - Hk _ \ {EC) induit par l'identification canonique de F à

Ec Fx {c}.
On peut, en effet, user de la latitude que nous avons signalée dans la construction de

Wang pour le choix du morphisme de fibrés et appliquer la formule (A.4) à V£,k avec, à la

place de G, le morphisme trivial de fibrés au-dessus de co

Ce morphisme satisfait à la condition (i) ci-dessus, ce qui, nous l'avons vu, est suffisant. On

obtient alors la formule (A.5).
Enfin, il résulte de la formule (A.4) et de la formule donnant le bord d'un produit-croix

(cf. [Sp] 5.3.15) que, si 0: Hk{E, Ec) Hk-\(EC) est l'homomorphisme bord, on a

où 0^_i est la monodromie en homologie de rang k - 1 au-dessus de co.

On retrouve donc bien les isomorphismes (4.8) utilisés au §4 et leurs propriétés (4.9),

(4.10) et (4.11).

2°. lSOMORPHISME DE LERAY

Nous avons utilisé au §5 la version en homologie singulière à coefficients entiers d'un

isomorphisme envisagé par Jean Leray dans la définition de son opération «cobord» (cf. [Lr]
chap. II, n° 19). Nous l'avons fait sous les conditions données par le lemme 5.5 qui permettent
d'avoir les isomorphismes (5.6) et leurs propriétés de naturalité (5.7) et de réduction à un

produit-croix dans le cas trivial (5.8). Nous allons les justifier sommairement sous des

hypothèses en fait plus générales.

G':E'C x [0, 1] ~*E'

Ec x [0, 1] -> F x C

((x, c), t) (x, co(t))

(A. 6) 9 ° ve, k (- 1)* i 0 Id/F- l(£c)) '
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On a, pour tout k, un isomorphisme de Leray

(A.7) Tx, Ytk'.Hk-N{Y) - Hk(X, X\ Y)

(avec la convention E[k_N(Y) 0 pour k < TV), toutes les fois qu'on est en présence d'un
couple (X, Y) où X est une variété réelle de classe C°° séparée paracompacte orientée et où

Y est une sous-variété orientée fermée de X de codimension pure TV. Le point (i) du lemme

5.5 donne bien des conditions suffisantes de validité avec TV 2 puisque les variétés

analytiques complexes ont une structure sous-jacente de variété réelle de classe C°°

canoniquement orientée et que la codimension réelle d'une sous-variété est égale au double
de sa codimension complexe.

Nous allons voir que l'isomorphisme de Leray peut être déduit de l'isomorphisme de
Thom pour un voisinage tubulaire orienté de Y dans X (cf. [Thl]). Avec les hypothèses que
nous avons faites sur X, il existe effectivement un voisinage tubulaire T de classe C°° de 7
dans X (cf. [Ma] proposition 6.2). Un tel voisinage tubulaire consiste en un triplet

r= (n:E-+ Y, e, y)

formé de:

— un fibré euclidien n:E-> Y de classe C°° sur Y;

— une fonction numérique s: Y -+ ]0, oo[ de classe C00;

— un difféomorphisme y: Be(E) -> | T\ où

— Be(E) est le voisinage ouvert de rayon s de la section nulle de E,

— | T | est un voisinage ouvert de Y dans X,
difféomorphisme qui, sur cette section nulle identifiée à Y, coïncide avec l'identité de Y.

On définit aussi la projection tubulaire de T:

%r- I r|- Y

X 71 (\J/ ~ 1 (x))

Cette projection tubulaire est à la fois une rétraction sur Let une fibration localement triviale
de classe C°° en boules ouvertes; la dimension de ces boules est TV dimyX - dim, Y pour
tout y e K On peut, de plus, grâce aux orientations de Y et X, avoir une orientation en tant
que fibré de ce fibré localement trivial; on a, en effet, la relation entre espaces tangents

TyX Ty Y © Ty{nT *(y)) pour y e Y

qui permet d'orienter de manière non ambigùe et localement cohérente les fibres; nous dirons
aussi que c est 1 orientation du voisinage tubulaire T déduite des orientations de Y et
X. Comme la base du fibré nT\ \ T\-+ Y est séparée paracompacte, il existe alors une
unique classe d'orientation cohomologique associée à l'orientation de ce fibré, à savoir un
élément

zTe hn(\tIr|\y)
dont la restriction à chaque fibre ttf'o') donne le générateur de

'WMy})
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compatible avec l'orientation qui a été définie sur n jl{y) (on peut se ramener à E par \j/ " 1

suivi d'une excision et appliquer [Di3] (24.39.6) et (24.39.10)). Nous dirons que c'est la classe

d'orientation cohomologique de T déduite des orientations de Y et X. Pour ce

voisinage tubulaire orienté, on a alors, pour tout k, l'isomorphisme de Thom :

(A8)
<9T,k-Hk{\T\,\T\\Y)=> Hk-N{Y)

z ^ (nT)k-N(ZT~ z)

où ZT^z désigne le produit-chapeau de ZT par z et (nr)k-N' Hk- N{\T\)^Hk_N{Y) est

induit par nT, étant entendu que Hk_N{Y) 0 pour k < N (cf. [Sp] theorem 5.7.10 à la
situation duquel on peut se ramener en transitant par le sous-fibré en sphères de rayon s de

E).
Maintenant, comme nous avons supposé Y fermée, on a aussi l'isomorphisme

Hk(\T\,\T\\Y)^Hk(X,X\Y)
induit par inclusion, obtenu en excisant le fermé X\\ T\ de X dans l'ouvert X\Y. En

composant cet isomorphisme avec ((Pr, y0_1> on obtient alors un isomorphisme

TTyk:Hk_N(Y)^Hk(X,X\Y)

qui, compte tenu de l'interprétation géométrique de l'isomorphisme de Thom, correspond à

la description informelle que nous avons donnée au §5 pour l'isomorphisme de Leray
(cf. fig. 5.1). Mais il faut s'assurer qu'il est intrinsèque au couple (X, Y), c'est-à-dire qu'il
ne dépend pas du voisinage tubulaire T choisi comme intermédiaire.

Nous allons voir que cette indépendance peut être déduite du théorème d'unicité à isotopie
près pour les voisinages tubulaires (cf. [Ma] proposition 6.1). Soit, en effet, T' un autre

voisinage tubulaire de classe C00 de Y dans X. D'après ce théorème, il existe une isotopie

H:Xx [0, \]^X
de classe C°° laissant fixes les points de Y, qui part de l'identité de X et qui aboutit à un

difféomorphisme g de X possédant les propriétés suivantes:

(i) il existe, comme pour tout autre difféomorphisme de X laissant fixes les points de

Y, un voisinage tubulaire g*(T) de classe C00 de T dans X, dit image directe de T par
g, vérifiant

l*.ml *(|7l) et

tt8t(ï-)teW) «rW Pour tout xé\T\ ;

mais aussi

(ii) g* (T) est «équivalent» à T', notion qui implique qu'il existe un autre voisinage tubulaire

U de classe C00 de Y dans X tel que

|c/(cU,(r)|o|r| et

ngt(T)\\U\Hr II £/| nu

On peut alors voir en deux étapes que les isomorphismes de Leray iT, k et iT', k correspondant

à T et T' sont les mêmes:



COMPLÉMENTAIRE D'UN ENSEMBLE ALGÉBRIQUE 395

Pour commencer, on vérifie que les classes d'orientation cohomologiques Zg^T) et ZT'

pour g*(T) et T' déduites des orientations de FetX ont une restriction à (| U |, j U |\ Y) égale

à la classe d'orientation Zy pour U. La naturalité du produit-chapeau (cf. [Sp] 5.6.16)

implique alors que les isomorphismes de Leray correspondant à ces trois voisinages tubulaires

sont les mêmes, c'est-à-dire que %v,k xg (T),k Tr ,k-
Ensuite, on voit que g induit un isomorphisme au-dessus de l'identité entre les fibrés

7ijt | T | Y et ng (7): | g%(T) | - Y qui préserve leur orientation comme fibré déduite des

orientations de Y et X, car g laisse fixe Y et, étant isotope à l'identité de X, préserve

l'orientation de X. Il en résulte que g induit un isomorphisme

//N(|g*(7H \g*(T)|\y)7"|, | r|\r)
qui transforme Zg^T) en ZT. La naturalité du produit-chapeau donne alors que xg^T),k est

égal à tt, k suiyi de l'isomorphisme Hk{X, X\ Y) Hk(X, X\ Y) induit en homologie par g.

Mais comme g est isotope à l'identité par une isotopie préservant X\ Y, ce dernier isomorphisme

est égal à l'identité. On trouve donc que tg (T),k TT,k •

Avec l'étape précédente, cela montre que tt, k ~ k leur valeur commune est donc

un isomorphisme _
Tx, Y,k: Hk-N(Y) -+ Hk(X, X\ Y)

intrinsèque au couple (X, Y) qui est l'isomorphisme de Leray (A.7).

Remarquons que ce qui précède montre aussi que les classes d'orientation cohomologiques

déduites des orientations de Y et X pour les différents voisinages tubulaires de classe

C00 de Y dans X sont les restrictions d'un même générateur Z e HN(X, X\Y) auquel elles

correspondent par excision. Remarquons, d'autre part, que l'orientation d'un voisinage
tubulaire T de F dans X, déduite des orientations de Y et X, donne une orientation du fibré
normal de Y relativement à X grâce à l'isomorphisme canonique de Ty{TijX{y)) avec

TyX/TyY pour y e Y: la cohérence locale des orientations des TyX/TyY est assurée par
celle des Ty{iij

1

(y)). Mais n'importe quel autre supplémentaire de TyY dans TyX, orienté
de manière compatible avec TyY et TyX, donne la même orientation sur TyX/TyY. Cette
orientation du fibré normal ne dépend donc pas du voisinage tubulaire T choisi comme
intermédiaire et nous dirons que c'est l'orientation du fibré normal de Y relativement à

X déduite des orientations de Y et X. Le générateur Z est donc en fait déterminé par
cette orientation du fibré normal.

Nous en venons maintenant à la question de la naturalité de l'isomorphisme de Leray,
qui n'a évidemment de sens que grâce à son caractère intrinsèque. Soit donc (X, Y) un couple
satisfaisant comme ci-dessus aux conditions de validité de l'isomorphisme de Leray (A.7).
Supposons que X' soit une sous-variété orientée fermée de X transverse à Y dans X et posons
Y' X' n Y. Constatons alors, qu'en raison de l'hypothèse de transversalité, Y' est une
sous-variété fermée de codimension pure N dans X'. Constatons aussi que X' est séparée
paracompacte puisque, nous l'avons vu, cette propriété se transmet de A à ses sous-variétés.
Il ne manque donc qu'une orientation sur Y' pour que le couple (Xr, Y') satisfasse aux
conditions de validité de l'isomorphisme de Leray. Nous allons voir que Y' peut effectivement
être orientée et que, si on le fait de manière convenable, l'isomorphisme de Leray pour le
couple (Xr, Y') se comporte naturellement par rapport à l'isomorphisme de Leray pour le
couple (X, Y). Pour cela, le choix de l'orientation sur Y' doit être tel que les orientations
de Y' et X' satisfassent vis-à-vis des orientations de F et A à une condition de cohérence
naturelle:
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Cette condition porte sur les orientations des fibrés normaux ,/Y' de Y' relativement à

X' et ,/Y de Y relativement à X. Une orientation de Y' déterminerait, nous l'avons vu, une
orientation de JY' en tant que fibré, déduite des orientations de Y' et X'. Nous avons, par
ailleurs, une orientation de ,/Y déduite de celles de Y et X. Or JY' peut aussi être retrouvé

comme fibré induit par jY au-dessus de Y'. Cela est possible grâce à la transversalité de X'
à Y dans X qui permet une identification canonique de ./C à ce fibré induit. Cette
transversalité implique, en effet, les égalités

Ty'X' + Ty> Y Ty'X ; Ty> Y' TyT X' n Ty> Y pour y'e Y'

et les fibres au-dessus de y' de JY' et JY sont alors respectivement Ty>X'/Ty>X' n Ty>Y
et Ty'X/Ty'Y qui s'identifient canoniquement en passant au quotient dans l'injection
canonique de Ty> X' dans Ty> X. Cette identification canonique de ,/Y' au fibré induit par
- Y au-dessus de Y' donne une seconde orientation de ./L ' obtenue en y transportant celle

de 4". La condition de cohérence qu'on peut alors naturellement exiger est que les deux
orientations en question sur ,/Y' coïncident. Mais il estjtoujours possible d'orienter Y' de façon
à satisfaire à cette condition de cohérence. En effet, on commence par orienter JY' de la
seconde manière, grâce à l'orientation de ,/Y. On peut ensuite obtenir, à partir des orientations
de ,/Y' comme fibré et de X' comme variété, une orientation du fibré tangent de Y' par la

procédure inverse de celle qui nous a permis, ci-dessus, d'orienter un fibré normal à partir
des orientations des variétés constitutives. On aboutit ainsi à une orientation de Y' qui satisfait
à la condition de cohérence voulue et qui est la seule à pouvoir la satisfaire. Nous munissons

donc Y' de cette orientation bien déterminée dont nous dirons que c'est l'orientation de Y'
qui est cohérente avec celle de X' par rapport à celles de Y et X.

Figure A.l
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On peut donner une description géométrique assez simple de l'orientation qui en résulte

pour les espaces tangents Ty>Y'\ Soit K un supplémentaire de Ty> Y dans Ty> X
(cf. fig. A.l). C'est aussi un supplémentaire de Ty> Y dans Ty< X. Les orientations de Ty> Y

et Ty> X déterminent, par compatibilité, une orientation de K et alors, les orientations de K
et Ty> X' déterminent l'orientation voulue sur Ty> Y'.

Sous les hypothèses faites concernant X' et avec l'orientation sur Y X n Y définie

ci-dessus, l'isomorphisme de Leray %x' ,Y',k pour le couple (X ,Y se comporte

naturellement par rapport à l'isomorphisme de Leray tx,Y,k P°ur Ie couple (X, Y), ce qui

veut dire que le diagramme suivant, où les flèches verticales sont induites par inclusion, est

commutatif :

XX, Y, k

Hk„N(Y) - Hk(X, X\Y)

(A.9) î C î

XX', Y, k

Hk-N(Y') * Hk(X',X'\Y')

Avant d'esquisser une justification de cette propriété, notons que le point (ii) du

lemme 5.5 en donne bien des conditions suffisantes de validité. Autrement dit, si (X, Y) est

un couple composé d'une variété analytique complexe séparée paracompacte et d'une sous-

variété fermée de codimension pure (pas forcément égale à 1) et si (X', Y') est un autre couple

formé d'une sous-variété fermée de X transverse à Y dans X et de son intersection avec Y,

alors les variétés réelles canoniquement orientées sous-jacentes vérifient les hypothèses

formulées ci-dessus pour la validité de (A.9). Pour voir cela, commençons par remarquer que
les espaces tangents aux variétés réelles sous-jacentes sont les espaces vectoriels réels sous-

jacents aux espaces tangents complexes. La transversalité de A' à Y au sens complexe est donc

équivalente à sa transversalité au sens réel. Il reste maintenant à s'assurer que les orientations

canoniques de Y' et X' satisfont bien à la condition de cohérence voulue vis-à-vis des

orientations canoniques de Y et X. Or ce que nous avons dit sur les espaces tangents implique
aussi que / et / ' (avec les notations ci-dessus) sont les fibrés réels sous-jacents aux fibrés

normaux complexes. Ils ont donc une orientation canonique en tant que fibrés qui induit sur
chaque fibre son orientation canonique. Mais ces orientations de jKet ,// ' sont précisément
celles que nous avons dit être déduites des orientations canoniques de Y et X d'une part et

de Y' et X' d'autre part. En effet, nous avons vu que pour orienter de cette manière une
fibre TyX/TyY de / par exemple, on pouvait se servir de n'importe quel supplémentaire
Fy de TyY dans TyX qu'on orientait de manière compatible avec TyY et TyX. Mais si l'on
choisit pour Fy un supplémentaire de TyY pour les structures d'espaces vectoriels complexes,
c'est son orientation canonique qui est compatible avec celles de TyY et TyX. L'isomorphisme

par lequel on la transporte à TyX/TyY étant aussi un isomorphisme d'espaces
vectoriels complexes, on aboutit bien à l'orientation canonique de TyX/TyY. Il nous reste
maintenant à voir que l'orientation canonique de «#"* est la même que celle qu'on obtient
en y transportant l'orientation canonique de -A' au moyen de l'identification de F' au fibré
induit par # au-dessus de Y'. Mais cela est bien le cas car cette identification, que nous
avons explicitée, se fait au moyen d'un isomorphisme canonique des fibres valable aussi pour
les structures complexes.



398 D. CHÉNIOT

La propriété de naturalité que nous avons énoncée en (A.9) résulte de deux faits essentiels.

En premier lieu, l'isomorphisme de Thom (A.8) pour le fibré orienté Y se

comporte naturellement par rapport aux fibrés orientés induits au-dessus de sous-ensembles
de la base: cela est une conséquence immédiate de la naturalité du produit-chapeau. En second

lieu, nous verrons qu'on peut choisir un voisinage tubulaire T de classe C°° de h dans X
qui soit en bonne position par rapport à X'. «En bonne position» signifie que

7iT {Y') C X', ce qui permet d'avoir un voisinage tubulaire T' de classe C00 de Y' dans X'
tel que %T {Y') | T' | et tel que nT coïncide avec sur | T' [» Avec cette configuration,
en effet, nT> : | T' | -> Y' est le fibré induit au-dessus Y' par nj\ | T | -> Y. De plus,
l'orientation de %t' : I T' | -> Y' (déduite des orientations de Y' et X') est bien induite par
l'orientation de 717-: | T |-> Y (déduite de celles de Y et X). Cela résulte de la condition de

cohérence entre les orientations des fibrés normaux de Y' relativement à X' et de Y
relativement à X que nous avons formulée plus haut et en vue de laquelle nous avons
précisément choisi l'orientation de Y'. On peut, dans ces conditions, utiliser la naturalité de

l'isomorphisme de Thom et en déduire la naturalité de l'isomorphisme de Leray. Il nous reste
à justifier la possibilité de choisir T en «bonne position».

Pour que T soit en bonne position par rapport à X', il suffit qu'il soit «compatible» avec

une rétraction r d'un voisinage ouvert Q de Y dans X telle que r~l(Y') C X', cette

compatibilité voulant dire que | T | C Q et que r est constante sur les fibres de tu j (en fait
71t est alors égale à /j| 7)). Or, étant donnée une application de classe C°° définie sur Q et

dont la restriction à Y est submersive, l'existence d'un voisinage tubulaire de classe C00 de

Y dans Q compatible avec cette application est assurée par le théorème fort d'existence de

voisinages tubulaires de Mather (cf. [Ma] proposition 6.2; l'assertion de compatibilité a été

oubliée dans l'énoncé mais peut être restituée d'après la démonstration). On est donc ramené
à l'existence d'une rétraction de classe C00 qui soit comme la rétraction r ci-dessus.

Il est assez délicat d'établir cette existence: cela est clair localement grâce à la transversa-
lité de A' à Y dans X mais il y a des difficultés de recollement; la chose n'est d'ailleurs pas

possible si on ne suppose pas X' fermée. Disons seulement qu'en se limitant à une composante
connexe de X, on peut recouvrir Y par une famille dénombrable d'ouverts de cartes de X
sur lesquels des rétractions convenables ont été définies (rappelons que X a été supposée

paracompacte). Numérotant alors ces ouverts, on part du premier d'entre eux avec la rétraction

qu'il porte et on prolonge celle-ci de proche en proche: les ajustements successifs se font
au moyen d'une partition de l'unité dans un espace Rp contenant l'image des cartes.

Plusieurs zones de sauvegarde emboîtées sont nécessaires pour éviter les conflits et empêcher

d'avoir dans r ~ l(Y') des éléments étrangers à X'\ on n'obtient la rétraction voulue que dans

une région entourant Y plus étroite que celle constituée par les ouverts de départ; il faut
d'ailleurs avoir prévu un tel recouvrement ouvert plus étroit de Y dès le début. Nous ne

pouvons en dire davantage ici. L'existence de la rétraction r était le dernier élément de la

justification de la naturalité de l'isomorphisme de Leray sous les hypothèses faites.

Nous passons enfin à la propriété qu'a l'isomorphisme de Leray de se réduire à un

produit-croix dans le cas trivial. Supposons donc que X - V x Woù Vet Wsont des variétés

réelles de classe C00 séparées paracompactes orientées et que Y V x {w0} avec w0 6 W.

Alors, comme nous l'avons vu dans la démonstration du point (i) du lemme 5.5, V x IL est

aussi séparée paracompacte et on peut orienter X par Vorientation produit de celles de V et

W. D'autre part, Y est bien une sous-variété fermée de X de codimension pure N dim W

et on peut l'orienter par son identification canonique avec V. Le couple (X, Y) satisfait donc
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aux hypothèses de validité de l'isomorphisme de Leray (A.7). Mais dans ce cas trivial, il se

réduit à la formule

(A.10) ^vxw,vx{wQ},k(z*) zxü pour zeHk_N{V),
où correspond à z dans l'isomorphisme induit en homologie par l'identification
canonique de V à V x {wq} et où ü est le générateur de HN(W, PF\{wo}) compatible avec

l'orientation de W.

Avant de justifier cette formule, constatons que la condition (iii) du lemme 5.5 en donne

bien des conditions suffisantes de validité. En effet, si V et IV sont des variétés analytiques
complexes séparées paracompactes, on peut considérer leurs variétés réelles de classe C°°

canoniquement orientées sous-jacentes ainsi que celles de V x W et V x { Wq}. Alors l'orientation

canonique de V x W est bien le produit des orientations canoniques de V et W et

l'orientation canonique de F x {w0} est bien celle qui est obtenue par identification à V.

La formule (A. 10) a pour origine le fait que, dans ce cas trivial, on peut tirer parti de

l'indépendance de l'isomorphisme de Leray par rapport au voisinage tubulaire T choisi

comme intermédiaire pour en prendre un de forme triviale. «De forme triviale» veut dire que
| T | V x D où D est une TV-boule ouverte de W centrée en w0 et que n jip, w) - Où wo)

pour (d, w) e V x D. Les fibres de nT sont alors de la forme {r>} x D et l'orientation de T,
déduite de celles de Y et X, est donnée par l'orientation induite sur D par W. La classe d'orientation

cohomologique de T déduite des orientations de Y et X est alors ZT î x Do où
1 e H°{V) est la classe du cocycle singulier de V prenant la valeur 1 sur tous les 0-simplexes
de V et ÙD est le générateur de HN(D, Z>\{ w0}) compatible avec l'orientation de D. Nous
allons voir qu'on peut en déduire la formule suivante concernant l'isomorphisme de Thom
pour ce voisinage tubulaire trivial :

(<Pr,k)~l(z#) z x üD pour zeHk_N(V),
où z* e Hk_N{V x {w0}) correspond à z dans l'isomorphisme induit par l'identification
canonique de V ä V x {w0} et où üD est le générateur de HN (D, D\{ w0}) compatible avec
l'orientation de D. En effet, on a, d'une part,

z* — z x w0

où w0 est la classe d'homologie de l'unique 0-simplexe singulier de {w0} (cf. [Sp] 5.3.12) et,
d'autre part, d'après la formule (A.8),

cpT,k(z x UD) (Kr)k _ A'((î x ÙD) ~ (z x üD))

avec

(î x ÙD)^{z x ÙD) (- z) x (Ud ~ ÜD) z x w0

où w0 est la classe d'homologie du 0-simplexe singulier de D d'image w0 (cf. [Sp] 5.6.21,
5.6.17 et 5.6.19; nous adoptons les conventions de signe de [Sp] pour le produit-chapeau)!
Et, vu la forme triviale de nT, on a bien

(^r)k-N(Z x Wo) Z x W0

par naturalité du produit-croix. Cela montre la formule annoncée concernant ((p^ k) ~ 1

pour
un tel voisinage tubulaire T. Il n'y a plus alors qu'à utiliser la naturalité du produit-croix
pour obtenir la formule (A.10).
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