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390 D. CHENIOT

(notamment dans le point (ii) du lemme 9.2). Enfin, "utilisation d’un pinceau
d’axe ne passant pas par 1’origine donnera une situation qui n’est pas purement
locale mais seulement semi-locale qu’il faudra donc traiter soigneusement.

ANNEXE

ISOMORPHISME DE WANG .ET ISOMORPHISME DE LERAY

Dans cette annexe, nous donnons une justification sommaire de ’existence et des
propriétés des isomorphismes de Wang et de Leray que nous avons utilisés aux §§4 et 5.

1°. ISOMORPHISME DE WANG

Hsien-Chung Wang a donné pour tout fibré localement trivial sur une g-sphére des iso-
morphismes reliant ’homologie relative de I’espace total modulo une fibre a I’homologie de
cette fibre (cf. [Wg]). Nous nous contenterons ici du cas particulier ¢ = 1. Soit donc

n.:FE—C

un fibré localement trivial topologique sur un cercle. Soit ¢ € C et posons
E.=7n"Y0).

Fixons une orientation de C. On a alors, pour tout k, I’isomorphisme de Wang

(A.1) VE, k: Hi - 1(Ec) = Hy(E, E;)

associé a cette orientation de C et portant sur les groupes d’homologie singuliére a coefficients
entiers, avec la convention Hy _(E;) = 0 pour k£ < 1. Nous allons indiquer comment on
peut définir vg 4, mais en méme temps nous montrerons que ’isomorphisme de Wang se
comporte naturellement par rapport aux sous-fibrés (au sens que nous avons précisé a la fin
du §3), c’est-a-dire que, si £’ est un sous-fibré de E avec E. comme fibre au-dessus de c,
I'isomorphisme vg' g le concernant (pour la méme orientation de C) fait commuter le
diagramme

m
>

V ’

Hy _1(E;) > Hy(E ,E.)
(A2) i G 1
VE' k
Hy _((E) = Hy(E', E})

ou les fleches verticales sont induites par inclusion.

Ce que nous allons faire ressemble a [La] 6.4 et correspond d’autre part a la description
‘informelle que nous avons donnée au §4 (cf. fig. 4.1). Soit w: [0, 1] = C un lacet basé en
c et dont la classe d’homotopie engendre 7 (C, ¢). L’espace topologique E peut étre obtenu
a partir de E, X [0, 1] en recollant E. X {1} a E. X {0} au moyen d’un homéomorphisme
_caractéristique. Plus précisément, si w* est un lacet simple de C homotope & w, on peut, en
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recollant de proche en proche des trivialisations locales simultanées de E et E’ le long de o*,
montrer I’existence d’un morphisme de fibrés

G.E.x[0,1]1>F
au-dessus de w*: [0, 1] — C tel que:

(i) G(x,0)=x pourtout xe€kE,
() G(E.x{t})=E nn~Y(w*@) pourtout ¢el0,1],
(ili) G induise des homéomorphismes E. X [0, 1/2] 5~ How*([0, 1/2])
et E. x [1/2,1] > = Yw*([1/2, 1)) .

L’homéomorphisme caractéristique dont nous avons parlé est alors ’application
(x, )~ (G(x, 1),0)

et ’espace quotient de E. X [0, 1] obtenu par ce recollement s’envoie homéomorphiquement
sur E en passant au quotient dans G. Il est classique dans la théorie des espaces obtenus par
adjonction (cf. [Gb] chap. 19), de voir que dans ces conditions G induit, pour tout k&, un
isomorphisme

(A.3) Gi: Hy(Ee % [0, 1], E; X {0, 1}) > Hy(E, E,)

pourvu que E. x {0, 1} soit rétracte fort par déformation d’un voisinage dans E. X [0, 1],
ce qui est bien le cas. Les isomorphismes (A.3) restent en fait inchangés si ’on prend a la
place de ®* un autre lacet ®** de C homotope & @ mais pas forcément simple et a la place
de G un morphisme K de fibrés au-dessus de w** satisfaisant seulement a la condition (i);
en effet, le fibré localement trivial £ ayant une base compacte, posséde la propriété de reléve-
ment des homotopies et on peut donc trouver, au-dessus d’une homotopie # de w* vers m**,
une homotopie H de G vers K qui vérifie la condition H(E. X {0,1} x [0, 1]) C E,. (cf. [Sp]
2.7.14 et 2.8.10). Les isomorphismes (A.3) sont donc entierement déterminés par le choix de
I’orientation sur C.

Maintenant, la formule de Kiinneth appliquée au produit £, X ([0, 1], {0, 1}) donne,
pour tout k, un isomorphisme

Hy—1(Ec) ® Hi([0, 11,{0, 1}) = Hyx(E, x [0, 1], E. x {0, 1})

qui a tout élément décomposable z @ u fait correspondre z X u, produit-croix homologique
de z par u. Le groupe H([0, 1],{0, 1}) étant libre sur le générateur privilégié

ap € H([0,1],{0,1}) classe du cycle relatif singulier Idp, 17,
on obtient alors I’isomorphisme

Hy_1(E) = Hy(E, % [0, 1], E. x {0, 1})

ZHZX&—O .

En composant cet isomorphisme avec I'isomorphisme (A.3) on aboutit 4 une expression
explicite de I’isomorphisme de Wang vg 4, que nous voulons définir:
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(A.4) Ve, & H —1(Ec) = Hy(E, E;)

7 Gz X ag) ,
expression qui, nous I’avons vu, ne dépend que de ’orientation choisie sur C.

D’autre part, si nous prenons G satisfaisant aux conditions (i), (i) et (iii) ci-dessus, sa
restriction a £, X [0, 1] induit une application

G:E.x[0,1]>E'

qui.a les mémes propriétés vis-a-vis de E’ que G vis-a-vis de E. L’isomorphisme de Wang
Ve, pour E’ associé & la méme orientation de C s’exprime donc par la formule (A.4) avec
G’ a la place de G et la commutativité du diagramme (A.2) résulte alors de la naturalité du
produit-croix homologique (cf. [Sp] 5.3.11).

Nous examinons maintenant le cas d’un fibré trivial ol E=F X C et ou 1 est la
projection sur le second facteur. Nous allons montrer que I’isomorphisme de Wang vg x se
réduit alors a un produit-croix

(A.5) VE k(2 #) =z X [0l(c,{¢py Dpour z e Hi_1(F),

ou [w](c,{c}) désigne la classe d’homologie dans H;(C,{c}) de o considéré comme
1-simplexe (cycle) singulier relatif de C modulo {c} et z# désigne 1’élément correspondant
| 4 z dans I’isomorphisme Hy _ (F) = H, _{(E,) induit par I’identification canonique de F a
E.=F x {c}.

On peut, en effet, user de la latitude que nous avons signalée dans la construction de
Wang pour le choix du morphisme de fibrés et appliquer la formule (A.4) a vg « avec, a la
place de G, le morphisme trivial de fibrés au-dessus de w

E.x[0,1] > FxC
(0, 8) P (x o) .

Ce morphisme satisfait a la condition (i) ci-dessus, ce qui, nous I’avons vu, est suffisant. On
obtient alors la formule (A.S5).

Enfin, il résulte de la formule (A.4) et de la formule donnant le bord d’un produit-croix
(cf. [Sp] 5.3.15) que, si 8: Hy(E, E.) > Hy_ (E;) est 'homomorphisme bord, on a

(A.6) 0 vE k= (=D " 1O0k—1—1dp, (&) »

ou O _; est la monodromie en homologie de rang k& — 1 au-dessus de .

On retrouve donc bien les isomorphismes (4.8) utilisés au §4 et leurs propriétés (4.9),
. (4.10) et (4.11).

2°. ISOMORPHISME DE LERAY

Nous avons utilisé au §5 la version en homologie singuli¢re a coefficients entiers d’un
isomorphisme envisagé par Jean Leray dans la définition de son opération «cobord» (cf. [Lr]
chap. II, n° 19). Nous I’avons fait sous les conditions données par le lemme 5.5 qui permettent
- d’avoir les isomorphismes (5.6) et leurs propriétés de naturalité (5.7) et de réduction a un
- produit-croix dans le cas trivial (5.8). Nous allons les justifier sommairement sous des
- hypotheéses en fait plus générales.
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On a, pour tout k, un isomorphisme de Leray
(A7) tx, v,k He - N(Y) = He(X, X\Y)

(avec la convention Hy _ n(Y) = 0 pour k < N), toutes les fois qu’on est en présence d’un.
couple (X, Y) ou X est une variété réelle de classe C® séparée paracompacte orientée et ou
Y est une sous-variété orientée fermée de X de codimension pure N. Le point (i) du lemme
5.5 donne bien des conditions suffisantes de validité avec N = 2 puisque les variétés
analytiques complexes ont une structure sous-jacente de variété réelle de classe C*
canoniquement orientée et que la codimension réelle d’une sous-variété est égale au double
de sa codimension complexe.

Nous allons voir que I’isomorphisme de Leray peut étre déduit de /’isomorphisme de
Thom pour un voisinage tubulaire orienté de Y dans X (cf. [Th1]). Avec les hypothéses que
nous avons faites sur X, il existe effectivement un voisinage tubulaire 7" de classe C*® de Y
dans X (cf. [Ma] proposition 6.2). Un tel voisinage tubulaire consiste en un triplet

T=(mE—-Y,¢g, W)

formé de:
— un fibré euclidien n: E — Y de classe C* sur Y;
— une fonction numérique €: ¥ — ]0, o[ de classe C*;
— un difféomorphisme y: B.(E) = | T'| ou
— B¢ (E) est le voisinage ouvert de rayon € de la section nulle de E,
— | T'] est un voisinage ouvert de Y dans X,
difféomorphisme qui, sur cette section nulle identifiée a Y, coincide avec ’identité de Y.

On définit aussi la projection tubulaire de T:
i | T|-Y
x>y ) .

Cette projection tubulaire est & la fois une rétraction sur Y et une fibration localement triviale
de classe C'™ en boules ouvertes; la dimension de ces boules est N = dimy, X — dim, Y pour
tout y € Y. On peut, de plus, grace aux orientations de Y et X, avoir une orientation en tant
que fibré de ce fibré localement trivial; on a, en effet, la relation entre espaces tangents

I,X=T,Y® Ty(n;l(y)) pour yeY

qui permet d’orienter de maniére non ambigiie et localement cohérente les fibres; nous dirons
aussi que C’est I’orientation du voisinage tubulaire T déduite des orientations de Y et
X. Comme la base du fibré ny:| T|— Y est séparée paracompacte, il existe alors une

unique classe d’orientation cohomologique associée a ’orientation de ce fibré, a savoir un
élément

Zre HN(T|,| T\Y)
dont la restriction a chaque fibre T 1( ») donne le générateur de

HN(7 ' ), n 7 ")\ ))
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compatible avec ’orientation qui a été définie sur - 1( ») (on peut se ramener a E par y ~ !
suivi d’une excision et appliquer [Di3] (24.39.6) et (24.39.10)). Nous dirons que c’est la classe
d’orientation cohomologique de T déduite des orientations de Y et X. Pour ce

voisinage tubulaire orienté, on a alors, pour tout k, /’isomorphisme de Thom:
- H, — _
(A.8) o7, k k(|TIa|T|\Y3_’Hk N(Y)_ _
2P (M) k-NZr~ 2),

ot Z7~7 désigne le produit-chapeau de Z7 par 7 et () n: Hy N( T = Hy _ n(Y) est
induit par nr, étant entendu que Hy _ n(Y) = 0 pour £ < N (cf. [Sp] theorem 5.7.10 a la
situation duquel on peut se ramener en transitant par le sous-fibré en sphéres de rayon ¢ de
E).

Maintenant, comme nous avons supposé¢ Y fermée, on a aussi I’isomorphisme

H(| T

TN\Y) > Hy(X, X\Y)

:

induit par inclusion, obtenu en excisant le fermé X\| 7| de X dans ’ouvert X\Y. En
composant cet isomorphisme avec (¢, x) —1 on obtient alors un isomorphisme

7,k Hie - n(Y) = Hi(X, X\ Y)

qui, compte tenu de ’'interprétation géométrique de I’isomorphisme de Thom, correspond a
' la description informelle que nous avons donnée au §5 pour I’isomorphisme de Leray
(cf. fig. 5.1). Mais il faut s’assurer qu’il est intrinseque au couple (X, Y), c’est-a-dire qu’il
ne dépend pas du voisinage tubulaire 7 choisi comme intermédiaire.

Nous allons voir que cette indépendance peut étre déduite du théoréme d’unicité a isotopie
pres pour les voisinages tubulaires (cf. [Ma] proposition 6.1). Soit, en effet, 7° un autre
voisinage tubulaire de classe C® de Y dans X. D’apres ce théoréme, il existe une isotopie

H: X x[0,1]>X
de classe C* laissant fixes les points de Y, qui part de ’identité de X et qui aboutit & un

difféomorphisme g de X possédant les propriétés suivantes:

(i) il existe, comme pour tout autre difféomorphisme de X laissant fixes les points de
Y, un voisinage tubulaire g,(7) de classe C* de Y dans X, dit image directe de T par
g, vérifiant

|g*(T)I:g(’T|) et

ng*(T)(g(x)) = np(x) pour tout xel|T|;
mais aussi
(ii) g, (7T) est «équivalent» a T’, notion qui implique qu’il existe un autre voisinage tubu-
laire U de classe C*® de Y dans X tel que
Ul Clg (D |n|T]| et

|U|=TCU.

Tg () ||U| = 71

 On peut alors voir en deux étapes que les isomorphismes de Leray tr , et T7/ x correspon-
dant a T et T’ sont les mémes:
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Pour commencer, on vérifie que les classes d’orientation cohomologiques Z g, (T) €t Z7
pour g, (T) et T* déduites des orientations de Y et X ont une restriction & (| U |, | UI\Y) égale
a la classe d’orientation Zy pour U. La naturalit¢ du produit-chapeau (cf. [Sp] 5.6.16)
implique alors que les isomorphismes de Leray correspondant a ces trois voisinages tubulaires
sont les mémes, c’est-a-dire que Ty x = Tg (T),k = T k-

Ensuite, on voit que g induit un isomorphisme au-dessus de !’identité entre les fibrés
nr:| T|= Y et ng (1) | g4(T) | > Y qui préserve leur orientation comme fibré déduite des
orientations de Y et X, car g laisse fixe Y et, étant isotope a l’identité de X, préserve
Porientation de X. Il en résulte que g induit un isomorphisme

HN(|g.(D |, [e(DNY) = HY( T, [ T\Y)

qui transforme Z g, (T) €N Z7. La naturalité du prodult -chapeau donne alors que Tg_(7), k €St
égal & 17 4 suivi de I’isomorphisme H; (X, X\Y) > Hy(X, X\'Y) induit en homologie par g.
Mais comme g est isotope a ’identité par une isotopie préservant X\ Y, ce dernier isomor-
phisme est égal a I’identité. On trouve donc que T (T), k = TT,k -

Avec I’étape précédente, cela montre que Tr, 4 = Ty 4 et leur valeur commune est donc

un isomorphisme _
X, v, ki Hi- n(Y) = Hi (X, X\Y)

intrinséque au couple (X, Y) qui est I’isomorphisme de Leray (A.7).

Remarquons que ce qui précede montre aussi que les classes d’orientation cohomo-
logiques déduites des orientations de Y et X pour les différents voisinages tubulaires de classe
C* de Y dans X sont les restrictions d’un méme générateur Z € HV (X, X\'Y) auquel elles
correspondent par excision. Remarquons, d’autre part, que ’orientation d’un voisinage
tubulaire 7 de Y dans X, déduite des orientations de Y et X, donne une orientation du fibré
normal de Y relativement a X grice a ’isomorphisme canonique de 7. (n}l( y)) avec
T,X/T,Y pour y € Y: la cohérence locale des orientations des 7, X/7,Y est assurée par
celle des T (nT (»)). Mais n’importe quel autre supplémentaire de T,Y dans T, X, orienté
de maniere compatible avec 7)Y et T, X, donne la méme orientation sur 7, X/T,Y. Cette
orientation du fibré normal ne dépend donc pas du voisinage tubulaire 7 choisi comme
intermédiaire et nous dirons que c’est [’orientation du fibré normal de Y relativement a
X déduite des orientations de Y et X. Le générateur Z est done en fait déterminé par
cette orientation du fibré normal.

Nous en venons maintenant a la question de la naturalité de I’isomorphisme de Leray,
qui n’a évidemment de sens que grice a son caractére intrinséque. Soit donc (X, Y) un couple
satisfaisant comme ci-dessus aux conditions de validité de I’isomorphisme de Leray (A.7).
Supposons que X" soit une sous-variété orientée fermée de X transverse a Y dans X et posons
Y’ = X' n Y. Constatons alors, qu’en raison de I’hypothése de transversalité, Y’ est une
sous-variété fermée de codimension pure N dans X'. Constatons aussi que X’ est séparée
paracompacte puisque, nous ’avons vu, cette propriété se transmet de X a ses sous-variétés.
Il ne manque donc qu’une orientation sur Y’ pour que le couple (X', Y’) satisfasse aux
conditions de validité de I'isomorphisme de Leray. Nous allons voir que Y” peut effectivement
€tre orientée et que, si on le fait de maniére convenable, I’isomorphisme de Leray pour le
couple (X”, Y') se comporte naturellement par rapport a I’isomorphisme de Leray pour le
couple (X, Y). Pour cela, le choix de I’orientation sur Y’ doit &tre tel que les orientations

de Y’ et X' satisfassent vis-a-vis des orientations de Y et X a une condition de cohérence
naturelle:
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Cette condition porte sur les-orientations des fibrés normaux ./ de Y’ relativement a
X’ et ./ de Y relativement a X. Une orientation de Y’ déterminerait, nous I’avons vu, une
orientation de .4 en tant que fibré, déduite des orientations de Y’ et X'. Nous avons, par
ailleurs, une orientation de .# déduite de celles de Y et X. Or ./’ peut aussi étre retrouvé
comme fibré induit par .# au-dessus de Y’. Cela est possible grice a la transversalité de X’
a Y dans X qui permet une identification canonique de ./’ a ce fibré induit. Cette trans-
versalité implique, en effet, les égalités

Ty X' + T, Y=TyX; T,Y =TyX nTyY pour y €Y’

et les fibres au-dessus de y” de ./’ et .4 sont alors respectivement 7y X" /Ty, X" N Tyr Y
et T)» X/Ty Y qui s’identifient canoniquement en passant au quotient dans I’injection

canonique de 7Ty+ X' dans T,- X. Cette identification canonique de ./”" au fibré induit par

.7 au-dessus de Y’ donne une seconde orientation de ./ obtenue en y transportant celle

de . 7. La condition de cohérence qu’on peut alors naturellement exiger est que les deux orien-

tations en question sur ./ coincident. Mais il est foujours possible d’orienter Y’ de facon

a satisfaire a cette condition de cohérence. En effet, on commence par orienter ./’ de la

seconde maniére, grace a ’orientation de .#. On peut ensuite obtenir, a partir des orientations |
de .7’ comme fibré et de X' comme variété, une orientation du fibré tangent de Y’ par la

procédure inverse de celle qui nous a permis, ci-dessus, d’orienter un fibré normal a partir

des orientations des variétés constitutives. On aboutit ainsi a une orientation de Y’ qui satisfait

- a la condition de cohérence voulue et qui est la seule a pouvoir la satisfaire. Nous munissons

donc Y’ de cette orientation bien déterminée dont nous dirons que c’est /’orientation de Y’

qui est cohérente avec celle de X' par rapport a celles de Y et X.

T, X

FIGURE A.1
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On peut donner une description géométrique assez simple de 1’orientation qui en résulte
pour les espaces tangents 7,/ Y’: Soit K un supplémentaire de T, Y’ dans T, X'
(cf. fig. A.1). C’est aussi un supplémentaire de T, Y dans 7y X. Les orientations de 7+ Y
et Ty» X déterminent, par compatibilité, une orientation de K et alors, les orientations de K
et T,» X' déterminent I’orientation voulue sur 7, Y".

Sous les hypotheses faites concernant X’ et avec I’orientation sur Y’ = X' n Y définie
ci-dessus, I’isomorphisme de Leray tx- y, x pour le couple (X', Y’) se comporte
naturellement par rapport a I’isomorphisme de Leray tx, v, ¢ pour le couple (X, Y), ce qui
veut dire que le diagramme suivant, ou les fléches verticales sont induites par inclusion, est
commutatif:

X,Y, k
H _n(Y) = Hi (X, X\Y)
(A.9) 1 G 1
X', Y, k

Hj - n(Y7) = Hi (X', X'\Y')

Avant d’esquisser une justification de cette propriété, notons que le point (il) du
lemme 5.5 en donne bien des conditions suffisantes de validité. Autrement dit, si (X, Y) est
un couple composé d’une variété analytique complexe séparée paracompacte et d’une sous-
variété fermée de codimension pure (pas forcément égale a 1) et si (X', Y’) est un autre couple
formé d’une sous-variété fermée de X transverse & Y dans X et de son intersection avec Y,
alors les variétés réelles canoniquement orientées sous-jacentes vérifient les hypotheses
formulées ci-dessus pour la validité de (A.9). Pour voir cela, commengons par remarquer que
les espaces tangents aux variétés réelles sous-jacentes sont les espaces vectoriels réels sous-
jacents aux espaces tangents complexes. La transversalité de X a Y au sens complexe est donc
équivalente a sa transversalité au sens réel. Il reste maintenant a s’assurer que les orientations
canoniques de 'Y’ et X’ satisfont bien & la condition de cohérence voulue vis-a-vis des
orientations canoniques de Y et X. Or ce que nous avons dit sur les espaces tangents implique
aussi que .7 et ../’ (avec les notations ci-dessus) sont les fibrés réels sous-jacents aux fibrés
normaux complexes. Ils ont donc une orientation canonique en tant que fibrés qui induit sur
chaque fibre son orientation canonique. Mais ces orientations de ./ et ./’ sont précisément
celles que. nous avons dit étre déduites des orientations canoniques de Y et X d’une part et
de Y’ et X' d’autre part. En effet, nous avons vu que pour orienter de cette maniére une
fibre 7,X/T,Y de ./, par exemple, on pouvait se servir de n’importe quel supplémentaire
Fy de T,Y dans T),X qu’on orientait de maniére compatible avec 7)Y et T,.X. Mais si ’on
choisit pour F) un supplémentaire de 7, Y pour les structures d’espaces vectoriels complexes,
c’est son orientation canonique qui est compatible avec celles de 7,Y et T,X. L’isomor-
phisme par lequel on la transporte a 7,X/7,Y étant aussi un isomorphisme d’espaces
vectoriels complexes, on aboutit biem a I’orientation canonique de 7,X/T,Y. Il nous reste
maintenant a voir que ’orientation canonique de ./’ est la méme que celle qu’on obtient
en y transportant I’orientation canonique de ./ au moyen de I’identification de .4 au fibré
induit par ./ au-dessus de Y’. Mais cela est bien le cas car cette identification, que nous

avons explicitée, se fait au moyen d’un isomorphisme canonique des fibres valable aussi pour
les structures complexes.
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La propriété de naturalité que nous avons énoncée en (A.9) résulte de deux faits essentiels.
En premier lieu, I’isomorphisme de Thom (A.8) pour le fibré orienté my:| T|— Y se
comporte naturellement par rapport aux fibrés orientés induits au-dessus de sous-ensembles
de la base: cela est une conséquence immédiate de la naturalité du produit-chapeau. En second
lieu, nous verrons qu’on peut choisir un voisinage tubulaire 7 de classe C® de Y dans X
qui soit en bonne position par rapport a4 X'. «En bonne position» signifie que
T l(Y’) C X', ce qui permet d’avoir un voisinage tubulaire 7* de classe C* de Y’ dans X’
tel que 7t Ly = | " | et tel que m7 coincide avec mys sur| T |. Avec cette configuration,
en effet, my :|T"|—= Y est le fibré induit au-dessus Y’ par 7my:| T|— Y. De plus,
’orientation de m7- :| T"|— Y’ (déduite des orientations de Y’ et X’) est bien induite par
’orientation de m7:| T |—= Y (déduite de celles de Y et X). Cela résulte de la condition de
cohérence entre les orientations des fibrés normaux de Y’ relativement a X’ et de Y
relativement a X que nous avons formulée plus haut et en vue de laquelle nous avons
précisément choisi I’orientation de Y’. On peut, dans ces conditions, utiliser la naturalité de
I’isomorphisme de Thom et en déduire la naturalité de ’isomorphisme de Leray. Il nous reste
a justifier la possibilité de choisir T en «bonne position».

Pour que 7 soit en bonne position par rapport a X, il suffit qu’il soit «compatible» avec
une rétraction r d’un voisinage ouvert Q de Y dans X telle que r~1(Y’) C X', cette’
compatibilité voulant dire que | 7| C Q et que r est constante sur les fibres de m (en fait
nr est alors égale a r]| 71). Or, étant donnée une application de classe C* définie sur Q et
dont la restriction a Y est submersive, I’existence d’un voisinage tubulaire de classe C* de
Y dans Q compatible avec cette application est assurée par le théoréme fort d’existence de
voisinages tubulaires de Mather (cf. [Ma] proposition 6.2; ’assertion de compatibilité a été
oubliée dans I’énoncé mais peut étre restituée d’apres la démonstration). On est donc ramené
a ’existence d’une rétraction de classe C*® qui soit comme la rétraction r ci-dessus.

Il est assez délicat d’établir cette existence: cela est clair localement grice a la transversa-
lité¢ de X’ a Y dans X mais il y a des difficultés de recollement; la chose n’est d’ailleurs pas
possible si on ne suppose pas X' fermée. Disons seulement qu’en se limitant a une composante
connexe de X, on peut recouvrir Y par une famille dénombrable d’ouverts de cartes de X
sur lesquels des rétractions convenables ont été¢ définies (rappelons que X a été supposée
paracompacte). Numérotant alors ces ouverts, on part du premier d’entre eux avec la rétrac-
tion qu’il porte et on prolonge celle-ci de proche en proche: les ajustements successifs se font
au moyen d’une partition de 1’unité dans un espace R” contenant I’image des cartes.
Plusieurs zones de sauvegarde embofitées sont nécessaires pour éviter les conflits et empécher
d’avoir dans r ~ 1(Y”) des éléments étrangers & X'; on n’obtient la rétraction voulue que dans
une région entourant Y plus étroite que celle constituée par les ouverts de départ; il faut
d’ailleurs avoir prévu un tel recouvrement ouvert plus étroit de Y dés le début. Nous ne
pouvons en dire davantage ici. L’existence de la rétraction r était le dernier élément de la
justification de la naturalité de ’isomorphisme de Leray sous les hypothéses faites.

Nous passons enfin & la propriété qu’a I’isomorphisme de Leray de se réduire a un
produit-croix dans le cas trivial. Supposons donc que X = V X Wou Vet W sont des variétés
réelles de classe C® séparées paracompactes orientées et que Y = V X {wgy} avec wy € W.
Alors, comme nous ’avons vu dans la démonstration du point (i) du lemme 5.5, V' X W est
aussi séparée paracompacte et on peut orienter X par I’orientation produit de celles de V et
W. D’autre part, Y est bien une sous-variété fermée de X de codimension pure N = dim W
et on peut ’orienter par son identification canonique avec V. Le couple (X, Y) satisfait donc
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aux hypothéses de validité de ’isomorphisme de Leray (A.7). Mais dans ce cas trivial, il se
réduit a la formule

(A.10) T w,vx wo, k(@) =2Xx 4 pour ze He_n(V),

ou z# correspond a z dans l’isomorphisme induit en homologie par !’identification
canonique de V' a V x {wp} et ou u est le générateur de Hy(W, W\{wy}) compatible avec
Iorientation de W.

Avant de justifier cette formule, constatons que la condition (iii) du lemme 5.5 en donne
bien des conditions suffisantes de validité. En effet, si V" et W sont des variétés analytiques
complexes séparées paracompactes, on peut considérer leurs variétés réelles de classe C*
canoniquement orientées sous-jacentes ainsi que celles de V' x Wet V X {wp}. Alors I’orien-
tation canonique de V' X W est bien le produit des orientations canoniques de V et W et
orientation canonique de V' X {wy} est bien celle qui est obtenue par identification a V.

La formule (A.10) a pour origine le fait que, dans ce cas trivial, on peut tirer parti de
Pindépendance de l’isomorphisme de Leray par rapport au voisinage tubulaire 7" choisi
comme intermédiaire pour en prendre un de forme triviale. «De forme triviale» veut dire que
| T|= ¥V x D ol D est une N-boule ouverte de W centrée en wy et que n(v, w) = (v, wp)
pour (v, w) € V X D. Les fibres de my sont alors de la forme {v} X D et I’orientation de 7,
déduite de celles de Y et X, est donnée par I’orientation induite sur D par W. La classe d’orien-
tation cohomologique de 7 déduite des orientations de Y et X est alors ZT =1 x (_/D ou
leH O(V) est la classe du cocycle singulier de V prenant la valeur 1 sur tous les 0-simplexes
de Vet (_]D est le générateur de HV(D, D\{wy}) compatible avec ’orientation de D. Nous
allons voir qu’on peut en déduire la formule suivante concernant I’isomorphisme de Thom
pour ce voisinage tubulaire trivial:

(O1,0) '@*)=zXup vpour zeH,_ nV),

ou z# € Hy _ ny(V X {wp}) correspond a z dans I'isomorphisme induit par ’identification
canonique de V'a V' X {wy} et ol up est le générateur de H, (D, D\{wy}) compatible avec
’orientation de D. En effet, on a, d’une part,

#

2% =72 X Wy,

ol Wy est la classe d’homologie de I'unique 0-simplexe singulier de {wy} (cf. [Sp] 5.3.12) et,
d’autre part, d’aprés la formule (A.8),

0T, k(2 X up) = (TCT)A'—N((/I\ X Up) ~ (z X up))
avec
(A x Up)~ (z X tip) = (= DOV-MA < 2) x (Up ~ iip) = 2z x iy,

ol wy est la classe d’homologie du O-simplexe singulier de D d’image wo (cf. [Sp] 5.6.21,
5.6.17 et 5.6.19; nous adoptons les conventions de signe de [Sp] pour le produit-chapeau).
Et, vu la forme triviale de 7, on a bien

M)k - N(Z X Wo) = z X Wy

par naturalit¢ du produit-croix. Cela montre la formule annoncée concernant (¢7 ) ~! pour

un tel voisinage tubulaire 7. Il n’y a plus alors qu’a utiliser la naturalité du produit-croix
pour obtenir la formule (A.10).
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