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386 D. CHENIOT

un théoreme du type de Lefschetz valable pour une variété quasi-projective
lisse générale et qui prenne en compte la codimension de A dans X. En effet,
une fois qu’on est descendu en dimension jusqu’a ce que la trace de A soit
vide ou réduite a un nombre fini de points, on se retrouve devant les
particularités topologiques de X lui-méme alors que, pour X = P"(C), on se
retrouvait dans la situation simple d’un espace projectif. Voir la remarque 9.5
pour plus de détails et voir aussi (12.2).

12. DIRECTIONS DE RECHERCHE

Le cadre geometrique développé dans cet article permet vraisemblablement
d’aborder quelques autres problémes que voici. En particulier, je peux déja
annoncer une généralisation du second théoréme de Lefschetz (cf. (12.3)).

(12.1) Sections par des hypersurfaces au lieu de sections hyperplanes.

Au lieu de considérer, comme dans les théorémes 1.3 et 11.1, un pinceau
d’hyperplans dans P"(C), on peut considérer un systeme linéaire a un
parametre d’hypersurfaces de degré d > 1. Le morphisme de Véronese v de
degré d (cf. [La] 1.3) permet de plonger P”(C) dans PV(C) de telle sorte
qu’un tel systéme d’hypersurfaces soit transformé en les sections de v(P”(C))
par un pinceau d’hyperplans de PV(C). On doit pouvoir obtenir une
extension des théorémes 1.3 et 11.1 a ces systémes a un parametre d’hyper-
surfaces en appliquant le théoréme 11.1 au pinceau d’hyperplans corres-
pondant dans P™(C). Mais interviendront alors, en plus, les points de
tangence d’éléments de ce pinceau avec v(P”(C)); ces éléments exceptionnels
correspondront a des hypersurfaces du systeme lin€aire présentant des
singularités. On devrait toutefois pouvoir en déduire, en raisonnant comme
dans la démonstration du théoréme 11.2 que nous avons donnée, que le
théoréeme 1.1 est aussi valable pour la section de P"(C)\A par une hyper-
surface lisse transverse aux strates d’une stratification de Whitney de A.

(12.2) Extension du théoreme 1.1 a certaines variétés quasi-projectives
particulieres.

Nous avons vu pourquoi le théoreme 1.1 ne pouvait €tre généralisé au cas
ou ’espace ambiant P”(C) est remplaceé par un ensemble algébrique fermé X
de P7(C), méme en supposant X\ A lisse (cf. remarques 11.4 et 9.5). On peut
toutefois se demander s’il y a des classes significatives de X pour lesquelles
il est valable. D’apres (12.1), il y aurait en tout cas les variétés de Véronése.
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(12.3) Cycles évanescents et cycles invariants.

Dans la situation des théorémes 1.3 et 11.1, c’est-a-dire celle d’un pinceau
générique de sections hyperplanes d’une variété quasi-projective X\ A4, on peut
considérer les cycles évanescents et les cycles invariants de la section de X\A
par un hyperplan générique & du pinceau. Les cycles évanescents au voisinage
d’un hyperplan exceptionnel &; sont ceux qui deviennent homologues a 0
quand & tend vers Z;. Les cycles invariants au voisinage de <, sont ceux
qui sont & homologie prés invariants lors d’une monodromie autour de Z.
On appelle cycles évanescents ceux qui sont engendrés par les cycles
évanescents au voisinage de chacun des Z; et cycles invariants ceux qui sont
invariants au voisinage de tous. Lefschetz les étudie longuement aux
chapitres II, III et V de [Lf] dans le cas ot 4 = & et ol X est projection
générique d’une variété projective lisse (voir [La] pour une traduction en
langage moderne; Lefschetz dit «évanouissant» au lieu d’«évanescent»). C’est
sur ces cycles que portent le «second» théoreme de Lefschetz et le théoreme
de Lefschetz «vache».

Dans la description géométrique que nous avons donnée aux §§3 a 8, ces
cycles apparaissent comme suit: Reprenons les notations de ces paragraphes
telles qu’elles sont résumées dans la fi'gure 3.2, avec éventuellement 1’adap-
tation (11.1.4) & la situation du théoréme 11.1. Il nous faut admettre parmi
les hyperplans exceptionnels un «bon» hyperplan ¥, comme nous l’avons
fait dans la démonstration du lemme 8.7. On peut alors, en (4.1), choisir
comme bouquet de cercles B sur lequel P1(C)\{A, ..., Ay, Ao} S€ rétracte par
déformation, un bouquet composé de s cercles C; entourant chacun de pres
un seul des A; correspondant aux hyperplans vraiment «mauvais». Dans ces
conditions, si I’on décompose H;(PL) en somme directe des H,(C), les
classes d’homologie des k-cycles invariants au voisinage de chaque & sont
données par le noyau de la restriction correspondante de I’homomorphisme
Ex+1 qui apparait dans le corollaire 4.23: cela résulte des formules (4.25.1).
D’autre part, si D; est le disque délimité par C; dans P!(C)\{A.}, les classes
des k-cycles évanescents au voisinage de &; forment, a I’isomorphisme de L #
avec L prés, le noyau de I’homomorphisme naturel H,(L*) — H,(p ~1(D;)).
Celle~s des cycles évanescents tout court forment le noyau de Hy(L*)—
H.(P\LY).

Je crois pouvoir démontrer, en utilisant ce cadre géométrique, que le
«second théoreme de Lefschetz» peut &tre généralisé aux situations des
théorémes 1.1 et 11.2. Ce second théoréme compléte le théoréme classique sur
les sections hyperplanes en identifiant le noyau du premier homomorphisme
dont on n’affirme pas la bijectivité comme étant formé des cycles évanescents.
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Une démonstration complete en a été donnée dans le cas des sections d’une
variété projective lisse par Wallace au moyen de méthodes proches de Lefschetz
(cf. [Wa]) et par Andreotti et Frankel au moyen de la théorie de Morse
(cf. [A-F2]). Je pense donc pouvoir I’étendre au cas d’une variété quasi-
projective lisse et, d’autre part, a celui du complémentaire d’un ensemble
algébrique fermé avec prise en compte de sa codimension, c’est-a-dire pour
I’homomorphisme de rang n + g — 2. Cela fera I’objet d’une prochaine
publication.

(12.4) Relation entre sections génériques et sections exceptionnelles.

Avec les hypotheéses et notations du théoréme 1.3, on a la relation

S
(12.4.1) si my_, est surjectif, alors Kermy_, D 'ﬂl Ker m),_, .
d=
Pour voir cela, on constate que, si my _ est surjectif, on a, avec les notations des §§3 a 8,
Im (iy ©j,) = Im i, . Cette égalité signifie, en effet, que iy O j; considérée comme prenant
ses valeurs dans Im #; est surjective, donc est équivalente, d’aprés le lemme 7.4, a la rela-
tion (7.6.1) qui a été prouvée dans la démonstration du lemme 7.6 sous I’hypothese de
surjectivité de my _ ;. Si ’on ajoute alors, comme dans la démonstration du lemme 8.7, un
«bony» hyperplan &, distinct de & aux hyperplans «mauvais», on a, avec les notations de
cette démonstration, Im i} = Im i, car Im (i, ©j;) C Im i} C Im i, puisque j se factorise a

travers ﬁ**. Mais, d’apres la démonstration du lemme 8.6, on a, d’autre part,
s .
Imoy N Imiy = o, (N Kerm, _,)
i=1

et aussi, en raisonnant comme dans la démonstration du lemme 8.7

Il

s .
Imo, N Imi} = o Kerm;_, 0 N Kermy_,)
i=1

i
1Kelrmk_z) .

ck(Kermk_z N

njc,)|

i

On obtient donc, compte tenu de I’injectivité de o, donnée par la proposition 6.8,
S ) N .
Ker my _5 N _ﬁl Kerm, , = .ﬁl Kerm) _,,
= 1=

ce qui prouve I’assertion (12.4.1). []

On a une assertion analogue dans la situation du théoréme 11.1 avec les
m;'_, 4 la place des m/ _,. Ces assertions n’ont sans doute pas grand intérét
si ce n’est de montrer que, quand on prend les sections par les hyperplans d’un
pinceau générique, il y a un lien entre la topologie de la section générique et
~ celle des sections exceptionnelles. Il faudrait rechercher d’autres relations, plus
~ significatives que (12.4.1).
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(12.5) Homotopie au lieu d’homologie.

1l serait bon d’avoir un analogue homotopique des théorémes 1.3 et 11.1.
On en déduirait en particulier la version homotopique du théoréeme 1.1, c’est-,
a-dire qu’on aurait une démonstration directe du corollaire 1.2 valable sans
restriction sur la codimension g.

 Un premier pas dans cette direction est fait dans [Ch1]. On y met en effet
en place le méme cadre géométrique qu’au §3 ci-dessus pour démontrer le
théoréme de Zariski dont nous avons parlé dans I’introduction et qui porte,
lui, sur le groupe fondamental. Au moment crucial de la réintroduction des
hyperplans mauvais, le role joué ici par I'isomorphisme de Leray est rempli
par la possibilité de faire glisser jusque dans la transformée totale de ’axe de
petits lacets entourant les hyperplans mauvais (cf. [Chl] lemme (4.2.3)). 1l
s’agirait donc, pour atteindre notre objectif, de géneraliser cette facon de faire
a des cellules de dimension supérieure.

(12.6) Variétés quasi-projectives avec singularités.

On peut se poser la question de ce qu’il en est du théoréme 11.1 lorsqu’on
ne suppose plus X\ A4 lisse. C’est sans doute dans le cadre homotopique evoqué
en (12.5) que cette généralisation peut se faire. Elle serait assortie de
restrictions concernant les singularités de 1’espace ambiant X exprimées en
termes d’obstacles au glissement de cellules le long des hyperplans mauvais.
La mesure, de ce point de vue, de 'importance des singularités de X serait peut-
étre reliée a la profondeur homotopique rectifiée grace au théoreme 4.1.1 de
[H-L4].

(12.7) Théoremes locaux.

On doit pouvoir obtenir, avec les méthodes utilisées dans cet article, des
analogues des théorémes 1.3 et 11.1 pour le complémentaire d’un ensemble
analytique fermé ou pour la différence de deux ensembles analytiques fermés
passant par 1’origine dans un voisinage suffisamment petit de 1’origine dans
C”. Il conviendra, dans ce cas, de prendre pour axe du pinceau un (n — 2)-
plan affine ne passant pas par 1’origine mais légerement a c6té, a la manieére
des «théoremes locaux forts» de Hamm et L€ (cf. [H-L1], [H-L3] et [H-L4]).
La difficulté, pour avoir une proposition de fibration, consistera a pouvoir
disposer d’une projection propre en se plagant dans un voisinage fermé de
’origine dont le bord soit convenablement adapté aux ensembles analytiques
considérés. Pour pouvoir ensuite en déduire des analogues des théorémes 1.1
et 11.2, il faudra aussi prendre garde de conserver des conditions d’incidence
que nous avons ici déduites de propriétés globales de 1’espace projectif
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(notamment dans le point (ii) du lemme 9.2). Enfin, "utilisation d’un pinceau
d’axe ne passant pas par 1’origine donnera une situation qui n’est pas purement
locale mais seulement semi-locale qu’il faudra donc traiter soigneusement.

ANNEXE

ISOMORPHISME DE WANG .ET ISOMORPHISME DE LERAY

Dans cette annexe, nous donnons une justification sommaire de ’existence et des
propriétés des isomorphismes de Wang et de Leray que nous avons utilisés aux §§4 et 5.

1°. ISOMORPHISME DE WANG

Hsien-Chung Wang a donné pour tout fibré localement trivial sur une g-sphére des iso-
morphismes reliant ’homologie relative de I’espace total modulo une fibre a I’homologie de
cette fibre (cf. [Wg]). Nous nous contenterons ici du cas particulier ¢ = 1. Soit donc

n.:FE—C

un fibré localement trivial topologique sur un cercle. Soit ¢ € C et posons
E.=7n"Y0).

Fixons une orientation de C. On a alors, pour tout k, I’isomorphisme de Wang

(A.1) VE, k: Hi - 1(Ec) = Hy(E, E;)

associé a cette orientation de C et portant sur les groupes d’homologie singuliére a coefficients
entiers, avec la convention Hy _(E;) = 0 pour k£ < 1. Nous allons indiquer comment on
peut définir vg 4, mais en méme temps nous montrerons que ’isomorphisme de Wang se
comporte naturellement par rapport aux sous-fibrés (au sens que nous avons précisé a la fin
du §3), c’est-a-dire que, si £’ est un sous-fibré de E avec E. comme fibre au-dessus de c,
I'isomorphisme vg' g le concernant (pour la méme orientation de C) fait commuter le
diagramme

m
>

V ’

Hy _1(E;) > Hy(E ,E.)
(A2) i G 1
VE' k
Hy _((E) = Hy(E', E})

ou les fleches verticales sont induites par inclusion.

Ce que nous allons faire ressemble a [La] 6.4 et correspond d’autre part a la description
‘informelle que nous avons donnée au §4 (cf. fig. 4.1). Soit w: [0, 1] = C un lacet basé en
c et dont la classe d’homotopie engendre 7 (C, ¢). L’espace topologique E peut étre obtenu
a partir de E, X [0, 1] en recollant E. X {1} a E. X {0} au moyen d’un homéomorphisme
_caractéristique. Plus précisément, si w* est un lacet simple de C homotope & w, on peut, en
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