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386 D. CHÉNIOT

un théorème du type de Lefschetz valable pour une variété quasi-projective
lisse générale et qui prenne en compte la codimension de A dans X. En effet,
une fois qu'on est descendu en dimension jusqu'à ce que la trace de A soit
vide ou réduite à un nombre fini de points, on se retrouve devant les

particularités topologiques de X lui-même alors que, pour X P"(C), on se

retrouvait dans la situation simple d'un espace projectif. Voir la remarque 9.5

pour plus de détails et voir aussi (12.2).

12. Directions de recherche

Le cadre géométrique développé dans cet article permet vraisemblablement
d'aborder quelques autres problèmes que voici. En particulier, je peux déjà
annoncer une généralisation du second théorème de Lefschetz (cf. (12.3)).

(12.1) Sections par des hypersurfaces au lieu de sections hyperplanes.

Au lieu de considérer, comme dans les théorèmes 1.3 et 11.1, un pinceau

d'hyperplans dans P"(C), on peut considérer un système linéaire à un
paramètre d'hypersurfaces de degré d > 1. Le morphisme de Véronèse v de

degré d (cf. [La] 1.3) permet de plonger P"(C) dans PN(C) de telle sorte

qu'un tel système d'hypersurfaces soit transformé en les sections de

par un pinceau d'hyperplans de PN(C). On doit pouvoir obtenir une
extension des théorèmes 1.3 et 11.1 à ces systèmes à un paramètre d'hypersurfaces

en appliquant le théorème 11.1 au pinceau d'hyperplans
correspondant dans PN(C). Mais interviendront alors, en plus, les points de

tangence d'éléments de ce pinceau avec ces éléments exceptionnels

correspondront à des hypersurfaces du système linéaire présentant des

singularités. On devrait toutefois pouvoir en déduire, en raisonnant comme
dans la démonstration du théorème 11.2 que nous avons donnée, que le

théorème 1.1 est aussi valable pour la section de P"(C)\4 par une hyper-
surface lisse transverse aux strates d'une stratification de Whitney de A.

(12.2) Extension du théorème 1.1 à certaines variétés quasi-projectives
particulières.

Nous avons vu pourquoi le théorème 1.1 ne pouvait être généralisé au cas

où l'espace ambiant P"(C) est remplacé par un ensemble algébrique fermé X
de P"(C), même en supposant X\A lisse (cf. remarques 11.4 et 9.5). On peut
toutefois se demander s'il y a des classes significatives de X pour lesquelles

il est valable. D'après (12.1), il y aurait en tout cas les variétés de Véronèse.
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(12.3) Cycles évanescents et cycles invariants.

Dans la situation des théorèmes 1.3 et 11.1, c'est-à-dire celle d'un pinceau

générique de sections hyperplanes d'une variété quasi-projective X\A, on peut

considérer les cycles évanescents et les cycles invariants de la section de X\A
par un hyperplan générique 2" du pinceau. Les cycles évanescents au voisinage

d'un hyperplan exceptionnel «2/ sont ceux qui deviennent homologues à 0

quand 2 tend vers 2J. Les cycles invariants au voisinage de 2/ sont ceux

qui sont à homologie près invariants lors d'une monodromie autour de

On appelle cycles évanescents ceux qui sont engendrés par les cycles

évanescents au voisinage de chacun des 2/ et cycles invariants ceux qui sont

invariants au voisinage de tous. Lefschetz les étudie longuement aux

chapitres II, III et V de [Lf] dans le cas où A — 0 et où X est projection

générique d'une variété projective lisse (voir [La] pour une traduction en

langage modprne; Lefschetz dit «évanouissant» au lieu d'«évanescent»). C'est

sur ces cycles que portent le «second» théorème de Lefschetz et le théorème

de Lefschetz «vache».

Dans la description géométrique que nous avons donnée aux §§3 à 8, ces

cycles apparaissent comme suit: Reprenons les notations de ces paragraphes
telles qu'elles sont résumées dans la figure 3.2, avec éventuellement l'adaptation

(11.1.4) à la situation du théorème 11.1. Il nous faut admettre parmi
les hyperplans exceptionnels un «bon» hyperplan 2L comme nous l'avons
fait dans la démonstration du lemme 8.7. On peut alors, en (4.1), choisir

comme bouquet de cercles B sur lequel P1(C)\{Xi, XS9 tao} se rétracte par
déformation, un bouquet composé de s cercles C, entourant chacun de près

un seul des correspondant aux hyperplans vraiment «mauvais». Dans ces

conditions, si l'on décompose /^(P*) en somme directe des //i(C;), les

classes d'homologie des ^-cycles invariants au voisinage de chaque 2/ sont
données par le noyau de la restriction correspondante de l'homomorphisme
Çfc+i qui apparaît dans le corollaire 4.23: cela résulte des formules (4.25.1).
D'autre part, si A est le disque délimité par Ct dans PHQXjX^}, les classes

des k-cycles évanescents au voisinage de 2^ forment, à l'isomorphisme de L *
avec L près, le noyau de l'homomorphisme naturel Hk(L*) - Hk(p _1(A)).
Celles des cycles évanescents tout court forment le noyau de Hk(L*) ->

Hk{P\Lt).
Je crois pouvoir démontrer, en utilisant ce cadre géométrique, que le

«second théorème de Lefschetz» peut être généralisé aux situations des

théorèmes 1.1 et 11.2. Ce second théorème complète le théorème classique sur
les sections hyperplanes en identifiant le noyau du premier homomorphisme
dont on n'affirme pas la bijectivité comme étant formé des cycles évanescents.
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Une démonstration complète en a été donnée dans le cas des sections d'une
variété projective lisse par Wallace au moyen de méthodes proches de Lefschetz

(cf. [Wa]) et par Andreotti et Frankel au moyen de la théorie de Morse

(cf. [A-F2]). Je pense donc pouvoir l'étendre au cas d'une variété quasi-

projective lisse et, d'autre part, à celui du complémentaire d'un ensemble

algébrique fermé avec prise en compte de sa codimension, c'est-à-dire pour
l'homomorphisme de rang n + q - 2. Cela fera l'objet d'une prochaine

publication.

(12.4) Relation entre sections génériques et sections exceptionnelles.

Avec les hypothèses et notations du théorème 1.3, on a la relation
s

(12.4.1) si mk_ j est surjectif, alors Kermk_2 D C Ker m'k_2
i i

Pour voir cela, on constate que, si mk-\ est surjectif, on a, avec les notations des §§3 à 8,

Im (ik o jk) Im ik Cette égalité signifie, en effet, que ik ° jk considérée comme prenant
ses valeurs dans Im ik est surjective, donc est équivalente, d'après le lemme 7.4, à la relation

(7.6.1) qui a été prouvée dans la démonstration du lemme 7.6 sous l'hypothèse de

surjectivité de mk _ \. Si l'on ajoute alors, comme dans la démonstration du lemme 8.7, un
«bon» hyperplan œ distinct de 9? aux hyperplans «mauvais», on a, avec les notations de

cette démonstration, Im /| Im ik car Im(/^o jk) c Im /| C Im ik puisque j se factorise à

travers PMais, d'après la démonstration du lemme 8.6, on a, d'autre part,
5

Im ak n Im ik ok Pi Ker mlk_2)
i 1

et aussi, en raisonnant comme dans la démonstration du lemme 8.7

Im ok n Im /J ok (Ker m_2 n n Kerm^_2)
/ i

5

<5k (Ker mk_2 n Pi Kerm^_2).
i 1

On obtient donc, compte tenu de l'injectivité de ok donnée par la proposition 6.8,s.S.Ker%_2 ^ Ker mlk_2= P Ker m'k_2,
i 1 / 1

ce qui prouve l'assertion (12.4.1). CH

On a une assertion analogue dans la situation du théorème 11.1 avec les

m'k_2 à la place des m'k_2. Ces assertions n'ont sans doute pas grand intérêt
si ce n'est de montrer que, quand on prend les sections par les hyperplans d'un
pinceau générique, il y a un lien entre la topologie de la section générique et

celle des sections exceptionnelles. Il faudrait rechercher d'autres relations, plus

significatives que (12.4.1).
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(12.5) Homotopie au lieu d'homologie.

Il serait bon d'avoir un analogue homotopique des théorèmes 1.3 et 11.1.

On en déduirait en particulier la version homotopique du théorème 1.1, c est-

à-dire qu'on aurait une démonstration directe du corollaire 1.2 valable sans

restriction sur la codimension q.

Un premier pas dans cette direction est fait dans [Chi]. On y met en effet

en place le même cadre géométrique qu'au §3 ci-dessus pour démontrer le

théorème de Zariski dont nous avons parlé dans l'introduction et qui porte,

lui, sur le groupe fondamental. Au moment crucial de la réintroduction des

hyperplans mauvais, le rôle joué ici par l'isomorphisme de Leray est rempli

par la possibilité de faire glisser jusque dans la transformée totale de l'axe de

petits lacets entourant les hyperplans mauvais (cf. [Chi] lemme (4.2.3)). Il

s'agirait donc, pour atteindre notre objectif, de généraliser cette façon de faire

à des cellules de dimension supérieure.

(12.6) Variétés quasi-projectives avec singularités.

On peut se poser la question de ce qu'il en est du théorème 11.1 lorsqu'on

ne suppose plus X\A lisse. C'est sans doute dans le cadre homotopique évoqué

en (12.5) que cette généralisation peut se faire. Elle serait assortie de

restrictions concernant les singularités de l'espace ambiant X exprimées en

termes d'obstacles au glissement de cellules le long des hyperplans mauvais.

La mesure, de ce point de vue, de l'importance des singularités de X serait peut-
être reliée à la profondeur homotopique rectifiée grâce au théorème 4.1.1 de

[H-L4].

(12.7) Théorèmes locaux.

On doit pouvoir obtenir, avec les méthodes utilisées dans cet article, des

analogues des théorèmes 1.3 et 11.1 pour le complémentaire d'un ensemble

analytique fermé ou pour la différence de deux ensembles analytiques fermés

passant par l'origine dans un voisinage suffisamment petit de l'origine dans

C". Il conviendra, dans ce cas, de prendre pour axe du pinceau un (n-2)-
plan affine ne passant pas par l'origine mais légèrement à côté, à la manière
des «théorèmes locaux forts» de Hamm et Lê (cf. [H-Ll], [H-L3] et [H-L4]).
La difficulté, pour avoir une proposition de fibration, consistera à pouvoir
disposer d'une projection propre en se plaçant dans un voisinage fermé de

l'origine dont le bord soit convenablement adapté aux ensembles analytiques
considérés. Pour pouvoir ensuite en déduire des analogues des théorèmes 1.1

et 11.2, il faudra aussi prendre garde de conserver des conditions d'incidence
que nous avons ici déduites de propriétés globales de l'espace projectif
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(notamment dans le point (ii) du lemme 9.2). Enfin, l'utilisation d'un pinceau
d'axe ne passant pas par l'origine donnera une situation qui n'est pas purement
locale mais seulement semi-locale qu'il faudra donc traiter soigneusement.

ANNEXE

ISOMORPHISME DE WANG ET ISOMORPHISME DE LERAY

Dans cette annexe, nous donnons une justification sommaire de l'existence et des

propriétés des isomorphismes de Wang et de Leray que nous avons utilisés aux §§4 et 5.

1°. ISOMORPHISME DE WANG

Hsien-Chung Wang a donné pour tout fibré localement trivial sur une ^-sphère des

isomorphismes reliant l'homologie relative de l'espace total modulo une fibre à l'homologie de

cette fibre (cf. [Wg]). Nous nous contenterons ici du cas particulier q 1. Soit donc

n:E^ C

un fibré localement trivial topologique sur un cercle. Soit ceCet posons

Ec n~l(c)

Fixons une orientation de C. On a alors, pour tout k, Yisomorphisme de Wang

(A.l) vE,k:Hk^(Ec)^Hk(E,Ec)

associé à cette orientation de C et portant sur les groupes d'homologie singulière à coefficients
entiers, avec la convention Hk _ \ (Ec) ~ 0 pour k < 1. Nous allons indiquer comment on
peut définir vEtk mais en même temps nous montrerons que l'isomorphisme de Wang se

comporte naturellement par rapport aux sous-fibrés (au sens que nous avons précisé à la fin
du §3), c'est-à-dire que, si E' est un sous-fibré de E avec E'c comme fibre au-dessus de c,

l'isomorphisme vE',k Ie concernant (pour la même orientation de C) fait commuter le

diagramme

vE, kHk_(Ec)ii
(a.2) î ^ r

v£", k

Hk-X(E'C) - Hk{E\E'c)

où les flèches verticales sont induites par inclusion.

Ce que nous allons faire ressemble à [La] 6.4 et correspond d'autre part à la description
informelle que nous avons donnée au §4 (cf. fig. 4.1). Soit co : [0, 1] —> C un lacet basé en

c et dont la classe d'homotopie engendre 7ii(C, c). L'espace topologique E peut être obtenu
à partir de Ec x [0, 1] en recollant Ec x {1} à Ec x {0} au moyen d'un homéomorphisme
caractéristique. Plus précisément, si co* est un lacet simple de C homotope à co, on peut, en
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