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P est non transverse é S dans P*(C) =
(10.20.2) N
le point d’intersection de P avec R est valeur critique de p|s\g -

Ces valeurs critiques sont les mémes que celles de I’application de classe C® sous-jacente
entre variétés réelles. D’aprés le théoréme de Sard (cf. [Di2] (16.23.1)), ’ensemble K de ces
valeurs critiques est de mesure nulle dans R. La réunion K des Ks pour S € © étant finie,
est donc aussi de mesure nulle et en particulier distincte de R. Alors, si ¢ € R\K, I’élément
de Z7*1(Q) déterminé par Q et ¢ est, d’aprés (10.20.2), transverse dans P”(C) a toutes les
strates de &. Cela montre que 2"+ 1(&, Q) # 2" 1(Q). Notons que ce raisonnement serait
encore valable si & était une quelconque famille finie ou dénombrable de sous-varietés. ]

Dans le cas particulier ou # > 2 et ou Q est un (n — 2)-plan projectif trans-
verse dans P7(C) a toutes les strates de &, le corollaire 10.19 et la proposition
10.20 prouvent que Z"- (&, Q) est vide ou composé d’un nombre fini de
points. Cela justifie la finitude des hyperplans «mauvais» du théoréme 1.3.

Toutes les assertions d’algébricité ou de généricité que nous avons avancées
dans I’énoncé des théorémes 1.1 et 1.3 ou utilisées dans leur démonstration sont
maintenant justifiées. Les démonstrations de ces théorémes sont donc enfin
complétes.  [J[]

11. EXTENSION DU THEOREME 1.3 A UNE VARIETE QUASI-PROJECTIVE LISSE

On peut généraliser sans trop de changements le théoréme 1.3 au cas ou
I’espace ambiant P”(C) est remplacé par un sous-ensemble algébrique fermé
X de P"(C) avec 'importante restriction, toutefois, que X\ A soit lisse. Le
pinceau A continue a €tre un pinceau d’hyperplans projectifs dans P7(C)
mais I’ensemble dont on considere les sections, au lieu d’étre le complémentaire
P"(C)\A d’un ensemble algébrique fermé A4, est une variété quasi-projective
lisse X\ A. On doit, dans ce cas, munir X fout entier d’une stratification de
Whitney ©* telle que A soit union de strates, ce qui est toujours possible
(cf. [L—=T2] (1.2.7)), et ’axe .# de A doit étre pris transverse dans P*(C) a
toutes les strates de ©*. C’est bien une généralisation de la situation du
théoréme 1.3 car la stratification & de A qui y est considérée peut &tre trivia-
lement étendue en une stratification de Whitney &+ de P7(C) par la strate
P"(C)\A a laquelle .# et & sont trivialement transverses. Dans notre
nouvelle situation, le «bon» hyperplan & et les hyperplans «mauvais» %
sont considéreés relativement a ©*. Cela signifie que, pour la détermination
des /;, entrent non seulement en compte la non transversalité a des strates
de A mais au moins aussi, dans I’hypothése d’une stratification minimale, les
points de tangence a X\A.
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Nous avons en fait été contraint de faire figurer explicitement ces points
de tangence dans notre théoréme. La raison en est que toutes les étapes de la
démonstration du théoreme 1.3 peuvent étre généralisées sans trop de mal a
notre nouvelle situation sauf celle du §5 qui fait intervenir ’isomorphisme de
Leray pour lequel il est indispensable que le sous-espace dont on considere le
complémentaire dans la variété ambiante soit une sous-variété lisse, ce que
< N (X\A) n’est pas en raison précisément de ces points de tangence. Nous
contournons cette difficulté par un artifice qui consiste a 6ter de X\ A ces
points, ce qui revient a les ajouter a 4, a poursuivre le raisonnement sans eux
et a ne les réintroduire qu’au moment de la conclusion. Cette réintroduction
produit alors une perturbation qui n’est pas trop grande car nous montrons,
comme pour le point (iv) du lemme 9.2, que ces points de tangence sont en
nombre fini.

Il y a donc deux modifications, par rapport a ’énoncé du théoreéme 1.3,
que cette difficulté provoque:

— d’une part nous sommes obligés de considérer, a la place de I’homo-
' morphisme naturel

mi: H (. # N (X\A)) > H(Z n (X\A))
I’homomorphisme naturel
my's H(.# 0 (X\A)) = H,((Z n (X\A)\K)) ,

ou K; est I’ensemble des points de tangence de & a X\A4;

— d’autre part les implications qui concluent le théoréme ne sont plus
valables qu’avec de légéres restrictions sur les valeurs de k.

Malgré ces défauts, le théoréme auquel nous aboutissons permet de
retrouver la version homologique du théoreme de Lefschetz pour une variété
quasi-projective lisse démontré par Goresky-MacPherson et Hamm-LE
(cf. [G-M1] theorem 4.1, [G-M2] II.5.1 et [H-L2] theorem 1.1.3). Nous
précisons ci-dessous I’énoncé, plus faible que ceux cités, que nous parvenons
4 retrouver (théoreme 11.2). Nous opérons cette déduction en conclusion du
paragraphe.
| Voici donc notre généralisation du théoreme 1.3:

THEOREME 11.1. Soit X un ensemble algébrique fermé dans P"(C),
avec n =2, et A unsous-ensemble algébrique ferméde X tel que X\A
 soit lisse. Soit ©* une stratification de Whitney de X telle que A soit
'union de strates et soit A un pinceau d’hyperplans projectifs de P"(C)
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d’axe _# transverse dans P"(C) a toutes les strates de ©*. Soient
A, ..., &L des éléments de A, avec, s =2, parmi lesquels tous ceux qui
ne sont pas transverses @ toutes les strates de ©* (ils sont en nombre fini)
et soit < un autre élément de A. Pour 1<i<s, soit K; [’ensemble
des points de tangence de <, a X\A (c’est un ensemble fini, éven-
tuellement vide, disjoint de .#). Considérons, pour tout k, les
homomorphismes suivants induits par inclusion entre groupes d’homologie
singuliére a coefficients entiers:

my : Hy( 4 N (X\A)) = H(Z n (X\A))
m;': Hy(# 0 (X\A)) = H(Z n (X\A)\K)) pour 1<i<s
L+ H(Z N (X\A)) = H(X\A) .

Si dy,...,d, sont les a’imehsz’ons complexes des composantes irréductibles

de X non contenues dans A, ces homomorphismes vérifient les impli-
cations suivantes:

— pour k #+2d,,...,2d,:

my_, est surjectif
[, est surjectif  si m,' , est surjectif pour tout i
mg-2 est injectif

— pour k #2d, - 1,..,2d, -

my est surjectif

m,' | est surjectif pour tout i

my_, est injectif

Kermy _, nKermyl, n ... Kerm;* , = {0},

[, est injectif  si

avec la convention Hi(.) =0 pour k <O0.

Démonstration. Nous allons suivre pas a pas la démonstration du théoréme 1.3 et faire
les adaptations nécessaires. Rappelons que cette démonstration a occupé les §§3 a 8.

Adaptation du §3. Nous procédons de la méme maniére a I’éclatement de P"(C) le
long de .# et nous gardons les notations (3.1) a (3.11) (cf. aussi fig. 3.1). Mais, outre A
nous portons aussi notre attention sur la transformée totale X de X.

Cette attention portée a X est d’ailleurs prise en compte par &™ qui est une stratification
de X tout entier, adaptée 4 4. A la place de la stratification & de P” définie en (3.12), nous
considérerons donc une stratification &+ définie a partir de ©* de la méme maniére que
& a partir de &, mais ol le rdle de P"\A est joué par les S provenant des S € & tels - que

S C X\A, et ou Pon doit, cette fois, ajouter les strates exceptionnelles (P”\X W\ 4 et
(P”\X) N 4. Ainsi donc
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(11.1.1) St ={S\.A|Se& }u{Sn #|Se&+)
U {PN\X)\ A, P\X)n A} .

Le LEMME 3.13 est alors valable, avec la méme démonstration, avec &* a la place de & et
X ala place de A. Comme A est réunion de strates de &*, le point (i) de ce lemme a pour
conséquence

(11.1.2) X\A est réunion de strates de &+ .

Cela est 1mp0rtant car, puisque X\A4 a remplace P"(C)\A dans I’énoncé du théoréme, c’est
désormais X\ A4 qui jouera le rble de P"\A dans la démonstration.

De I’assertion (3 14) a la proposmon 3.21 incluse, tout repose sur le lemme 3.13 donc
reste valable avec & *-a la place de &. Les notations et relations (3.15) a (3.19) restent
inchangées mais, pour (3.20), on doit prendre, a la place de ®*,

(11.1.3) ©,=6" 1 .

La PROPOSITION 3.21, proposition principale du paragraphe, est alors valable avec é: ala
place de é* D’apres (11.1.3) et (11.1.1), les conséquences en sont maintenant que la fibra-
tion respecte les traces sur f’fk de P\ X, des S pour Se &7 et de . Mais, d’apres
(11.1.2), cela entraine qu’elle respecte aussi la trace de X\A.

A partlr de 13, nous ne nous étions plus intéressés qu’a ce qui se passait dans P"(C)\ A
donc dans P"\A. Maintenant, c’est X\A et X\ A qui prendront leurs places respectives.
Nous garderons donc les notations (3.23) a (3.28) mais avec les nouvelles valeurs suivantes
données a P et P:

(11.1.4) {P:X\A

P=X\4,

le reste étant défini a partir de P et P de maniére inchangée. On peut garder la figure
3.2 comme représentation imagée de ces notations, a condition de remplacer les 1égendes des
deux fléches ondulées de gauche: «on enléve A» et «on enléve A», par les légendes
respectives: «on prend la trace sur X\A» et «on prend la trace sur X\A».

Les ISOMORPHISMES (3.29), ainsi que la premiere remarque qui les suit, sont encore
valables avec ces nouvelles définitions mais il est important de noter dés a présent que, cette
fois, les L; et L i# ne sont pas forcément lisses. Il faut aussi noter que maintenant M, L ou
certains L; peuvent étre vides si X est de dimension 1 ou 0, méme en dehors du cas trivial
ou A = X.

Cette éventuelle vacuité contraint a une légere adaptation du COROLLAIRE 3.30 qui
demeure toutefois pour ’essentiel vrai. Nous avons en effet remarqué que la nouvelle forme
de la proposition 3.21 donnait une fibration respectant la trace sur 13'; de X\A. Compte
tenu donc que cette trace puisse étre vide, nous aboutissons a I’énoncé suivant, valable avec
les nouvelles définitions (11.1.4):

Si L est vide, alors P est vide. Sinon, l’apphcatlon P, est une fibration
localement triviale topologique de P sur P dont la fibre au-dessus de A
est L #. Si M est non vide, alors M =M X P est un sous-fibré trivial de
P, dont la fibre au-dessus de A est M#.

(11.1.5)

Cette adaptation du corollaire 3.30 & notre nouvelle situation termine I’examen du §3.
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Adaptation du §4. Le contenu de ce paragraphe repose entierement sur le corollaire
3.30 et les isomorphismes (3.29) avec la premiére remarque qui les suit. Nous avons vu que
dans notre nouvelle situation et avec les nouvelles définitions (11.1.4), les isomorphismes
(3.29) restaient valables et le corollaire 3.30 pouvait étre adapté en I’énoncé (11.1.5). Tout
e § 4 reste donc valable dans le cas ou M donc L sont non vides. Mais M = O entraine que
M#, Mc , Mg et M sont tous vides et L = & entraine que M = & et que L *, PC , PB
et P, sont tous vides. Dans le cas ou L ou seulement M est vide, le lemme 4.4 et son
corollaire 4.5, le lemme 4.6 ainsi que I’isomorphisme (4.8) et ses propriétés (4.9) et (4.10)
demeurent trivialement vrais. Le reste du paragraphe ne se servant que de ces résultats et des
isomorphismes (3.29), est donc aussi valable dans ces cas particuliers. Au total, tout le
contenu du §4 peut donc &tre gardé inchangé lorsqu’on se place dans la situation du théoréme
11.1 et qu’on redéfinit P et P par (11.1.4).

Adaptation du §5. Comme nous I’avons annoncé, c¢’est 1a que surgissent des difficultés.

Le début du paragraphe, tendant a séparer la contribution de chaque L,-#, est purement
topologique et peut étre gardé sans changement, méme dans-les cas exceptionnels ou M ou
méme L ou certains L; sont vides. Il s’agit de la définition (5.1), des relations (5.2) et du
LEMME 5.3.

C’est au moment d’appliquer I’'isomorphisme de Leray que les choses changent. Les
relations ensemblistes (5.4) sont toujours valables mais les conditions d’application de
I’isomorphisme de Leray aux couples (ﬁi, L I#) et (M is M ,.#), telles qu’elles sont récapitulées
par le LEMME 5.5 sont maintenant en défaut. En effet, malgré la lissité de X\A, les
Li = Z; n (X\A) ne sont plus forcément lisses car Z; n’étant pas forcément transverse aux
strates de @™ contenues dans X\ A4, peut avoir des points de tangence & X\ A qui forment
I’ensemble K; de I’énoncé. Ainsi donc, compte tenu des isomorphismes (3.29), la seconde
composante du couple (ﬁi, L i# ) peut ne pas étre lisse et I’isomorphisme de Leray ne lui est
alors pas applicable.

Nous commengons par montrer que ces points de tangence qui font difficulté sont en
nombre fini et non situés sur .#, c’est-a-dire que:

(11.1.6) Les ensembles K;, pour 1 < i < s, sont finis et disjoints de . 7.

Cette assertion résulte de I’assertion analogue concernant ’ensemble C qui intervient en
(9.6.6) dans la preuve du point (iv) du lemme 9.2. En effet, ce qu’un peu abusivement nous
avons appelé «points de tangence de &Z; a X\ A» sont les points ot &, rencontre X\ A non
transversalement. Mais puisque X\ A4 contient la strate de ©* passant par un tel point, .%;
rencontre a fortiori non transversalement cette strate. Les points de tangence de ZaX\A
font donc partie des points de rencontre non transversale de & avec les strates de &*. Or
ces derniers forment précisément I’ensemble C de la preuve du point (iv) du lemme 9.2 & ceci
pres que X a remplacé A et ©* a remplacé &. L’assertion (11.1.6) se trouve ainsi établie.

Tirant parti de (11.1.6), nous allons maintenant contourner la difficulté provoquée par
les K; en les intégrant au sous-ensemble algébrique 4 qu’on 6te de X. Nous posons donc
S
(11.1.7) K= U K;
i=1
et

(11.1.8) A=A UK.
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C’est un nouveau sous-ensemble algébrique fermé de X. Nous allons continuer avec A" a la
place de A; ce n’est qu’au moment des conclusions que nous reviendrons a A. Clairement,
X\A’ est lisse (éventuellement vide) et maintenant plus aucun élément du pinceau A n’a de
points de tangence avec X\ A’. Mais nous sommes sortis des hypothéses du théoréme 11.1
car la stratification ©* de X n’est pas forcément adaptée a 4’, c’est-a-dire que A’ n’est pas
forcément réunion de strates. Nous sommes donc amenés & modifier &% en

(11.1.9) ' &* =& g lictlcek}.

Comme X est fini, le méme argument que dans la preuve du point (iv) du lemme 9.2 montre
que &* est aussi une stratification de Whitney de X (en fait, la situation est ici beaucoup
plus simple). Maintenant A’ est bien réunion de strates de &*’. D’autre part, comme .# et
les hyperplans de A autres que Z},..., 2 sont transverses dans P”(C) aux strates de &%
et ne rencontrent pas K, ils sont aussi transverses dans P”(C) aux strates de ©*’. Si nous
prenons donc 4’ et ©* a la place de 4 et ©*, nous sommes dans les hypothéses du théo-
réme 11.1 avec le méme pinceau A et les mémes hyperplans exceptionnels 7, ..., Zs.

Tout ce qui a été fait jusqu’ici avec A et & est donc aussi valable avec A" et &*'. Mais
nous devons introduire de nouvelles notations relatives a ces nouveaux éléments pour les
distinguer de celles relatives aux anciens. Nous faisons la convention suivante:

Toute notation relative a la situation avec A et ©@* sera transformée en une
(11.1.10) notation homologue relative a la situation avec A’ et ©*’ en lui affectant un
prime.
Ainsi, par exemple, P’ = X\A4’, P’ = )Z\/f’, ou, bien entendu, A’ désigne la transformée
totale de A’. Et

L; = ZinP’

L;-#= Z,-# NP

P, =P \(L{* U..UL*)
ﬁ; = P, UL*

etc.

C’est donc aux couples (ﬁ; ,Li#) et (]\7[ i M;#) que nous allons demander de satisfaire
au lemme 5.5. Il faudra toutefois tenir compte de la vacuité éventuelle de M’ ou méme de
certains L en ajoutant, pour chaque point de I’énoncé, la possibilité des cas exceptionnels
suivants:

(i) Si M’ est vide, M;* et M; sont vides; si L] est de plus vide, L;# est
vide; il se peut méme que P; soit vide.
(11.1.11) (i) Si M’ est vide, M} et M;* sont vides.

(iii) Méme chose.

Exemple 1. X = D u {xg} ou D est une droite projective ne contenant pas Xxp;
A ={ap}ouag e D; & = {D\{ap}, {ao}, {x0}}. Alors .# ne rencontre ni D ni xp; on peut
prendre seulement 2 hyperplans «mauvais»: ] déterminé par .# et xy et 2/, déterminé par
4 et ap; supposons que ¥ # Z,. On a donc M = &, L; = {xp,x1} avec x; € D et
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L, =@. On a, d’autre part, K; = {xo} et Ky = &, donc L] = {x} et Ly = . Enfin,
L(= L’) est réduit a un point donc ni P1 ni P2 ne sont vides.

Exemple 2. X ={xj,..,xp},A = . Dans ce cas A"=X et P’ = & bien que
P = X\ A ne soit pas vide. Comme P’ va devoir remplacer P, cela explique que nous n’ayons
pas écarté de la démonstration le cas trivial ou 4 = X.

Nous allons maintenant vérifier que le LEMME 5.5, qui est le verrou de la situation, est,
une fois complété par (11.1.11), valable pour les couples (13;, Li#) et (M;,Mi#) avec M’
remplacant M au point (iii). Rappelons, pour commencer, que .# et & sont transverses dans
P7’(C) a P’ = X\A’ (en convenant qu’il y a transversalit¢é quand P’ ou l’intersection est
vide) puisqu’ils sont transverses a toutes les strates de ©*’ et que X\ A’ en est une réunion.
I en résulte que, lorsqu’ils ne sont pas vides, M’ et L sont des sous-variétés (lissgs!) de P’
de codimensions complexes pures respectives 2 et 1. Mais, par construction de A’ les hyper-
plans exceptionnels ; aussi sont transverses & X\ A" donc, quand ils ne sont pas vides, les
L aussi sont des sous-variétés de P’ de codimension pure 1. Nous servant de ces faits, nous
allons maintenant passer en revue les démonstrations des différents points du lemme 5.5.

Dans la preuve du point (iii), M’ n’est plus un ouvert de .. Quand il n’est pas vide,
c’en est toutefois une sous-variété, d’aprés ce qui précéde, et le reste de I’argument utilise
seulement ce fait-1a.

Dans la preuve du point (i), pour le couple (M’ M;#), il faut rajouter l~a précaution que
M’ peut étre vide. En ce qui concerne le couple (P,., L] #), il se trouve que P; continue a étre
un ouvert de }3’, car les relations (5.2) sont toujours valables, mais que P’ nest plus un
ouvert de P”. A la vacuité éventuelle de }3} ou L} # prés, la démonstration resterait toutefois
valable si nous montrions que P’ est vide ou est une sous-variété de P” transverse & 7 ,.#.
Mais, quand P’ est non vide, cela résulte des assertions (5.5.1) et (5.5.2) appliquées avec
S=Pet = 2.

Dans la preuve du point (ii), on se trouve devant la méme modification que pour le point
(1). Mais, si M’ n’est pas vide, on peut voir que M’ est une sous-variété de P’ en apphquant
5.5.1)a S= P L’assertion (5.5. 2) apphquee avec %= <; donne de plus que M’ est
transverse a / dans P”. Comme P’ > M’ , le méme raisonnement que dans la preuve du
point (iii) du lemme 9.2 montre alors que M’ est transverse dans P’ 4 P’ N ;Z’# =L;*,

Cela acheve de montrer que le LEMME 5.5, complété par les éventualités (11.1.11), est
valable pour les couples (P Li#)et (M Mi#).

La validité de I'isomorphisme de Leray (5.6) et de ses propriétés (5.7) et (5.8) est
conditionnée par les trois points du lemme 5.5. Mais dans les cas supplémentaires excep-
tionnels que peuvent présenter les couples (P LLI*)et (M i, M¥), et qui sont donnés par les
pomts correspondants de (11.1.11), on a encore trivialement (5.6), (5. 7) et (5.8). Les couples
(P,,L #) et (MI,M’#) y satisfont donc.

Le reste du § 5 repose uniquement sur les isomorphismes (5.6) avec leurs propriétés (5.7)
et (5.8), sur le lemme 5.3 et sur les isomorphismes (3.29) avec la premiére remarque qui les
suit. Ce qui précéde montre donc que son contenu est valable dans la situation du théo-
reme 11.1 et avec les nouvelles définitions (11.1.4) mais a condition de remplacer 4 par
’ensemble A’ défini en (11.1.8) sans toutefois avoir a changer le pinceau A ni ses hyperplans
exceptionnels.

Adaptation du §6. Nous allons voir que le contenu de ce paragraphe est valable dans
la situation du théoréme 11.1 et avec les nouvelles définitions (11.1.4), sans avoir a remplacer
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A par A’. Tout d’abord, en effet, nous laissons la définition de f en (6.1) inchangée mais
elle s’entend avec les nouvelles définitions (11.1.4) pour P et P. Cette application continue
a induire les isomorphismes (6.2) car ce ne sont autres que les isomorphismes (3.29).

D’autre part, le fait que le morphisme d’éclatement f coincide avec la premiére projection
sur A4 = M XP 1(C) implique toujours, comme en (6.3), que I’application f* que f induit
entre M et M coincide avec la premiére projection de M x P1(C). Alors, la SUITE EXACTE
(6.4) demeure valable car elle résulte de maniére purement topologique de cette structure de
produit et de la valeur de f’.

Nous en venons maintenant a la PROPOSITION 6.8. Sa démonstration figure dans [Ch2]
proposition 4. Elle débute par le lemme 1 qui affirme que I’homomorphisme f; admet une
section, puis renvoie pour le reste & la démonstration de [A —F2] §4, theorem 2.

La démonstration de [A — F2] se place dans le cas ou P est un sous-ensemble algébrique
fermé lisse de P”(C) mais, une fois admis le résultat sur f;, elle consiste en un raisonnement
topologique valable pour une variété quasi-projective qu’il n’est méme pas nécessaire de
supposer lisse. Ce raisonnement utilise en effet seulement les faits suivants:

— que f induise un isomorphisme de P\M sur P\M; mais cela demeure vrai comme
simple corollaire de la propriété analogue pour le morphisme d’éclatement f;

— que le cylindre de ’application f’ soit rétracte par déformation d’un voisinage ouvert
dans le cylindre de I’application f; pour cela, il suffit que le couple formé par ces deux
cylindres d’application soit triangulable (cf. [Sp] 3.3.11); mais c’est bien le cas puisque le
couple (P, M) est triangulable (cf. [Lo] et [Hi]);

— P’isomorphisme de Thom pour le fibré en spheres M sur M; mais puisqu’il s’agit,
comme nous ’avons vu, d’un fibré trivial, on peut se ramener a la formule de Kiinneth qui
est valable sans hypothese de lissité de la base (mais notons bien que dans notre situation
M est lisse!). Remarquons que tout cela inclut I’éventualité que M soit vide; dans ce cas f
est tout simplement un isomorphisme.

La démonstration du lemme 1 de [Ch2] se place dans le cas ou P = P"(C)\ A, mais,
outre le cas trivial P = O, elle est en fait valable deés lors que P et P sont des sous-variétés
de P” et P"(C), que f est propre et que toute composante connexe de P rencontre P\M
(pour montrer que le degré de f au-dessus de tout compact de P est 1). Ici, nous sommes
dans la situation ou P = X\A avec ’hypothese que X\ A est lisse. D’autre part, la trans-
versalité de .# dans P"(C) aux strates de ©* implique que .# est transverse a X\ A qui
en est une réunion. Il en résulte, d’aprés I’assertion (5.5.1), que, si P est non vide, P est une
sous-variété de P”. Il en résulte aussi qu’aucune composante connexe de P ne peut étre
contenue dans M. Enfin, la propreté de f ne pose pas probléme car P=f" I(P) et f est
propre. ‘

Cette analyse de sa démonstration, montre que la PROPOSITION 6.8 est encore valable
dans notre situation.

Enfin, le COROLLAIRE 6.9 qui conclut le paragraphe demeure aussi valable car il ne fait
que rassembler la suite exacte (6.4) et la proposition 6.8. Cela achéve la vérification de la
validité du contenu du §6.

Adaptation du §7. Conformément & ce que nous avons annoncé au début de ce
paragraphe, nous y avons seulement utilisé le diagramme commutatif (7.1), la proposition
4.23, le corollaire 5.20, le corollaire 6.9 et des lemmes élémentaires sur la topologie de
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P!(C). La possibilité d’écrire le diagramme (7.1) est donnée par les isomorphismes (3.29) et
sa commutativité provient alors de la définition méme des applications qui y figurent. Dés
lors donc qu’on se place dans une situation ou les isomorphismes (3.29) et les énoncés des
§§4, 5 et 6 que nous avons cités sont valables, les conclusions du §7 sont aussi valables.

Adaptation du §8. C’est la méme chose que pour le §7, excepté que, dans la démons-
tration du lemme 8.7, on utilise aussi le corollaire 3.30 et les isomorphismes (3.29) pour
prouver la relation (8.7.3). Le corollaire 3.30 est maintenant remplacé par I’énoncé (11.1.5)
qui inclut les éventualités nouvelles ou M ou méme L sont vides. Mais dans ces cas (8.7.3)
est trivialement vraie. Les conclusions du § 8 sont donc valables dans les situations ou I’énoncé
(11.1.5), les isomorphismes (3.29) et les énoncés terminaux des §§4, 5 et 6 sont valables.

Bilan. Nous avons vu que les conclusions principales des §§ 3, 4 et 6, en particulier celles
dont on se sert aux §§7 et 8, sont valables dans la situation de I’énoncé du théoréme 11.1
si Pon redéfinit P et P comme en (11.1.4) (et les éléments qui leur sont liés en conséquence)
et si I’on modifie légérement le corollaire 3.30 en I’énoncé (11.1.5). En revanche, pour assurer
la validité des conclusions du §5, nous avons dii remplacer A par I’ensemble algébrique 4’
défini en (11.1.8). Mais, grace a la stratification introduite en (11.1.9), nous avons pu nous
retrouver dans les hypothéses du théoréme 11.1 sans avoir a changer le pinceau A ni ses hyper-
plans exceptionnels. Les énoncés des §§ 3, 4 et 6 dont nous avons parlé sont donc aussi valables
avec A’ a la place de 4. Ce que nous avons dit sur les §§7 et 8 montre alors que leurs
conclusions sont valables dans la situation du théoréme 11.1, avec P et P définis comme en
(11.1.4) mais avec A" a la place de A.

Nous aboutissons a1n51 aux conclusmns du théoréme 1.3 mais en devant y remplacer les
homomorphismes my, m, et I, respectivement par les homomorphismes m/ v mp et Iy,
e¢galement induits par inclusion, et spécifiés ci-dessous avec la convention d’écriture (11.1.10):

my  Hy(M') > Hy (L")
(11.1.12) my s Hpe(M') = Hy(L?) pour 1<i<s
1;( - H/((L') —’Hk(P,) .

Il est maintenant temps de revenir de A’ & 4. Utilisant toujours la convention (11.1.10),
nous avons les relations suivantes entre éléments liés a3 4 et éléments liés 3 4~

M =M
L =L

(11.1.13) L; = L\K; pour 1<i<s
P = PA\K

ou K est défini en (11.1.7) comme réunion des K;. En effet, .# et & ne rencontrent pas
K et chaque & rencontre K en exactement K;. Compte tenu des définitions (11.1.4), les

homomorphismes m, k qui figurent dans nos conclusions sont donc bien ceux de I’énoncé et
I’on a d’autre part

(11.1.14) My = My .

Au stade ou nous en sommes, nous aboutissons donc a des conclusions de surjectivité
ou d’injectivité pour ’homomorphisme naturel [} spécifié en (11.1.12) sous précisément les
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hypotheses respectives que I’énoncé du théoréme 11.1 donne en vue de la surjectivité ou de
injectivité de I’homomorphisme /. Il nous reste donc a étudier la relation entre /; et /.
Notons

(11.1.15) qr: Hy(P") = Hy(P)
’homomorphisme induit en homologie de rang k& par l'inclusion P’ = P\K & P. Nous avons
(11.1.16) Ik = qk© I

et sommes donc conduits a étudier quand g est surjectif ou injectif. Nous avons évidemment
recours a la suite exacte d’homologie relative du couple (P, P’). La finitude de K, établie en
(11.1.6), rend la chose particuliéerement simple car, comme P est lisse, nous pouvons isoler
les éléments ¢ de K au sein de disques ouverts D, de P mutuellement disjoints et centrés en
ces éléments. En excisant le complémentaire dans P de la réunion de ces disques,
complémentaire qui est un fermé de P contenu dans I’ouvert P\K, nous obtenons
Hy(P,P) = @ Hy(Dc, DN\{c}) .
cekK

Or D, est un disque de dimension réelle 2 dim.P ou dim.P désigne la dimension complexe
de P en c. Mais P = X\ A étant ouvert dans X, le point ¢ est un point lisse de X et dim P
est égale a la dimension de I’unique composante irréductible de X passant par ¢. Comme
¢ ¢ A, il ne peut évidemment pas s’agir d’une composante irréductible contenue dans 4. Ainsi
donc, la dimension du disque D, est-elle ’'un des nombres 24y, ..., 2d, ou dy, ..., d, sont les
dimensions complexes des composantes irréductibles de X non contenues dans A. Par
conséquent

Hy(P,P’)=0 pour k=+2d,..,2d,.

La suite exacte d’homologie relative du couple (P, P’) donne donc que g, est surjectif pour
k # 2dy, ..., 2d, et injectif pour k # 2d; — 1,...,2d, — 1. La relation (11.1.16) montre
alors qu’on a les implications:

[} surjectif = [ surjectif pour k # 2di,...,2d,,

(11.1.17) { [} injectif = [ injectif ~— pour Kk #2d; —1,...,2d, - 1.

Comme il ne nous manquait plus que d’avoir a remplacer /; par /[, pour obtenir les
implications finales du théoréme 11.1, nous y aboutissons donc avec les restrictions respectives
sur £ que comportent les relations (11.1.17). []

Nous allons conclure ce paragraphe en montrant que le théoreme 11.1
permet de retrouver le théoreme de Lefschetz pour une variété quasi-projective
lisse. Voici I’énoncé précis auquel il permet d’aboutir:

THEOREME 11.2. Soit X un ensemble algébrique fermé de P"(C),
avec n =1, etsoit A un sous-ensemble algébrique fermé de X tel que
' X\A soit lisse. Soit ©* une stratification de Whitney de X telle que A
'soit réunion de strates. Alors, pour tout hyperplan projectif < de P"(C)
transverse aux strates de &+, [Pinclusion £ N (X\A) & X\A induit:
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des isomorphismes des groupes d’homologie singuliére a coefficients entiers
H(Z N (X\A)) > H(X\A) pour k<d-2,

et un homomorphisme surjectif
H(Z N (X\A)) »H.(X\A) pour k=d-1,

ou d est la plus petite dimension des composantes irréductibles de X
non contenues dans- A.

Cet énoncé est un corollaire de théorémes plus forts conjecturés par Deligne
et démontrés indépendamment par Goresky-MacPherson et Hamm-Lé
(cf. [De] conjecfure 1.3, [G—MI1] theorem 4.1, démonstration détaillée dans
[G—M2]11.5.1 et [H—L2] theorem 1.1.3). Nous avons dit dans I’introduction
que Goresky-MacPherson et Hamm-Leé ont aussi donné des généralisations aux
cas singulier et local. Goresky et MacPherson utilisent la théorie de Morse
stratifiée et Hamm et L& une variante astucieuse de la théorie de Morse & coins.
Nous allons voir qu’on peut aussi obtenir le théoréme 11.2 & la maniére de
Lefschetz en le déduisant du théoréme 11.1:

Démonstration du théoréme 11.2 a partir du théoréme 11.1. Elle sera trés semblable
a la démonstration du théoréme 1.1 & partir du théoréme 1.3 donnée au §9. Mais comme
cette fois il n’y a pas de codimension a prendre en compte, il sera plus commode de faire
une récurrence sur la dimension n de ’espace projectif ambiant.

Pour n = 1, ¥ est réduit a un point et il n’y a que quatre possibilités concernant X\ A4 :
ou bien vide, ou bien composé d’un nombre fini de points non contenus dans %, ou bien
égal 4 P!(C), ou bien enfin égal a P !(C) moins un nombre fini de points non contenus dans
2. Dans le premier cas, il est naturel de convenir que d = — 1. Dans ce cas et dans le
deuxiéme, ou d = 0, les conclusions du théoréme sont vides. Nous préférerons dire qu’elles
sont trivialement vraies en faisant la convention Hy( . ) = 0 pour k¥ < 0 comme dans le théo-
reme 11.1 que nous utiliserons. Dans les deux derniers cas, on a d = 1 et seule la conclusion
de surjectivité est non triviale. Mais comme X\ A est connexe par arcs et < N (X\A) non
vide, elle est bien satisfaite.

Pour I’étape de récurrence, nous supposons que les conclusions du théoréme 11.2 soient
satisfaites pour n = ng > 1 et nous voulons montrer qu’elles sont alors satisfaites pour
n = ng + 1. Nous nous plagons donc dans cette situation. Comme alors 7 > 2, le lemme 9.1
est valable avec X et @* a la place de A et S et le (n — 2)-plan projectif .# qu’il donne
est I’axe d’un pinceau A satisfaisant aux hypothéses du théoréme 11.1 dont & est un «bony
hyperplan. Nous adoptons alors aussi les autres notations du théoréme 11.1. Nous voulons,
comme au §9, tirer parti de ses implications finales. Nous allons ici aussi voir que les antécé-
dents de ces implications sont satisfaits pour des valeurs convenables de k grace a Phypothése
de récurrence. Ce sera, cette fois, le lemme suivant qui permettra de I’appliquer:
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LeEMME 11.3. Avec les hypothéses et notations du théoréme 11.1, le pinceau A
possede les propriétés suivantes:

@) Si ZnX\ZNA estnonvide, soit d’ la plus petite dimension des composantes
irréductibles de 7 n X non contenues dans < N A; on a alors d >d — 1.

(i) Pour 1<i<s, si ZinX\Zn(AUK;) estnon vide, soit d] la plus petite
dimension des composantes irréductibles de ;X non contenues dans
Lin(AUK), onaadalors di>d— 1.

(i) LN X\NZLN A estlisse; larestriction &g de ©* a £ estune stratification
de Whitneyde ' n X telleque N A soitunion de strateset _# est transverse
dans < a toutes les strates de ©%| .

(iv) Pour 1<i<s, ZnX\Z n(AuUK,) estlisse, larestrictionde &% a £ peut
étre raffinée en une stratification de Whitney @f de <;nX telle que
<%0 (A U K;) soit union de strates et que _# soit transverse dans Z; a toutes
les strates de & .

On n’a pas forcément 1’égalité aux points (i) et (ii) comme le montre I’exemple 1 donné apres
(11.1.11). C’est manifestement un cas exceptionnel, mais nous ne prendrons pas ici la peine

de préciser les conditions de I’égalité.

Nous terminons la récurrence a I’aide du lemme 11.3 avant de le démontrer.

D’apres le point (iii) du lemme, nous pouvons appliquer I’hypothése de récurrence a
N X et YN A dans ¥ avec #  comme hyperplan. Comme
ZNnX\ZnNnA=<n(X\A), nous obtenons

I’

my est surjectif pour k<Ld -1,

my, est injectif pour k<d -2,

ou d’ est défini comme dans le point (i) du lemme. D’aprés ce point donc, si Zn X\ 7 N A
est non vide, cela nous donne a fortiori que

my, est surjectif pour <d-2,
<

k
my est injectif pour k<d-3.

Ces assertions sont aussi trivialement vraies si Z n X\ 2 n A est vide.

D’aprés le point (iv) du lemme, nous pouvons aussi appliquer ’hypotheése de récurrence
pour 1l <i<sa ZnXet Zn(AuK,) dans Z; avec .# comme hyperplan. Comme
Zin X\Zin (A U K;) est égal & Z; n (X\A)\K;, nous obtenons de méme, compte tenu
du point (i) du lemme, que si Z; N X\ Z; n (A U K}) est non vide, alors

m,’cl est surjectif pour k<d-2, ‘ .
pour 1<i<s.

X
m,’f est injectif pour k<d-3,

Et, si Zin X\ Z; n (A U K;) est vide, ces assertions sont aussi trivialement vraies.

Le théoréme 11.1 nous permet alors de conclure a la surjectivité de /; pour k < d — 1

et & son injectivité pour k < d — 2, sous réserve qu’aucune de ces valeurs respectives de k
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ne soit exclue par les clauses restrictives respectives de la conclusion du théoréme 11.1. Il
suffirait en fait, pour cela, qu’on ait d — 1 < 2d puisque d est la plus petite des dimensions
des composantes irréductibles de X non contenues dans A. Mais cette inégalité étant
équivalente & d > — 1, est toujours vérifiée. Les conclusions obtenues sur /; sont donc bien
valables et ce sont précisément les conclusions du théoreme 11.2. Cela acheéve la récurrence,
sauf dans le cas trivial out X\A4A = ¢&J.

Il nous reste & démontrer le lemme 11.3 pour que la preuve du théoreme 11.2 soit
complete.

Démonstration du lemme 11.3.

(i) Supposons Z N X\ Z N A non vide. Soit Y une composante irréductible de 2 n X
non contenue dans ¥ N A et de dimension d’. Soit Z ’union des autres composantes
irréductibles de ¥ n X. Alors A n Y et Z N Y sont deux sous-ensembles algébriques fermés
de Y distincts de Y et, comme Y est irréductible, il en est de méme de leur réunion. Soit donc
ye€ Y\(4 v Z). En un tel point, on a

dim,Y = dim, ¥ n X > dim, ¥ + dim,X — dim,P"(C) = dim, X — 1

(cf. [Wh3] 2.12C). Mais comme y ¢ A4, toutes les composantes irréductibles de X passant
par y sont de dimension > d et ’on a donc aussi dim, X > d. L’inég_alité annoncée pour d’
en résulte.

(i) Le raisonnement du point (i) n’utilise pas d’hypothése de transversalité. Il est donc
aussi valable avec Z; a la place de . Si I’on remarque alors qu’une composante irréductible
Y;de Z; n X qui n’est pas contenue dans Z; N (4 U K;) n’est a fortiori pas contenue dans
/i N A, cela donne le point (ii).

Assertions de lissité de (iii) et (iv). Puisque N X\ Z N A est égal 3 ¥ n (X\A) et
inX\NZin(AuK)a 7 n (X\A)\K;, ces ensembles sont ceux que nous avons notés
L’ et L] dans la démonstration du théoréme 11.1 (cf. (11.1.4) et (11.1.13)). Mais nous y
avons montre qu’ils €taient lisses au moment de vérifier que les couples (ﬁ; ,Li#) et
(M, M#) satisfaisaient au lemme 5.5 complété par (11.1.11).

(iii) I reste & voir Passertion de stratification. Mais, outre le fait évident que 7 n A

soit union de strates, ce n’est autre que le point (iii) du lemme 9.2 ou 4 et & jouent le méme
role que X et &7 ici.

(iv) En appliquant le point (iv) du lemme 9.2 avec X et &+ 2 la place de A et &, on
obtient une stratification @f qui a les propriétés voulues excepté qu’on ne sait pas si K; est
union de strates. Mais si I’on revient a la démonstration du lemme 9.2, on voit qu’en
construisant la stratification demandée, on prend comme strate chaque point de X en lequel
Z; rencontre non transversalement la strate de & passant par ce point (cf. (9.6.6) et
(9.6.7)). Et comme X\ A est réunion de strates de &, les points de K; font partie des points
en question. Cela montre que @f satisfait aussi a Iexigence que Z; N (4 U K;) soit union
de strates.

Avec la démonstration de ce lemme, la déduction du théoréme 11.2 a partir du théoréme
11.1 est compléte. 10

Remarque 11.4. On ne peut pas, de la méme maniére que nous avons
déduit le théoréme 1.1 du théoréme 1.3, démontrer, a ’aide du théoréme 11.1,
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un théoreme du type de Lefschetz valable pour une variété quasi-projective
lisse générale et qui prenne en compte la codimension de A dans X. En effet,
une fois qu’on est descendu en dimension jusqu’a ce que la trace de A soit
vide ou réduite a un nombre fini de points, on se retrouve devant les
particularités topologiques de X lui-méme alors que, pour X = P"(C), on se
retrouvait dans la situation simple d’un espace projectif. Voir la remarque 9.5
pour plus de détails et voir aussi (12.2).

12. DIRECTIONS DE RECHERCHE

Le cadre geometrique développé dans cet article permet vraisemblablement
d’aborder quelques autres problémes que voici. En particulier, je peux déja
annoncer une généralisation du second théoréme de Lefschetz (cf. (12.3)).

(12.1) Sections par des hypersurfaces au lieu de sections hyperplanes.

Au lieu de considérer, comme dans les théorémes 1.3 et 11.1, un pinceau
d’hyperplans dans P"(C), on peut considérer un systeme linéaire a un
parametre d’hypersurfaces de degré d > 1. Le morphisme de Véronese v de
degré d (cf. [La] 1.3) permet de plonger P”(C) dans PV(C) de telle sorte
qu’un tel systéme d’hypersurfaces soit transformé en les sections de v(P”(C))
par un pinceau d’hyperplans de PV(C). On doit pouvoir obtenir une
extension des théorémes 1.3 et 11.1 a ces systémes a un parametre d’hyper-
surfaces en appliquant le théoréme 11.1 au pinceau d’hyperplans corres-
pondant dans P™(C). Mais interviendront alors, en plus, les points de
tangence d’éléments de ce pinceau avec v(P”(C)); ces éléments exceptionnels
correspondront a des hypersurfaces du systeme lin€aire présentant des
singularités. On devrait toutefois pouvoir en déduire, en raisonnant comme
dans la démonstration du théoréme 11.2 que nous avons donnée, que le
théoréeme 1.1 est aussi valable pour la section de P"(C)\A par une hyper-
surface lisse transverse aux strates d’une stratification de Whitney de A.

(12.2) Extension du théoreme 1.1 a certaines variétés quasi-projectives
particulieres.

Nous avons vu pourquoi le théoreme 1.1 ne pouvait €tre généralisé au cas
ou ’espace ambiant P”(C) est remplaceé par un ensemble algébrique fermé X
de P7(C), méme en supposant X\ A lisse (cf. remarques 11.4 et 9.5). On peut
toutefois se demander s’il y a des classes significatives de X pour lesquelles
il est valable. D’apres (12.1), il y aurait en tout cas les variétés de Véronése.
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