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P est non transverse à S dans PW(C) =>

(10.20.2)
le point d'intersection de P avec R est valeur critique de p\s\Q •

Ces valeurs critiques sont les mêmes que celles de l'application de classe C°° sous-jacente

entre variétés réelles. D'après le théorème de Sard (cf. [Di2] (16.23.1)), l'ensemble Ks de ces

valeurs critiques est de mesure nulle dans R. La réunion K des Ks pour S e 0 étant finie,

est donc aussi de mesure nulle et en particulier distincte de R. Alors, si t e R\K, l'élément

de ^r+l(Q) déterminé par Q et t est, d'après (10.20.2), transverse dans PW(C) à toutes les

strates de 0. Cela montre que d?r+ ^0, Q) =£ Sâf+ l(Q)- Notons que ce raisonnement serait

encore valable si 0 était une quelconque famille finie ou dénombrable de sous-variétés. CH

Dans le cas particulier où n ^ 2 et où Q est un (n - 2)-plan projectif transverse

dans P"(C) à toutes les strates de 0, le corollaire 10.19 et la proposition
10.20 prouvent que Q) est vide ou composé d'un nombre fini de

points. Cela justifie la finitude des hyperplans «mauvais» du théorème 1.3.

Toutes les assertions d'algébricité ou de généricité que nous avons avancées
dans l'énoncé des théorèmes 1.1 et 1.3 ou utilisées dans leur démonstration sont
maintenant justifiées. Les démonstrations de ces théorèmes sont donc enfin
complètes.

11. Extension du théorème 1.3 à une variété quasi-projective lisse

On peut généraliser sans trop de changements le théorème 1.3 au cas où

l'espace ambiant PW(C) est remplacé par un sous-ensemble algébrique fermé

X de Pn(C) avec l'importante restriction, toutefois, que X\A soit lisse. Le
pinceau A continue à être un pinceau d'hyperplans projectifs dans P"(C)
mais l'ensemble dont on considère les sections, au lieu d'être le complémentaire
Pn(C)\A d'un ensemble algébrique fermé A, est une variété quasi-projective
lisse X\A. On doit, dans ce cas, munir X tout entier d'une stratification de

Whitney 0 + telle que A soit union de strates, ce qui est toujours possible
(cf. [L-T2] (1.2.7)), et l'axe Jl de A doit être pris transverse dans P*(C) à

toutes les strates de @ + C'est bien une généralisation de la situation du
théorème 1.3 car la stratification 0 de A qui y est considérée peut être
trivialement étendue en une stratification de Whitney 0+ de P"(C) par la strate
P"(C)\^4 à laquelle et & sont trivialement transverses. Dans notre
nouvelle situation, le «bon» hyperplan S7 et les hyperplans «mauvais» %
sont considérés relativement à 0+. Cela signifie que, pour la détermination
des 3, entrent non seulement en compte la non transversalité à des strates
de A mais au moins aussi, dans l'hypothèse d'une stratification minimale, les
points de tangence à X\A.
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Nous avons en fait été contraint de faire figurer explicitement ces points
de tangence dans notre théorème. La raison en est que toutes les étapes de la

démonstration du théorème 1.3 peuvent être généralisées sans trop de mal à

notre nouvelle situation sauf celle du §5 qui fait intervenir l'isomorphisme de

Leray pour lequel il est indispensable que le sous-espace dont on considère le

complémentaire dans la variété ambiante soit une sous-variété lisse, ce que

n (AA^) n'est pas en raison précisément de ces points de tangence. Nous

contournons cette difficulté par un artifice qui consiste à ôter de X\A ces

points, ce qui revient à les ajouter à A, à poursuivre le raisonnement sans eux
et à ne les réintroduire qu'au moment de la conclusion. Cette réintroduction
produit alors une perturbation qui n'est pas trop grande car nous montrons,
comme pour le point (iv) du lemme 9.2, que ces points de tangence sont en

nombre fini.

Il y a donc deux modifications, par rapport à l'énoncé du théorème 1.3,

que cette difficulté provoque:

— d'une part nous sommes obligés de considérer, à la place de l'homo-
morphisme naturel

m'lk:Hk(.//n (X\Aj)Hk(&j n (ATM4))

l'homomorphisme naturel

mk': Hkf // n (X\Aj) Hk((^ n (X\A))\Kd

où Ki est l'ensemble des points de tangence de 2% à X\A;
— d'autre part les implications qui concluent le théorème ne sont plus

valables qu'avec de légères restrictions sur les valeurs de k.

Malgré ces défauts, le théorème auquel nous aboutissons permet de

retrouver la version homologique du théorème de Lefschetz pour une variété

quasi-projective lisse démontré par Goresky-MacPherson et Hamm-Lê

(cf. [G-Ml] theorem 4.1, [G-M2] II.5.1 et [H-L2] theorem 1.1.3). Nous

précisons ci-dessous l'énoncé, plus faible que ceux cités, que nous parvenons
à retrouver (théorème 11.2). Nous opérons cette déduction en conclusion du

paragraphe.
Voici donc notre généralisation du théorème 1.3:

Théorème 11.1. Soit X un ensemble algébrique fermé dans P"(C),

avec n^2, et A un sous-ensemble algébrique fermé de X tel que X\A
soit lisse. Soit @+ une stratification de Whitney de X telle que A soit

union de strates et soit A un pinceau d'hyperplans projectifs de P"(C)
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d'axe Jt transverse dans P"(C) à toutes les strates de ©+. Soient

£?!, des éléments de A, avec, s ^ 2, parmi lesquels tous ceux qui
ne sont pas transverses à toutes les strates de @+ (ils sont en nombre fini)
et soit SA un autre élément de A. Pour \ ^ i ^ s, soit Kt l'ensemble
des points de tangence de à X\A (c'est un ensemble fini,
éventuellement vide, disjoint de Jé). Considérons, pour tout k, les

homomorphismes suivants induits par inclusion entre groupes d'homologie
singulière à coefficients entiers:

pour 1 ^ ^ s

mk : Hk(<Jé n (X\A)) Hk(ß n (A\,4))
m'J: Hk(X/n (X\A)) -+ Hk(^ n (A\^4)\^z)
4 : Hk(AS n (X\Aj) -+Hk(X\A)

Si du dp sont les dimensions complexes des composantes irréductibles
de X non contenues dans A, ces homomorphismes vérifient les

implications suivantes:

— pour k 2di, 2dp:

4 est surjectif si
mk-1
mbk — 2

mk-2

est surjectif
est surjectif pour tout
est injectif,

pour k 2di - 1, 2dp - 1 :

4 est injectif si

mk est surjectif
m'kl_x est surjectif pour tout i
mk-i est injectif
Ker mk_2 n Ker m'k_2 n n Ker m's {0}

avec la convention Hk{ 0 pour k < 0.

Démonstration. Nous allons suivre pas à pas la démonstration du théorème 1.3 et faire
les adaptations nécessaires. Rappelons que cette démonstration a occupé les §§3 à 8.

Adaptation du §5. Nous procédons de la même manière à l'éclatement de PW(C) le
long de et nous gardons les notations (3.1) à (3.11) (cf. aussi fig. 3.1). Mais, outre Ä,
nous portons aussi notre attention sur la transformée totale X de X.

Cette attention portée à X est d'ailleurs prise en compte par ©+ qui est une stratification
de X tout entier, adaptée à A. A la place de la stratification ë de Pn définie en (3.12), nous
considérerons donc une stratification définie a partir de de la même manière queë à partir de @, mais où le rôle de Pn\Â est joué par les S provenant des S e <&+ tels que
SS X}A> eloù ^ doit' cette fois' ajouter les strates exceptionnelles (Pn\X)\^ et
(P"\X) n //. Ainsi donc
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(11.1.1) © + - {SW/|S e ©+} u {S n Jt\S e ©+}

u {(F\i)\i, (P"\À) n ../?}

Le lemme 3.13 est alors valable, avec la même démonstration, avec ©+ à la place de © et

X à la place de A. Comme A est réunion de strates de © +, le point (i) de ce lemme a pour
conséquence

(11.1.2) X\A est réunion de strates de ©+

Cela est important car, puisque X\A a remplacé PW(C)M4 dans l'énoncé du théorème, c'est
désormais X\A qui jouera le rôle de PWM4 dans la démonstration.

De l'assertion (3.14) à la proposition 3.21 incluse, tout repose sur le lemme 3.13 donc
reste valable avec © + -à la place de ©. Les notations et relations (3.15) à (3.19) restent

inchangées mais, pour (3.20), on doit prendre, à la place de ©*,

(n.1.3) @t=@+|p;.

La proposition 3.21, proposition principale du paragraphe, est alors valable avec ©* à la

place de ©*. D'après (11.1.3) et (11.1.1), les conséquences en sont maintenant que la fibra-
tion respecte les traces sur P* de f*n\X, des S pour S e ©+ et de .Jé. Mais, d'après

(11.1.2), cela entraîne qu'elle respecte aussi la trace de X\A.
A partir de là, nous ne nous étions plus intéressés qu'à ce qui se passait dans PW(C)Y4

donc dans P"\^4. Maintenant, c'est X\A et X\A qui prendront leurs places respectives.

Nous garderons donc les notations (3.23) à (3.28) mais avec les nouvelles valeurs suivantes

données à P et P:

(11.1.4) \r x>A„' lP X\y4

le reste étant défini à partir de P et P de manière inchangée. On peut garder la figure
3.2 comme représentation imagée de ces notations, à condition de remplacer les légendes des

deux flèches ondulées de gauche: «on enlève A» et «on enlève A», par les légendes

respectives: «on prend la trace sur X\A » et «on prend la trace sur X\A».
Les ISOMORPHISMES (3.29), ainsi que la première remarque qui les suit, sont encore

valables avec ces nouvelles définitions mais il est important de noter dès à présent que, cette

fois, les Li et L* ne sont pas forcément lisses. Il faut aussi noter que maintenant M, L ou
certains Li peuvent être vides si X est de dimension 1 ou 0, même en dehors du cas trivial
où A X.

Cette éventuelle vacuité contraint à une légère adaptation du corollaire 3.30 qui
demeure toutefois pour l'essentiel vrai. Nous avons en effet remarqué que la nouvelle forme
de la proposition 3.21 donnait une fibration respectant la trace sur P* de X\A. Compte

tenu donc que cette trace puisse être vide, nous aboutissons à l'énoncé suivant, valable avec

les nouvelles définitions (11.1.4):

' Si L est vide, alors P* est vide. Sinon, l'application p* est une fibration
localement triviale topologique de P# sur P* dont la fibre au-dessus de X

'

est L *. Si M est non vide, alors M# M x P^ est un sous-fibré trivial de

P* dont la fibre au-dessus de X est M*.

Cette adaptation du corollaire 3.30 à notre nouvelle situation termine l'examen du §3.
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Adaptation du §4. Le contenu de ce paragraphe repose entièrement sur le corollaire

3.30 et les isomorphismes (3.29) avec la première remarque qui les suit. Nous avons vu que

dans notre nouvelle situation et avec les nouvelles définitions (11.1.4), les isomorphismes

(3.29) restaient valables et le corollaire 3.30 pouvait être adapté en l'énoncé (11.1.5). Tout

le §4 reste donc valable dans le cas où M donc L sont non vides. Mais M — 0 entraîne que

M*, MCj, Mb et M* sont tous vides et L 0 entraîne que M 0 et que L #, PCj, Pb

et P* sont tous vides. Dans le cas où L ou seulement M est vide, le lemme 4.4 et son

corollaire 4.5, le lemme 4.6 ainsi que Tisomorphisme (4.8) et ses propriétés (4.9) et (4.10)

demeurent trivialement vrais. Le reste du paragraphe ne se servant que de ces résultats et des

isomorphismes (3.29), est donc aussi valable dans ces cas particuliers. Au total, tout le

contenu du §4 peut donc être gardé inchangé lorsqu'on se place dans la situation du théorème

11.1 et qu'on redéfinit P et P par (11.1.4).

Adaptation du §5. Comme nous l'avons annoncé, c'est là que surgissent des difficultés.
Le début du paragraphe, tendant à séparer la contribution de chaque L*, est purement

topologique et peut être gardé sans changement, même dans-les cas exceptionnels où M ou
même L ou certains Li sont vides. Il s'agit de la définition (5.1), des relations (5.2) et du

LEMME 5.3.

C'est au moment d'appliquer Tisomorphisme de Leray que les choses changent. Les

relations ensemblistes (5.4) sont toujours valables mais les conditions d'application de

Tisomorphisme de Leray aux couples (P/,P;#) et (Mj,Mf), telles qu'elles sont récapitulées

par le lemme 5.5 sont maintenant en défaut. En effet, malgré la lissité de X\A, les

Li Pdj n (A\A) ne sont plus forcément lisses car n'étant pas forcément transverse aux
strates de ©+ contenues dans X\A, peut avoir des points de tangence à X\A qui forment
l'ensemble Kt de l'énoncé. Ainsi donc, compte tenu des isomorphismes (3.29), la seconde

composante du couple (P/,Lf) peut ne pas être lisse et Tisomorphisme de Leray ne lui est
alors pas applicable.

Nous commençons par montrer que ces points de tangence qui font difficulté sont en
nombre fini et non situés sur ..A, c'est-à-dire que:

(11.1.6) Les ensembles Kif pour 1 < / ^ s, sont finis et disjoints de X/.

Cette assertion résulte de l'assertion analogue concernant l'ensemble C qui intervient en
(9.6.6) dans la preuve du point (iv) du lemme 9.2. En effet, ce qu'un peu abusivement nous
avons appelé «points de tangence de % à X\A» sont les points où rencontre XAA non
transversalement. Mais puisque X\A contient la strate de ©+ passant par un tel point, ^rencontre a fortiori non transversalement cette strate. Les points de tangence de à X\A
font donc partie des points de rencontre non transversale de 9?i avec les strates de ©+. Or
ces derniers forment précisément l'ensemble C de la preuve du point (iv) du lemme 9.2 à ceci
près que X a remplacé A et <S+ a remplacé ©. L'assertion (11.1.6) se trouve ainsi établie.

Tirant parti de (11.1.6), nous allons maintenant contourner la difficulté provoquée par
les K, en les intégrant au sous-ensemble algébrique A qu'on ôte de X. Nous posons donc

(H.1.7) K= U Ki
i 1

et

(11.1.8) A' — A u K
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C'est un nouveau sous-ensemble algébrique fermé de X. Nous allons continuer avec A ' à la

place de A; ce n'est qu'au moment des conclusions que nous reviendrons à A. Clairement,

X\A' est lisse (éventuellement vide) et maintenant plus aucun élément du pinceau A n'a de

points de tangence avec X\A '. Mais nous sommes sortis des hypothèses du théorème 11.1

car la stratification ©+ de X n'est pas forcément adaptée à A', c'est-à-dire que A' n'est pas
forcément réunion de strates. Nous sommes donc amenés à modifier ©+ en

(11.1.9) e+' ©j'X\K u {{c} | C 6 K}

Comme K est fini, le même argument que dans la preuve du point (iv) du lemme 9.2 montre

que <&+' est aussi une stratification de Whitney de X (en fait, la situation est ici beaucoup
plus simple). Maintenant A ' est bien réunion de strates de ©+ '. D'autre part, comme Jt et

les hyperplans de A autres que 0),..., "Xs sont transverses dans P"(C) aux strates de ©+
et ne rencontrent pas K, ils sont aussi transverses dans PW(C) aux strates de ©+/. Si nous

prenons donc A' et ©+/ à la place de A et ©+, nous sommes dans les hypothèses du théorème

11.1 avec le même pinceau A et les mêmes hyperplans exceptionnels ^, .7^.

Tout ce qui a été fait jusqu'ici avec A et ©+ est donc aussi valable avec A ' et ©+'. Mais

nous devons introduire de nouvelles notations relatives à ces nouveaux éléments pour les

distinguer de celles relatives aux anciens. Nous faisons la convention suivante:

Toute notation relative à la situation avec A et ©+ sera transformée en une

(11.1.10) ' notation homologue relative à la situation avec A' et @+/ en lui affectant un

prime.

Ainsi, par exemple, P' X\A', P' X\Ä\ où, bien entendu, A' désigne la transformée
totale de A '. Et

L\ n P'
' # ~

Lt « n P

P* P'\{L\# u kjL'#)
p; p; u l\*
etc...

C'est donc aux couples (P-,L/#) et (M-, M• *) que nous allons demander de satisfaire

au lemme 5.5. Il faudra toutefois tenir compte de la vacuité éventuelle de M' ou même de

certains L\ en ajoutant, pour chaque point de l'énoncé, la possibilité des cas exceptionnels

suivants:

(11.1.11)

(i) Si M' est vide, M\* et M\ sont vides; si L\ est de plus vide, L\* est

vide; il se peut même que P\ soit vide.

(ii) Si M' est vide, M\ et M\* sont vides.

(iii) Même chose.

Exemple 1. X D u {x0} où D est une droite projective ne contenant pas Xo;

A {üq} où fl0 e D\ {ZA{ß0}> {ßoK {^o}}- Alors ne rencontre ni D ni x0; on peut

prendre seulement 2 hyperplans «mauvais»: déterminé par Jé et x0 et déterminé par
et tf0; supposons que On a donc M 0, L\ {x0,xi} avec xj e D et
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L2 0. On a, d'autre part, K\ {xo} et K2 0, donc Lj {xi} et L2 0. Enfin,
L(= I/) est réduit à un point donc ni P[ ni P'2 ne sont vides.

Exemple 2. X - {x\, ...,xp},A 0. Dans ce cas A' X et P' 0 bien que
P 3C\^4 ne soit pas vide. Comme P' va devoir remplacer P, cela explique que nous n'ayons

pas écarté de la démonstration le cas trivial où A X.
Nous allons maintenant vérifier que le lemme 5.5, qui est le verrou de la situation, est,

une fois complété par (11.1.11), valable pour les couples et (M, Mi *) avec M'
remplaçant M au point (iii). Rappelons, pour commencer, que // et X sont transverses dans

P"(C) à P' - X\A ' (en convenant qu'il y a transversalité quand P' ou l'intersection est

vide) puisqu'ils sont transverses à toutes les strates de ©+/ et que X\A ' en est une réunion.
Il en résulte que, lorsqu'ils ne sont pas vides, M' et L' sont des sous-variétés (lissas!) de P'
de codimensions complexes pures respectives 2 et 1. Mais, par construction de A', les hyper-
plans exceptionnels 7Q aussi sont transverses à X\A ' donc, quand ils ne sont pas vides, les

L'j aussi sont des sous-variétés de P' de codimension pure 1. Nous servant de ces faits, nous
allons maintenant passer en revue les démonstrations des différents points du lemme 5.5.

Dans la preuve du point (iii), M' n'est plus un ouvert de //. Quand il n'est pas vide,
c'en est toutefois une sous-variété, d'après ce qui précède, et le reste de l'argument utilise
seulement ce fait-là.

Dans la preuve du point (i), pour le couple (M-, M\#), il faut rajouter la précaution que
M' peut être vide. En ce qui concerne le couple {P\, L\#), il se trouve que P\ continue à être

un ouvert de P', car les relations (5.2) sont toujours valables, mais que P' n'est plus un
ouvert de P77. A la vacuité éventuelle de P] ou L) * près, la démonstration resterait toutefois
valable si nous montrions que P' est vide ou est une sous-variété de P" transverse à X'f.
Mais, quand P' est non vide, cela résulte des assertions (5.5.1) et (5.5.2) appliquées avec
5 P' et JT= Zi.

Dans la preuve du point (ii), on se trouve devant la même modification que pour le point
(i). Mais, si M' n'est pas vide, on peut voir que M' est une sous-variété de P' en appliquant
(5.5.1) à S P'. L'assertion (5.5.2) appliquée avec JT i?/ donne de plus que M' est
transverse à X* dans P". Comme P' 3 M', le même raisonnement que dans la preuve du
point (iii) du lemme 9.2 montre alors que M' est transverse dans P'àP'n Xf L\*.

Cela achève de montrer que le lemme 5.5, complété par les éventualités (11.1.11), est
valable pour les couples (P\, L\*) et {M\, M\*).

La validité de l'isomorphisme de Leray (5.6) et de ses propriétés (5.7) et (5.8) est
conditionnée par les trois points du lemme 5.5. Mais dans les cas supplémentaires
exceptionnels que peuvent présenter les couples (P-, L-#) et (M-, Mf et qui sont donnés par les
points correspondants de (11.1.11), on a encore trivialement (5.6), (5.7) et (5.8). Les couples
(P'j,L'j#) et (M-, M]*) y satisfont donc.

Le reste du §5 repose uniquement sur les isomorphismes (5.6) avec leurs propriétés (5.7)
et (5.8), sur le lemme 5.3 et sur les isomorphismes (3.29) avec la première remarque qui les
suit. Ce qui précède montre donc que son contenu est valable dans la situation du théorème

11.1 et avec les nouvelles définitions (11.1.4) mais à condition de remplacer A par
l'ensemble A ' défini en (11.1.8) sans toutefois avoir à changer le pinceau A ni ses hyperplans
exceptionnels.

Adaptation du §6. Nous allons voir que le contenu de ce paragraphe est valable dans
la situation du théorème 11.1 et avec les nouvelles définitions (11.1.4), sans avoir à remplacer
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A par Ar. Tout d'abord, en effet, nous laissons la définition de / en (6.1) inchangée mais
elle s'entend avec les nouvelles définitions (11.1.4) pour P et P. Cette application continue
à induire les isomorphismes (6.2) car ce ne sont autres que les isomorphismes (3.29).

D'autre part, le fait que le morphisme d'éclatement f coïncide avec la première projection
sur J/ - // x P*(Q implique toujours, comme en (6.3), que l'application /' que /induit
entre M et M coïncide avec la première projection deMx P'(C). Alors, la suite exacte
(6.4) demeure valable car elle résulte de manière purement topologique de cette structure de

produit et de la valeur de /'.
Nous en venons maintenant à la proposition 6.8. Sa démonstration figure dans [Ch2]

proposition 4. Elle débute par le lemme 1 qui affirme que l'homomorphisme fk admet une
section, puis renvoie pour le reste à la démonstration de [A-F2] §4, theorem 2.

La démonstration de [A - F2] se place dans le cas où P est un sous-ensemble algébrique
fermé lisse de P"(C) mais, une fois admis le résultat sur/^, elle consiste en un raisonnement

topologique valable pour une variété quasi-projective qu'il n'est même pas nécessaire de

supposer lisse. Ce raisonnement utilise en effet seulement les faits suivants:

— que / induise un isomorphisme de P\M sur P\M; mais cela demeure vrai comme

simple corollaire de la propriété analogue pour le morphisme d'éclatement f;

— que le cylindre de l'application /' soit rétracte par déformation d'un voisinage ouvert
dans le cylindre de l'application /; pour cela, il suffit que le couple formé par ces deux

cylindres d'application soit triangulable (cf. [Sp] 3.3.11); mais c'est bien le cas puisque le

couple (P, M) est triangulable (cf. [Lo] et [Hi]);

— l'isomorphisme de Thom pour le fibré en sphères M sur M; mais puisqu'il s'agit,

comme nous l'avons vu, d'un fibré trivial, on peut se ramener à la formule de Künneth qui
est valable sans hypothèse de lissité de la base (mais notons bien que dans notre situation

M est lisse!). Remarquons que tout cela inclut l'éventualité que M soit vide; dans ce cas /
est tout simplement un isomorphisme.

La démonstration du lemme 1 de [Ch2] se place dans le cas où P P"(C)V4, mais,
outre le cas trivial P 0, elle est en fait valable dès lors que P et P sont des sous-variétés

de Pn et P"(C), que / est propre et que toute composante connexe de P rencontre P\M
(pour montrer que le degré de /au-dessus de tout compact de P est 1). Ici, nous sommes
dans la situation où P X\A avec l'hypothèse que X\A est lisse. D'autre part, la trans-
versalité de dans P/Z(C) aux strates de ©+ implique que .Jl est transverse à X\A qui
en est une réunion. Il en résulte, d'après l'assertion (5.5.1), que, si P est non vide, P est une
sous-variété de P". Il en résulte aussi qu'aucune composante connexe de P ne peut être

contenue dans M. Enfin, la propreté de / ne pose pas problème car P f_1(P) et f est

propre.
Cette analyse de sa démonstration, montre que la proposition 6.8 est encore valable

dans notre situation.

Enfin, le corollaire 6.9 qui conclut le paragraphe demeure aussi valable car il ne fait

que rassembler la suite exacte (6.4) et la proposition 6.8. Cela achève la vérification de la
validité du contenu du §6.

Adaptation du § 7. Conformément à ce que nous avons annoncé au début de ce

paragraphe, nous y avons seulement utilisé le diagramme commutatif (7.1), la proposition
4.23, le corollaire 5.20, le corollaire 6.9 et des lemmes élémentaires sur la topologie de
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P^C). La possibilité d'écrire le diagramme (7.1) est donnée par les isomorphismes (3.29) et

sa commutativité provient alors de la définition même des applications qui y figurent. Dès

lors donc qu'on se place dans une situation où les isomorphismes (3.29) et les énoncés des

§§4, 5 et 6 que nous avons cités sont valables, les conclusions du §7 sont aussi valables.

Adaptation du §8. C'est la même chose que pour le §7, excepté que, dans la démonstration

du lemme 8.7, on utilise aussi le corollaire 3.30 et les isomorphismes (3.29) pour
prouver la relation (8.7.3). Le corollaire 3.30 est maintenant remplacé par l'énoncé (11.1.5)

qui inclut les éventualités nouvelles où M ou même L sont vides. Mais dans ces cas (8.7.3)
est trivialement vraie. Les conclusions du § 8 sont donc valables dans les situations où l'énoncé

(11.1.5), les isomorphismes (3.29) et les énoncés terminaux des §§4, 5 et 6 sont valables.

Bilan. Nous avons vu que les conclusions principales des §§ 3, 4 et 6, en particulier celles

dont on se sert aux §§7 et 8, sont valables dans la situation de l'énoncé du théorème 11.1

si l'on redéfinit P et P comme en (11.1.4) (et les éléments qui leur sont liés en conséquence)
et si l'on modifie légèrement le corollaire 3.30 en l'énoncé (11.1.5). En revanche, pour assurer
la validité des conclusions du §5, nous avons dû remplacer A par l'ensemble algébrique A'
défini en (11.1.8). Mais, grâce à la stratification introduite en (11.1.9), nous avons pu nous
retrouver dans les hypothèses du théorème 11.1 sans avoir à changer le pinceau A ni ses hyper-
plans exceptionnels. Les énoncés des §§ 3, 4 et 6 dont nous avons parlé sont donc aussi valables
avec Ai' à la place de A. Ce que nous avons dit sur les §§7 et 8 montre alors que leurs
conclusions sont valables dans la situation du théorème 11.1, avec P et P définis comme en
(11.1.4) mais avec A' à la place de A.

Nous aboutissons ainsi aux conclusions du théorème 1.3 mais en devant y remplacer les

homomorphismes mk, m'k et lk respectivement par les homomorphismes m'k, mk et l'k,
également induits par inclusion, et spécifiés ci-dessous avec la convention d'écriture (11.1.10):

[ m'k : Hk{M')-+Hk{L*)
(11.1.12) mf* Hk(M')~> Hk{L$ pour l<ÎOl lk : Hk(L') - Hk{P')

Il est maintenant temps de revenir de A' à A. Utilisant toujours la convention (11.1.10),
nous avons les relations suivantes entre éléments liés à A et éléments liés à A '

' M' M
V JL

t11-1,13) L\ Lj\Ki pour 1 ^ ^ s

P' P\K

où K est défini en (11.1.7) comme réunion des Kh En effet, // et ne rencontrent pas
K et chaque rencontre K en exactement Kh Compte tenu des définitions (11.1.4), les
homomorphismes mk qui figurent dans nos conclusions sont donc bien ceux de l'énoncé et
l'on a d'autre part

(11.1.14) m'k mk

Au stade où nous en sommes, nous aboutissons donc à des conclusions de surjectivité
ou d'injectivité pour l'homomorphisme naturel l'k spécifié en (11.1.12) sous précisément les
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hypothèses respectives que l'énoncé du théorème 11.1 donne en vue de la surjectivité ou de

l'injectivité de l'homomorphisme lk. Il nous reste donc à étudier la relation entre lk et l'k.
Notons

(11.1.15) qk:Hk(P')^Hk(P)

l'homomorphisme induit en homologie de rang k par l'inclusion P' P\K P. Nous avons

(11.1.16) lk Qk°l'k

et sommes donc conduits à étudier quand qk est surjectif ou injectif. Nous avons évidemment

recours à la suite exacte d'homologie relative du couple (P, P'). La finitude de K, établie en

(11.1.6), rend la chose particulièrement simple car, comme P est lisse, nous pouvons isoler
les éléments c de K au sein de disques ouverts Dc de P mutuellement disjoints et centrés en

ces éléments. En excisant le complémentaire dans P de la réunion de ces disques,
complémentaire qui est un fermé de P contenu dans l'ouvert P\K, nous obtenons

Hk(P, P') © Hk(Dc,Dc\{c})
c e K

Or Dc est un disque de dimension réelle 2 dimcP où dimcP désigne la dimension complexe
de P en c. Mais P X\A étant ouvert dans X, le point c est un point lisse de X et dimcP
est égale à la dimension de l'unique composante irréductible de X passant par c. Comme

c $A, il ne peut évidemment pas s'agir d'une composante irréductible contenue dans A. Ainsi
donc, la dimension du disque Dc est-elle l'un des nombres 2d\, 2dp où d\, dp sont les

dimensions complexes des composantes irréductibles de X non contenues dans A. Par
conséquent

Hk(P, P') 0 pour k =£ 2d\, 2dp

La suite exacte d'homologie relative du couple (P, P') donne donc que qk est surjectif pour
k ^ 2d\, 2dp et injectif pour k 2d\ - 1, ...,2dp - 1. La relation (11.1.16) montre
alors qu'on a les implications:

r l'k surjectif => lk surjectif pour k =/= 2d\, 2dp
{ i'k injectif =» lk injectif pour k d= 2d\ - 1, ...,2dp - 1

Comme il ne nous manquait plus que d'avoir à remplacer l'k par lk pour obtenir les

implications finales du théorème 11.1, nous y aboutissons donc avec les restrictions respectives

sur k que comportent les relations (11.1.17). d
Nous allons conclure ce paragraphe en montrant que le théorème 11.1

permet de retrouver le théorème de Lefschetz pour une variété quasi-projective
lisse. Voici l'énoncé précis auquel il permet d'aboutir:

Théorème 11.2. Soit X un ensemble algébrique fermé de P/7(C),

avec n ^ 1, et soit A un sous-ensemble algébrique fermé de X tel que

X\A soit lisse. Soit 0+ une stratification de Whitney de X telle que A
soit réunion de strates. Alors, pour tout hyperplan projectif de P"(C)
transverse aux strates de 0+, l'inclusion S n (2é\^4) X\A induit:
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des isomorphismes des groupes d'homologie singulière à coefficients entiers

Hk(2d n (X\A))'^ Itk(X\A) pour k^d - 2

et un homomorphisme surjectif

Hk(9? n (X\A)) Hk(X\A) pour k d - 1

ow d est la plus petite dimension des composantes irréductibles de X
non contenues dans A.

Cet énoncé est un corollaire de théorèmes plus forts conjecturés par Deligne
et démontrés indépendamment par Goresky-MacPherson et Hamm-Lê
(cf. [De] conjecture 1.3, [G-Ml] theorem 4.1, démonstration détaillée dans

[G-M2] II.5.1 et [H-L2] theorem 1.1.3). Nous avons dit dans l'introduction
que Goresky-MacPherson et Hamm-Lê ont aussi donné des généralisations aux
cas singulier et local. Goresky et MacPherson utilisent la théorie de Morse
stratifiée et Hamm et Lê une variante astucieuse de la théorie de Morse à coins.
Nous allons voir qu'on peut aussi obtenir le théorème 11.2 à la manière de

Lefschetz en le déduisant du théorème 11.1:

Démonstration du théorème 11.2 à partir du théorème 11.1. Elle sera très semblable
à la démonstration du théorème 1.1 à partir du théorème 1.3 donnée au §9. Mais comme
cette fois il n'y a pas de codimension à prendre en compte, il sera plus commode de faire
une récurrence sur la dimension n de l'espace projectif ambiant.

Pour n 1, X est réduit à un point et il n'y a que quatre possibilités concernant X\A :

ou bien vide, ou bien composé d'un nombre fini de points non contenus dans ou bien
égal à P^C), ou bien enfin égal àP^C) moins un nombre fini de points non contenus dans
-Z Dans le premier cas, il est naturel de convenir que d - 1. Dans ce cas et dans le
deuxième, où d 0, les conclusions du théorème sont vides. Nous préférerons dire qu'elles
sont trivialement vraies en faisant la convention Hk{ 0 pour k < 0 comme dans le théorème

11.1 que nous utiliserons. Dans les deux derniers cas, on a d 1 et seule la conclusion
de surjectivité est non triviale. Mais comme X\A est connexe par arcs et SX n (X\y4) non
vide, elle est bien satisfaite.

Pour l'étape de récurrence, nous supposons que les conclusions du théorème 11.2 soient
satisfaites pour n n0 ^ 1 et nous voulons montrer qu'elles sont alors satisfaites pour
n no + 1. Nous nous plaçons donc dans cette situation. Comme alors n ^ 2, le lemme 9.1
est valable avec X et ©+ à la place de A et © et le (n — 2)-plan projectif Xé qu'il donne
est l'axe d'un pinceau A satisfaisant aux hypothèses du théorème 11.1 dont Z est un «bon»
hyperplan. Nous adoptons alors aussi les autres notations du théorème 11.1. Nous voulons,
comme au §9, tirer parti de ses implications finales. Nous allons ici aussi voir que les antécédents

de ces implications sont satisfaits pour des valeurs convenables de k grâce à l'hypothèse
de récurrence. Ce sera, cette fois, le lemme suivant qui permettra de l'appliquer:
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Lemme 11.3. Avec les hypothèses et notations du théorème 11.1, le pinceau A
possède les propriétés suivantes:

(i) Si 9 n X\ 9! n A est non vide, soit d' la plus petite dimension des composantes
irréductibles de 9 n X non contenues dàns 9 r\ A; on a alors d'^ d - 1.

(ii) Pour 1 < je ^ s, si 9\ n X\ 9[ n (A u K/) est non vide, soit d\ la plus petite
dimension des composantes irréductibles de 9-t n X non contenues dans

9\ n {A u Ki); on a alors d]^ d - L

(iii) 9nX\9nA est lisse; la restriction (& + \gde ©+ à 9 est une stratification
de Whitney de 9 n X telle que 9 n A soit union de strates et 9 est transverse
dans 9 à toutes les strates de © +

| g.

(iv) Pour 1 ^ i ^ s, 9( n X\ 9-t n (A u K)) est lisse; la restriction de ©+ à 9[ peut
être raffinée en une stratification de Whitney ©* de 9[ n X telle que
9[ n (A u K;) soit union de strates et que Jl soit transverse dans 9[ à toutes
les strates de

On n'a pas forcément l'égalité aux points (i) et (ii) comme le montre l'exemple 1 donné après

(11.1.11). C'est manifestement un cas exceptionnel, mais nous ne prendrons pas ici la peine

de préciser les conditions de l'égalité.

Nous terminons la récurrence à l'aide du lemme 11.3 avant de le démontrer.

D'après le point (iii) du lemme, nous pouvons appliquer l'hypothèse de récurrence à

9 n X et 9 n A dans 9 avec .Jl comme hyperplan. Comme

9 n X\ 9 n A 9 n (X\A), nous obtenons

m/< est surjectif pour k ^ d'- 1

m^ est injectif pour k ^ d'- 2

où d'est défini comme dans le point (i) du lemme. D'après ce point donc, si 9 n X\ 9 n A
est non vide, cela nous donne a fortiori que

mk est surjectif pour k ^ d - 2

mjç est injectif pour k ^ d — 3

Ces assertions sont aussi trivialement vraies si 9 n X\ 9 n A est vide.

D'après le point (iv) du lemme, nous pouvons aussi appliquer l'hypothèse de récurrence

pour 1 ^ / O à 9[ n X et 9j n (A u Ki) dans 9j avec Jl comme hyperplan. Comme

9i n X\9i n (A u K)) est égal à 9-t n CAA^4)\^/, nous obtenons de même, compte tenu
du point (ii) du lemme, que si 9-t n X\ 9-t n (d u Kj) est non vide, alors

m'I est surjectif pour k < d - 2
pour 1 < / < s

m'I est injectif pour k ^ d - 3

Et, si 9{ n X\9-{ n (d u Ki) est vide, ces assertions sont aussi trivialement vraies.

Le théorème 11.1 nous permet alors de conclure à la surjectivité de /* pour k ^ d - 1

et à son injectivité pour k ^ d — 2, sous réserve qu'aucune de ces valeurs respectives de k
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ne soit exclue par les clauses restrictives respectives de la conclusion du théorème 11.1. Il
suffirait en fait, pour cela, qu'on ait d - 1 < 2d puisque d est la plus petite des dimensions

des composantes irréductibles de X non contenues dans A. Mais cette inégalité étant

équivalente à d > - 1, est toujours vérifiée. Les conclusions obtenues sur sont donc bien

valables et ce sont précisément les conclusions du théorème 11.2. Cela achève la récurrence,

sauf dans le cas trivial où X\A 0.
Il nous reste à démontrer le lemme 11.3 pour que la preuve du théorème 11.2 soit

complète.

Démonstration du lemme ILS.

(i) Supposons LA n X\ X n A non vide. Soit Y une composante irréductible de SX n X
non contenue dans LA n A et de dimension d'. Soit Z l'union des autres composantes
irréductibles de LA n X. Alors A n Y et Z n Y sont deux sous-ensembles algébriques fermés
de Y distincts de Y et, comme Y est irréductible, il en est de même de leur réunion. Soit donc

y e Y\(A u Z). En un tel point, on a

dim^y dim^Zn X A dim^Z + dimyX - dim^P"(C) dim^A" - 1

(cf. [Wh3] 2.12C). Mais comme y $ A, toutes les composantes irréductibles de X passant
par y sont de dimension ^ d et l'on a donc aussi dim^A" ^ d. L'inégalité annoncée pour d'
en résulte.

(ii) Le raisonnement du point (i) n'utilise pas d'hypothèse de transversalité. Il est donc
aussi valable avec Z/ à la place de LA, Si l'on remarque alors qu'une composante irréductible
Yj de 7) n X qui n'est pas contenue dans Z/ n (A u X/) n'est a fortiori pas contenue dans
Z/ n A, cela donne le point (ii).

Assertions de lissité de (iii) et (iv). Puisque Z n X\ LA n A est égal à LA n (X\A) et

Z n X\ Z n (A u Kj) à 7) n (X\A)\Kj, ces ensembles sont ceux que nous avons notés
L' et L\ dans la démonstration du théorème 11.1 (cf. (11.1.4) et (11.1.13)). Mais nous y
avons montré qu'ils étaient lisses au moment de vérifier que les couples (P-,L-#) et

(M-,M-#) satisfaisaient au lemme 5.5 complété par (11.1.11).

(iii) Il reste à voir l'assertion de stratification. Mais, outre le fait évident que ZnT
soit union de strates, ce n'est autre que le point (iii) du lemme 9.2 où Ai et © jouent le même
rôle que X et ©+ ici.

(iv) En appliquant le point (iv) du lemme 9.2 avec AT et ©+ à la place de A et ©, on
obtient une stratification ©;+ qui a les propriétés voulues excepté qu'on ne sait pas si Kj est
union de strates. Mais si l'on revient à la démonstration du lemme 9.2, on voit qu'en
construisant la stratification demandée, on prend comme strate chaque point de X en lequel
Z7, rencontre non transversalement la strate de ©+ passant par ce point (cf. (9.6.6) et
(9.6.7)). Et comme X\A est réunion de strates de ©+, les points de Kj font partie des points
en question. Cela montre que ©;+ satisfait aussi à l'exigence que Z} n (A u Kj) soit union
de strates. EU

Avec la démonstration de ce lemme, la déduction du théorème 11.2 à partir du théorème
11.1 est complète. EU EU

Remarque 11.4. On ne peut pas, de la même manière que nous avons
déduit le théorème 1.1 du théorème 1.3, démontrer, à l'aide du théorème 11.1,
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un théorème du type de Lefschetz valable pour une variété quasi-projective
lisse générale et qui prenne en compte la codimension de A dans X. En effet,
une fois qu'on est descendu en dimension jusqu'à ce que la trace de A soit
vide ou réduite à un nombre fini de points, on se retrouve devant les

particularités topologiques de X lui-même alors que, pour X P"(C), on se

retrouvait dans la situation simple d'un espace projectif. Voir la remarque 9.5

pour plus de détails et voir aussi (12.2).

12. Directions de recherche

Le cadre géométrique développé dans cet article permet vraisemblablement
d'aborder quelques autres problèmes que voici. En particulier, je peux déjà
annoncer une généralisation du second théorème de Lefschetz (cf. (12.3)).

(12.1) Sections par des hypersurfaces au lieu de sections hyperplanes.

Au lieu de considérer, comme dans les théorèmes 1.3 et 11.1, un pinceau

d'hyperplans dans P"(C), on peut considérer un système linéaire à un
paramètre d'hypersurfaces de degré d > 1. Le morphisme de Véronèse v de

degré d (cf. [La] 1.3) permet de plonger P"(C) dans PN(C) de telle sorte

qu'un tel système d'hypersurfaces soit transformé en les sections de

par un pinceau d'hyperplans de PN(C). On doit pouvoir obtenir une
extension des théorèmes 1.3 et 11.1 à ces systèmes à un paramètre d'hypersurfaces

en appliquant le théorème 11.1 au pinceau d'hyperplans
correspondant dans PN(C). Mais interviendront alors, en plus, les points de

tangence d'éléments de ce pinceau avec ces éléments exceptionnels

correspondront à des hypersurfaces du système linéaire présentant des

singularités. On devrait toutefois pouvoir en déduire, en raisonnant comme
dans la démonstration du théorème 11.2 que nous avons donnée, que le

théorème 1.1 est aussi valable pour la section de P"(C)\4 par une hyper-
surface lisse transverse aux strates d'une stratification de Whitney de A.

(12.2) Extension du théorème 1.1 à certaines variétés quasi-projectives
particulières.

Nous avons vu pourquoi le théorème 1.1 ne pouvait être généralisé au cas

où l'espace ambiant P"(C) est remplacé par un ensemble algébrique fermé X
de P"(C), même en supposant X\A lisse (cf. remarques 11.4 et 9.5). On peut
toutefois se demander s'il y a des classes significatives de X pour lesquelles

il est valable. D'après (12.1), il y aurait en tout cas les variétés de Véronèse.
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