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- 362 D. CHENIOT

10. LEMMES D’ALGEBRICITE ET DE GENERICITE

Nous avons regroupé dans ce paragraphe les justifications des assertions
d’algébricité ou de généricité utilisées dans la démonstration des théorémes 1.1
et 1.3 ou formulées dans leur énoncé méme. Nous les obtenons toutes comme
corollaires de la proposition principale d’algébricité 10.10 ci-dessous, a I’excep-
tion toutefois de la proposition finale 10.20 qui utilise le théoréme de Sard.
Nous ferons essentiellement des raisonnements d’analyticité susceptibles d’étre
généralisés au cas d’un espace analytique non projectif. Dans notre cas
particulier, nous pourrons conclure a 1’algébricité grace au théoreme de Chow
affirmant 1’identité entre sous-ensembles analytiques fermés et algébriques
fermés d’un espace projectif complexe.

Etant donné n > 0, soit
n: C"TI\{0} P"(C)
la surjection canonique. Pour x € P”(C), nous poserons
(10.1) x=n"1(x)u{0}.

C’est une droite vectorielle de C"*1. Si P est un r-plan projectif de P”(C) avec 0 < r < n,
nous poserons aussi '

(10.2) P=n"1(P)u{0},

C’est un (r + 1)-plan vectoriel de C”*!. En particulier {X} = X pour tout x € P"(C).
Pour 0 < r € n, nous noterons

(10.3) G’(P"(C)) I’ensemble des r-plans projectifs de P"(C) .
Nous regarderons G’ (P"(C)) toujours au travers de I’identification canonique
@: G'(PY(C)) = G T l(cr+y

P - P

(10.4)

avec la grassmannienne G’+1(C"*!) des sous-espaces vectoriels de dimension r + 1 de
A

C"+1 e sous-espace P étant défini par (10.2). Nous aurons donc sur G’(P"(C))
une structure de variété analytique complexe compacte et connexe de dimension
r+D)((n+1)—(@+1))=(+1) (n—r) (cf. [Wh3] 5.13B et [Di2] (16.11.8) et (16.11.9)).
C’est en fait une structure de variété algébrique (cf. [Dil] §3, n° 5). Dans le cas particulier
ou r = 0, on a ’isomorphisme canonique

P"(C) > G°(P"(C)
(10.5) ©) ( )

x P {x}.
Mais on a aussi un plongement analytique

(10.6) y. G ity PN-1(C) .
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, qui & Fe G t1(C"*1) fait correspondre le

avec N = (”+ 1) _(n+Dn..(n-r+1)

r+1 r+ 1!

point W(F) de PV~ 1(C) dont des coordonnées homogenes sont données par un systéme de
coordonnées grassmanniennes de F. On obtient un tel systéme en portant en colonnes d’une
matrice les coordonnées des vecteurs d’une base de F et en en prenant les mineurs d’ordre
r + 1 (ordonnés par exemple lexicographiquement mais qu’il est plus commode d’indexer par
le multiindice des lignes choisies); le point W(F) ne dépend pas du choix de cette base
(cf. [Wh3] 5.13D). Ce plongement est en fait algébrique (cf. [Dil] §3, n°® 5). On a alors aussi
le plongement

(10.7) Yod: G (PHC) PN 1(C)

et, pour P e G'(P"(C)), on appelle aussi «coordonnées grassmanniennes de P» les
coordonnées grassmanniennes de ®(P). Dans le cas particulier ot r = 0, ona N — 1 = n et
¥ O ® est un isomorphisme, réciproque de I’isomorphisme (10.5); et pour x € P”(C), les
coordonnées grassmanniennes de {x} coincident avec les coordonnées homogenes de x.
D’aprés le plongement (10.7), pour montrer [’algébricité d’un sous-ensemble & de
G’"(P"(C)), nous pourrons nous contenter d’un raisonnement d’analyticité dans G”(P"(C))
car, d’aprés le théoréme de Chow (cf. [Wh3] 5.9G), I’ensemble W (@ (%)) est algébrique fermé
si et seulement s’il est analytique fermé dans PV ~1(C) donc si et seulement si & est
analytique fermé dans G”(P"(C)). Notons qu’alors les dimensions au sens algébrique et au
sens analytique de % coincident (cf. [H-P] chap. X, §§5 et 14).

Il sera aussi question d’algébricité de sous-ensembles de la variété algébrique
P"(C) x G"(P"(C)). Comme elle se plonge dans P*(C) x PN~ 1(C) et qu’on a aussi
I’analogue du théoréme de Chow pour les sous-ensembles algébriques fermés d’un produit
d’espaces projectifs complexes (cf. [Wh3] 5.11B), un sous-ensemble .¥ de
P"(C) x G"(P"(C)) sera algébrique fermé si et seulement s’il est analytique fermé dans
P"(C) x G"(P"(C)). Ici aussi les dimensions algébrique et analytique complexe de .7
coincident.

Etant donnée une sous-variété analytique pure S de P7(C), avec n > 0,
nous considérons, pour 0 < r < n, ensemble

Z7(S) ={(x, P) e P"(C) X G"(P"(C)) |[xe SN P

et P n’est pas transverse en x & S dans P"(C)} .

(10.8)

Et, si © est un ensemble de sous-variétés pures de P"(C), nous posons

(10.9) @ = U F(S) .

Se®

Voici alors I’énoncé de la proposition principale de ce paragraphe:

PROPOSITION 10.10. Soit A un ensemble algébrique fermé de P"(C)
avec n =0 etsoit © une stratification de A satisfaisant ¢ la condition
(a) de Whitney (mais pas forcément & la condition (b) et ne possédant pas
forcément la propriété de frontiere: cf. [Wh2] §§ 18 et 19, [L-12] (1.2) et [Ch3]
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2¢ partie, §5). Alors, avec les notations (10.9) et (10.8) ci-dessus, & ’(®) est
un sous-ensemble algébriqgue fermé de P"(C) x G'(P*(C)) pour
O0<r<n Pour nz21 e r=n—1, onalamajoration dim &7~ 1(&)
<n-—1 (avec la convention dim & = — 1).

Remarque 10.11. On peut en fait montrer que, si 4 est un sous-ensemble
propre de P”(C) (c’est-a-dire distinct de P”(C)) et non vide et si d = dim A,
on a, pour 0 < r < n,

rin—r)+d si r+d<n

dim 7" (®) =
r+1)(n—=r)—1 si r+d=2n-1

(cf. [Ch3] 2¢ partie, corollaire 6.9). Nous nous contenterons ici de la majora-
tion dim &7~ 1(&) < n — 1 pour r = n — 1 qui est plus simple a établir. Elle
nous servira & montrer que certains sous-ensembles algébriques sont distincts
de I’ambiant.

Nous ferons reposer la démonstration de la proposition 10.10 sur les deux
lemmes suivants:

LEMME 10.12. Sous les hypotheses de la proposition 10.10, les ensembles
"(S) pour S e€ & sont analytiques locaux d’adhérence analytique dans
P"(C) x G"(P"(C)).

LEMME 10.13. Sous les hypotheses de la proposition 10.10, I’ensemble
(@) est fermé dans P"(C) x G'(P"(C)).

Le premier lemme est dii a ce que toute strate S est différence de deux
ensembles analytiques fermés; il en résultera grice a D’analyticité de la
modification de Nash de S. Le second lemme provient de Ia condition (a) de

Whitney satisfaite par ©. Nous commencons par démontrer ces lemmes:
(10.14) Démonstration du lemme 10.12.

Nous ferons comme annoncé mais nous lirons les choses sur cartes. Soit S une strate de
& de dimension d. Il nous suffit de montrer que I’assertion du lemme est vraie au voisinage
de tout point de I’adhérence de &"(S) dans P"(C) x G’(P"(C)). Nous allons en fait voir
qu’étant donné
xes,
il existe un ouvert Q de P"(C) x G"(P"(C)) de la forme
(10.14.1) Q=UxG'(P"C),

avec U voisinage ouvert de x dans P"(C), tel que Z77(S) n Q soit différence de deux
ensembles analytiques fermés de Q. Il sera alors clair que Z77(S) N Q est analytique local
et le fait que son adhérence dans Q soit analytique résultera de [Wh3] 5.3 (U).
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En fait U sera simplement I’ouvert de définition d’une carte standard de P"(C) au
voisinage de x:

(10.14.2) p:USC"
A une permutation des coordonnées prés, on peut supposer et nous supposerons que U est
formé des points y de P"(C) de coordonnées homogénes (g : ... : y,) avec yg # 0 et que
o(») = (»1/Y9, .-.» Yn/¥o). Nous allons tout lire sur cette carte. Il nous sera commode de
poser:
"= pour yeU

(10.14.3) { =ow )

E'=¢9oEnNU) pour ECPYC).

Alors S’ (qui est non vide puisque x € S) est une sous-variété pure de dimension d de C” et
on a

S = ¢(adhy(S N U)) = o(S N U) = (S)’

ou on a noté adhy pour ’adhérence dans U. Par définition d’une stratification, S et S\S
sont analytiques fermés. La relation ci-dessus montre alors qu’il en est de méme pour S’ et
S’\S’ et, d’aprés [Wh2] lemma 3.13, S est de dimension constante d.

Notons d’autre part

(10.14.4) H=P"C)\U

Phyperplan projectif a Pinfini associé a U. Alors, pour tout P e G'(P*(C)) tel que
P ¢ H, P’ est un r-plan affine de C”. Pour un tel P, nous noterons

(10.14.5) P” e r-plan vectoriel paralléle & P’.

La raison pour considérer P” est que, si P € G'(P" (C)) et y e Pn U (donc P ¢ H),
Pespace tangent a P en y se lit a travers la carte (10.14.2) comme

(10.14.6) Iyo(T,P)y=1T, P =P",
ae sorte que, si P € G"(P"(C)) et y e Pn S n U, on a I’équivalence

P est non transverse en y & S dans P"(C) &

10.14.7
( ) P’ est non transverse a I, S’ dans C".

Introduisons alors

(10.14.8) 7 ={(u, Q) e C" X G"(C™")|u € " et O n’est pas transverse a 7,,S” dans C"} ,

8:V—=>G"(C") avec V={PeG'(P"(C)|P¢ H)
PP,

(10.14.9)
(10.14.10) & ={(»,P) e P"(C) x G"(P"(C)) |y € P} .
On a, d’aprés (10.14.7),

(10.14.11) ST NQ=En(px8~Y(»).

Nous allons nous servir de ce que I’image réciproque d’un ensemble analytique fermé par
une application analytique est un ensemble analytique fermé de I’espace de départ (cf. [Wh3]
5.3 (BB)). Remarquons d’autre part que € N Q C U X V donc que lintersection avec %d’un
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ensemble fermé de U x V est fermée dans €N Q. Pour montrer, comme annoncé, que
&r (S) N Q est différence de deux ensembles analytiques fermés de Q et achever ainsi la
démonstration du lemme 10.12, il nous suffira donc de prouver les trois points suivants:

(i) % est un ensemble analytique fermé;

(i) V est ouvert et & est une application analytique;
(ili) % est différence de deux ensembles analytiques fermés de C" x G’ (C").
Le point significatif est le troisiéme. Nous les justifions dans 1’ordre.

(i) Nous avons vu que cette assertion implique I’algébricité de % et c’est en fait une
démonstration directe d’algébricité que nous allons faire. La relation y € P est équivalente
éﬁ C I/’\ (avec les notations (10.1) et (10.2)). Si alors Y est la matrice colonne formée des
coordonnées d’un vecteur non nul de p (c’est-a-dire d’un systéme de coordonnées homogénes
de y), et si M est la matrice (n +1) X (r + 1) obtenue en portant en colonnes les coordonnées
d’une base de 1/3\ la relation y C P s’exprime par I’annulation de tous les mineurs d’ordre
r + 2 de la matrice formée par la juxtaposition de Y et M. En développant ces mineurs suivant
la premiére colonne, on obtient des polyndmes séparément homogénes, de degré 1 en les coor-
données homogenes de y et de degré 1 en les mineurs d’ordre r + 1 de M, lesquels forment
un systéme de coordonnées grassmanniennes de ﬁ ; algébricité de Z résulte alors de [Wh3]
5.11 A et 5.11D compte tenu du plongement (10.7).

(i) Nous allons utiliser les plongements (10.7) de G"(P"(C)) dans PV~ 1(C) et (10.6)
de G"(C") dans PV ~1(C). Pour commencer, un élément P de G"(P"(C)) appartient & V si
et seulement si ses systéemes de coordonnées grassmanniennes comportent au moins une
coordonnée de multiindice contenant 0 non nulle. La méme condition sur les coordonnées
homogénes d’un point de PY~1(C) donne un ouvert v dont la trace sur I’image du
plongement de G”(P"(C)) est I’image de V par ce plongement. Cela montre que V est
ouvert. Pour voir ensuite la relation entre P et P”, identifions C” a H= {0} x c" c Ccntl
(Cf fig. 10.1): alors, pour P e V, le r-plan affme P’ est identifié a la projection de
P ({1} x C™") sur {0} x C" et P" est identifié AP n ({0} x C™). Soit ((E11s -+r Ent)s -oes
¢iry .-, Enr)) une base de P”'. Alors '

(0, &115 ey En1)s ooy (0, Eqrs vy Er)

A N
est une base de P n ({0} x C™) et on peut la compléter en une base de P par un vecteur
A
de P n’appartenant pas a {0} X C” dont on peut normaliser la coordonnée d’indice 0 de
sorte qu’il s’écrive (1, &g, ..., Ero)- Posons

1 0 0

Eio  &n E1r
M=1q i

&nO <t:1/11 E.-nr

Un systeme de coordonnées grassmanniennes de P est donné par les mineurs d’ordre r + 1
de M. On voit alors que ceux de ces mineurs qui contiennent la 1'¢ ligne de M donnent un
systéme de coordonnées grassmanniennes de P’’. Il y a donc une projection de C» dans C%’
qui, par passage au quotient, donne une application analytique de ’ouvert v de PN~ l(_C)
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AXYo

{1} x C"

Yn

—
-

A= {0} x C"

Ficure 10.1

dans PN ~1(C) dont & peut étre considérée comme une restriction grace aux plongements
(10.7) et (10.6). Nous avons en fait montré que & est un morphisme algébrique.

(iii) Cette assertion résultera de ce que S’ est différence des deux ensembles analytiques
fermés S’ et S'\ S’ et de ’analyticité de la modification de Nash de S’ qui est le fait essentiel
sur lequel repose la démonstration de ce lemme. Rappelons que S’ est de dimension
constante d. Si S’° désigne la partie lisse de S’, la modification de Nash de S’ est alors

(10.14.12) N ={(u, T,S% |ueS% ccCc”x GicCn.

L’analyticité de . / est démontrée dans [Wh2] theorem 16.4 a I’aide d’un systéme de champs
de vecteurs analytiques au voisinage de tout point de S’ tels que, pour u € S’0, les vecteurs
correspondants engendrent 7,S’C; Pexistence de ces champs de vecteurs résulte de la
cohérence du faisceau des idéaux des germes de fonctions holomorphes au voisinage de
chaque point de S’ qui s’annulent sur le germe de S’ en ce point (cf. [Wh2] lemma 15.1).
Nous allons relier % a .#. Commengons par constater que

(10.14.13) A0 (S x GYCM) = {(u, T,S") | ueS}
puisque ’application u — T,S’ de S’ dans G4(C") est continue. Posons ensuite

Z={w, T,0) e C"x GYC") x G"(C") |, T) e &

et Q n’est pas transverse a 7 dans C”"} ,

& = projection de & sur C" x G"(C") .
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- D’apres (10.14.13), on a
A =E€n (S xG(C")) .

L’assertion (iii) résultera alors de ce que S’ est différence de S’ et S'\S’ et de I’analyticité
de £ que nous allons déduire de celle de .#. Comme G4(C") est compact, il nous suffit
de montrer que Z est analytique fermé dans C” x G4(C") x G"(C") pour en déduire,
grace au théoreme de ’application analytique propre (cf. [Wh3] 5.4 A), que £ est analytique
fermé dans C" X G’(C"). Mais I’analyticité de # dans C” x G?(C") x G’(C") résulte bien
de P’analyticité de ./ dans C" x G?(C") car la non transversalité de Q a T est donnée par
des relations algébriques entre les coordonnées de O et T dans des cartes standard de GZ(C")
et G"(C") (cf. [Di2] (16.11.10) et [Wh3] chap. 5, §13). On a, en effet, des bases de Q et T
qui sont fonctions affines de ces coordonnées et la non transversalité en question s’exprime
par le fait que ce systéme est de rang < n donc par ’annulation de déterminants en les
composantes des vecteurs de ces bases. Cela achéve de justifier I’assertion (iii).

La démonstration du lemme 10.12 que nous avions ramenée aux assertions (i), (ii) et (iii)
se trouve ainsi terminée. [

(10.15) Démonstration du lemme 10.13.

Pour ce lemme aussi nous raisonnons sur cartes. Il nous suffit de montrer que la trace
de ¥7(®) sur tout élément d’un recouvrement ouvert de P"(C) x G"(P”"(C)) est fermée dans
cet élément. Nous pouvons réaliser ce recouvrement, comme dans la démonstration qui
précede, par des ouverts Q du type (10.14.1) ou U est un ouvert de carte standard de P"(C).
Nous fixons un tel U en faisant la méme hypothése de commodité qu’apres (10.14.2). Nous
pouvons donc nous servir de tout ce qui a été fait dans la démonstration (10.14). Nous utilise-
rons les mémes notations excepté qu’au lieu de % nous noterons Zg pour pouvoir faire
varier S dans ©. Nous écrirons donc, pour Se &,

Hs={u,Q)e C"x G'(CY|ues’

(10.15.1)
et Q n’est pas transverse a 7,5’ dans C"}

(la notation S’ est définie en (10.14.3)). Nous posons maintenant

(10.15.2) B= U %Hs.
Sed

La relation (10.14.11) donne alors
(10.15.3) @) NQ=ZFn(@xd UA).

D’apres la remarque qui suit (10.14.11) et la continuité de & démontrée dans I’assertion (ii)
de la démonstration (10.14), il nous suffit donc de montrer que % est fermé.

Comme C" et G"(C") sont métrisables (cf. [Wh3] chap. 5, § 14), nous pouvons raisonner
sur des suites. Soit ((ux, Qx)) = (4, Q) une suite de % convergeant vers un point
(u, Q) € C" x G"(C™). Puisque A4 est fermé, on a u € A’ et il existe donc une strate 7T de
© telle que u € T'. Comme d’autre part & est localement finie (dans notre cas, finie), il n’y
a au voisinage de # qu’un nombre fini de S pour S € & et, quitte a procéder a une extraction
de suite, nous pouvons supposer que u; € S’ pour tout k pour une strate S fixe. Soit d sa
dimension. Nous pouvons aussi supposer alors, griace a la compacité de G4(C"), que
(Ty,S") = L pour un certain d-plan L. Maintenant, par hypothése, Qy est non transverse a
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T,,S’ dans C” pour tout k. Nous avons vu, dans la preuve de ’assertion (iii) de la démons-
tration (10.14), que lensemble des couples (R, K) € G'(C") x G%(C") qui sont non
transverses dans C” est algébrique fermé. La non transversalité se conserve donc a la limite
et Q est non transverse a L dans C”. Mais nous avons supposé que la stratification &
satisfaisait a la condition (a) de Whitney. Comme cette condition est de nature locale et
invariante par isomorphisme analytique, le couple (S’, 7”’) y satisfait au point #. On a donc
T,T" C L. Le r-plan Q est alors a fortiori non transverse a 7,7’, ce qui signifie que
(u, Q) € Z1 C ZA. Cela montre que # est fermé. La démonstration du lemme 10.13 que
nous avions ramenée a cette assertion se trouve ainsi terminée. |

(10.16) Démonstration de la proposition 10.10.

D’apres le lemme 10.13, &7 () est fermé dans P?(C) x G"(P"*(C)). Il est donc réunion
des adhérences des &"(S) pour S € ©. Comme cette réunion est localement finie (en fait
finie), il résulte alors du lemme 10.12 que &7 (©) est analytique (cf. [Wh3] 5.3 (1)). Et nous
avons vu que cela impliquait que &7(®) est algébrique.

Ce qui précéde montre aussi que

(10.16.1) dim &7(©) = sup dim &7(S)
Se®

(cf. [Wh3] 5.3(K)). Mais on a
(10.16.2) dim &77(S) = dim &7(S) ,

egalité valable pour tout ensemble analytique local V d’adhérence analytique: en effet, il est
d’une part clair que dim V < dim V. D’autre part, étant donné un point lisse de V de
dimension maximum §, il posséde un voisinage ouvert dans 1 compos¢ de points lisses de
méme dimension et ce voisinage rencontre nécessairement V; comme V est localement fermé,
les points de rencontre sont aussi des points lisses de dimension & de V, d’ou
dim ¥ < dim V.

Pour majorer dim &7(®), il suffit donc de majorer dim &’(S) pour S € &. Lorsque
&7(S) = & (ce qui arrive pour r = n ou dim S = n), on a la convention dim & = — 1. En
dehors de ce cas exceptionnel, on peut faire la majoration en évaluant, pour x € S, la
dimension des fibres F, du morphisme d’espaces analytiques f: &7(S) — S induit par la
projection de P"(C) x G"(P"(C)) sur P"(C). Ces fibres sont, en effet, des sous-ensembles
analytiques fermés de &7(S) (cf. [Wh3] 5.3(BB)) et on a, pour (x, P) € &7(S),

(10.16.3) dim(x, P) F"(S) < dim, S + dim(x,p)Fx

(cf. [Wh3] chap. 4, theorem 6D auquel on peut se ramener par une lecture sur cartes).

L’évaluation de dim(y, p)F) est simple danslecasoun > letr =n — 1: on a, en effet,
Fy = {x} X Gy ol Gy est alors formé des hyperplans projectifs de P"(C) contenant le d-plan
projectif tangent en x a S (avec d = dim S # n), c’est-a-dire Punique d-plan projectif T tel
que x € T et T\T = T,S. Alors aussi, on a un isomorphisme de dualité entre G™1(P"C))
et P"(C) (cf. [Dil] §3, n° 5) qui transforme G, en un (n —d — 1)-plan projectif de P*(C) .
Ainsi donc, dans ce cas particulier, dimy, pyFy = n — d — 1 et Uinégalité (10.16.3) donne:

dim "~ 1Y(S)<d+(n—-d-1)=n—-1.



370 D. CHENIOT

Cette majoration et les relations (10.16.1) et (10.16.2) entrainent la majoration de 1’énoncé
concernant dim "~ (). [

Voici maintenant les corollaires de la proposition 10.10 justifiant les
assertions d’algébricité et de généricité des paragraphes précédents:

COROLLAIRE 10.17. Soit A un ensemble algébrique fermé de P"(C)
avec n = 0, muni d’une stratification & satisfaisant a la condition (a) de
Whitney. Soit P wun r-plan projectif de P"(C) avec 0<r<n. Alors
I’ensemble (&, P) des points en lesquels P rencontre non trans-
versalement dans P"(C) une strate de & est un sous-ensemble algébrique
fermé de P.

Démonstration.  Le sous-ensemble &(&, P) de P”"(C) est relié a I’ensemble /(&) de
la proposition 10.10 par la relation

(&, P) x {P} = 7"(&) n (P"(C) x {P}),
ce qui montre que &(&, P) est analytique fermé donc algébrique fermé dans P”(C). []

Le corollaire 10.17 justifie I’algébricité de I’ensemble C qui intervient dans
la preuve du point (iv) du lemme 9.2, point clef dans la démonstration du
théoréme 1.1 & partir du théoréme 1.3.

COROLLAIRE 10.18. Soit A un ensemble algébrique fermé de P"(C)
avec n =0, muni d’une stratification © satisfaisant a la condition (a) de
Whitney. Alors, pour 0 <r < n, lensemble 27 (&) des r-plans projectifs
de P"(C) qui ne sont pas transverses a toutes les strates de & est un sous-
ensemble algébrique fermé propre de G"(P"(C)). Nous convenons, comme
dans I’énoncé du théoréme 1.1, que chaque r-plan projectif est transverse a
toute strate qu’il ne rencontre pas.

Démonstration. L’ensemble #7(©) est la projection de 777 (&) sur le second facteur
de P"(C) x G"(P"(C)). Comme P"(C) est compact, cette projection est propre et il résulte
du théoreme de ’application propre (cf. [Wh3] 5.4 A) que Z" (&) est analytique fermé donc
‘algébrique fermé dans G’ (P"(C)). Si d’autre part f est la restriction de cette projection a
- T(©), le méme théoréme donne dim (&) = rgf < dim 7"(®) ou rg f désigne le rang de
f. Dans lee cas ou mn>1 e r=n-—1, la proposition 10.10 donne donc
dim 2"~ 1(&) < n — 1 et comme dimG”~!(P"(C)) =non a

(10.18.1) 7"~ 1@) = G"1(P"(0)) .
Nous allons voir par récurrence descendante sur r qu’en fait
(10.18.2) 7"(@) % G'(P"(C))

‘pour 0 < r < n. Cette relation est trivialement vraie pour r =n car Z"(&) = & et
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G” (P"(C)) = {P"(C)}. Supposons maintenant que n > 1 et que la relation soit vraie pour
r=ry > 1. Cela signifie qu’il existe un rp-plan projectif Py qui est transverse a toutes les
strates de & dans P”(C). Mais alors la restriction &y de © a Py est une stratification de
Py N A satisfaisant a la condition (a) de Whitney (cf. [Ch3] 2¢ partie, proposition 5.42). Et,
comme P, est projectivement isomorphe a P"0(C), la relation (10.18.1) pour &y dans Py
montre qu’il existe un (ro — 1)-plan projectif Qo contenu dans Py et transverse dans Py a
toutes les strates de &y. Or on voit comme dans la démonstration du lemme 9.1 que Qg est
alors transverse dans P”(C) a toutes les strates de &, ce qui prouve que 2rn - 1(®)
# G~ I(P"(C)) et achéve la récurrence. Ainsi donc la relation (10.18.2) est vraie
pour 0<r<n autrement dit #7(&) est un sous-ensemble algébrique propre de

G'(prc). [

Le corollaire 10.18 justifie la généricité de I’hyperplan projectif & du
théoréme 1.1 et celle du (n — 2)-plan projectif .# du théoreme 1.3. Nous nous
en sommes aussi servis, au travers de la démonstration du lemme 9.1, dans
la récurrence qui permet de déduire le théoréeme 1.1 du théoréme 1.3.

COROLLAIRE 10.19. Soit A un ensemble algébrique fermé de P"(C)
avec n > 1, muni d’une stratification & satisfaisant a la condition (a) de
Whitney et soit Q un r-plan projectif de P"(C) avec 0<r<n— 1.
Alors [D’ensemble  Z"*Y(Q) des (r+ 1)-plans projectifs de P7(C)
contenant Q est un ensemble algébrique fermé irréductible de
G+ (P"(C)), isomorphe a P"-"-Y(C), et I’ensemble Z"+1(&,Q) des
éléments de "+ (Q) qui ne sont pas transverses dans P"(C) a toutes les
strates de © en est un sous-ensemble algébrique fermé (les éléments de
Z7+*Y(Q) ne rencontrant pas une certaine strate lui sont considérés comme
transverses).

Démonstration. Soit R un (n —r — 1)-plan projectif de P"(C) ne rencontrant pas Q.
Considérons, dans R, des coordonnées homogénes par rapport a une base donnée de Ié\
(notation (10.2)) et, dans G” ™ 1(P"(C)), des coordonnées grassmanniennes par rapport a une
base de C"* ! obtenue en complétant la base de R par une base de é Les coordonnées grass-
manniennes avec lesquelles nous avons défini les plongements (10.6) et (10.7) étaient prises
par rapport a la base canonique de C”*!; utiliser une autre base revient a faire subir 4 C"*!
un automorphisme linéaire qui induit un automorphisme algébrique de G"* 1 (P"(C)). Avec
les choix que nous avons faits, Z”*1(Q) est formé des éléments de G”+ L(P™(C)) dont les
coordonnées grassmanniennes de multiindices ne contenant pas ceux de la base de Q sont
nuls. Et, pour P € 7"+ 1(Q), les coordonnées homogenes dans R de I’ unique point d’inter-
section de P avec R sont obtenues a partir des coordonnées grassmanniennes de P en omettant
précisément ces zéros. Cela montre que Z”*1(Q) est un sous-ensemble algébrique fermé de
G 1(P"(C)) et que I’application qui & tout (r + 1)-plan projectif contenant Q fait corres-
pondre son unique point d’intersection avec R donne un isomorphisme de &7 *1(Q) avec
R donc avec P"~"~1(C). Maintenant, on a, avec les notations du corollaire 10.18,
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’y/r+l(@’ Q) — gr+l(Q) A ‘///"'*"1(@)

et la derniére assertion résulte alors du corollaire 10.18. []

- Cela ne veut pas dire que la transversalité aux strates de & soit une
propriété générique des éléments de & r+1(Q) car il se peut qu’on ait
P S, Q) = ZL7+1(Q), par exemple si Q contient le sous-espace projectif
tangent en un point a une strate de & tout en étant de dimension < n — 2.
Mais la proposition ci-dessous implique que cette généricité est assurée si O
est transverse dans P7(C) a toutes les strates de &. Contrairement au
corollaire 10.18, cette proposition ne peut étre déduite de la proposition 10.10
par des considérations de dimension et nous aurons recours au théoréme de
Sard pour la justifier.

PROPOSITION 10.20. Les hypothéses et notations étant celles du

N

corollaire 10.19, supposons de plus que Q soit transverse dans P"(C) a
toutes les strates de ©. Alors Z"+1Y(©, Q) est distinct de Z"+'(Q).

Démonstration. 1l s’agit de montrer qu’il existe un (r + 1)-plan projectif contenant Q
et transverse dans P”(C) a toutes les strates de &. Pour chaque strate S € &, nous allons
interpréter cette transversalité en termes de valeurs critiques d’une projection de centre Q.
Cela est rendu possible par le fait que, pour x € S N Q, tout élément de &’ *+1(Q) est
transverse en x a S dans P”(C) puisqu’il contient Q et que, par hypothése, Q posséde cette
propriété de transversalité. On peut alors choisir un (n — r — 1)-plan projectif R ne rencontrant
pas Q et considérer la projection sur R de centre Q

p:P"(O\NQ — R

- qui a tout y € P"(C)\Q fait correspondre 'unique point d’intersection p(y) de R avec le
(r + 1)-plan projectif déterminé par Q et y. Alors, si x € S\Q et P est I’'unique élément de
&Z"*+1(Q) passant par x, on a I'implication

P est non transverse en x a S dans P"*(C) =
(10.20.1)

x est un point critique de p|s\o

(c’est en fait une équivalence a cause de la submersivité de p). En effet, si j est 'injection
canonique de S\Q dans P"(C)\Q, I’application linéaire tangente T,(p|s\o) @ P|s\p e€st
' égale a T,pOT,j et, d’aprés le lemme 7.4, si cette application est surjective, alors
Im T,j + Ker Typ = T, P"(C) (et réciproquement d’apres la surjectivité de T)p). Comme
' Im T j = TS et Ker T\,p = T\P, cette égalité est équivalente a la transversalité de P a S en
' x dans P”(C), ce qui justifie (10.20.1). Alors, compte tenu de la transversalité¢ de P a S en
tout point de S N Q et de la convention selon laquelle, si P ne rencontre pas S, il lui est
%considéré comme transverse, on a, pour P € & *1(Q), cette autre implication (en fait
: équivalence):
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P est non transverse é S dans P*(C) =
(10.20.2) N
le point d’intersection de P avec R est valeur critique de p|s\g -

Ces valeurs critiques sont les mémes que celles de I’application de classe C® sous-jacente
entre variétés réelles. D’aprés le théoréme de Sard (cf. [Di2] (16.23.1)), ’ensemble K de ces
valeurs critiques est de mesure nulle dans R. La réunion K des Ks pour S € © étant finie,
est donc aussi de mesure nulle et en particulier distincte de R. Alors, si ¢ € R\K, I’élément
de Z7*1(Q) déterminé par Q et ¢ est, d’aprés (10.20.2), transverse dans P”(C) a toutes les
strates de &. Cela montre que 2"+ 1(&, Q) # 2" 1(Q). Notons que ce raisonnement serait
encore valable si & était une quelconque famille finie ou dénombrable de sous-varietés. ]

Dans le cas particulier ou # > 2 et ou Q est un (n — 2)-plan projectif trans-
verse dans P7(C) a toutes les strates de &, le corollaire 10.19 et la proposition
10.20 prouvent que Z"- (&, Q) est vide ou composé d’un nombre fini de
points. Cela justifie la finitude des hyperplans «mauvais» du théoréme 1.3.

Toutes les assertions d’algébricité ou de généricité que nous avons avancées
dans I’énoncé des théorémes 1.1 et 1.3 ou utilisées dans leur démonstration sont
maintenant justifiées. Les démonstrations de ces théorémes sont donc enfin
complétes.  [J[]

11. EXTENSION DU THEOREME 1.3 A UNE VARIETE QUASI-PROJECTIVE LISSE

On peut généraliser sans trop de changements le théoréme 1.3 au cas ou
I’espace ambiant P”(C) est remplacé par un sous-ensemble algébrique fermé
X de P"(C) avec 'importante restriction, toutefois, que X\ A soit lisse. Le
pinceau A continue a €tre un pinceau d’hyperplans projectifs dans P7(C)
mais I’ensemble dont on considere les sections, au lieu d’étre le complémentaire
P"(C)\A d’un ensemble algébrique fermé A4, est une variété quasi-projective
lisse X\ A. On doit, dans ce cas, munir X fout entier d’une stratification de
Whitney ©* telle que A soit union de strates, ce qui est toujours possible
(cf. [L—=T2] (1.2.7)), et ’axe .# de A doit étre pris transverse dans P*(C) a
toutes les strates de ©*. C’est bien une généralisation de la situation du
théoréme 1.3 car la stratification & de A qui y est considérée peut &tre trivia-
lement étendue en une stratification de Whitney &+ de P7(C) par la strate
P"(C)\A a laquelle .# et & sont trivialement transverses. Dans notre
nouvelle situation, le «bon» hyperplan & et les hyperplans «mauvais» %
sont considéreés relativement a ©*. Cela signifie que, pour la détermination
des /;, entrent non seulement en compte la non transversalité a des strates
de A mais au moins aussi, dans I’hypothése d’une stratification minimale, les
points de tangence a X\A.
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