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362 D. CHÉNIOT

10. LEMMES D'ALGÉBRICITÉ ET DE GÉNÉRICITÉ

Nous avons regroupé dans ce paragraphe les justifications des assertions

d'algébricité ou de généricité utilisées dans la démonstration des théorèmes 1.1

et 1.3 ou formulées dans leur énoncé même. Nous les obtenons toutes comme
corollaires de la proposition principale d'algébricité 10.10 ci-dessous, à l'exception

toutefois de la proposition finale 10.20 qui utilise le théorème de Sard.

Nous ferons essentiellement des raisonnements d'analyticité susceptibles d'être

généralisés au cas d'un espace analytique non projectif. Dans notre cas

particulier, nous pourrons conclure à l'algébricité grâce au théorème de Chow

affirmant l'identité entre sous-ensembles analytiques fermés et algébriques
fermés d'un espace projectif complexe.

Etant donné n ^ 0, soit

n:Cn + 1 \{0} P"(C)

la surjection canonique. Pour x e PW(C), nous poserons

(10.1) x n ~'(x) ^ {0} •

C'est une droite vectorielle de Cn + 1. Si P est un r-plan projectif de Pn(C) avec 0 ^ r ^ n,

nous poserons aussi

(10.2) P 7i ~ 1

(P) u {0}.

C'est un (r+ l)-plan vectoriel de C" + 1. En particulier {x} x pour tout x 6 PW(C).

Pour 0 ^ r ^ n, nous noterons

(10.3) G'(P"(C)) l'ensemble des r-plans projectifs de P"(C)

Nous regarderons Gr(P"(C)) toujours au travers de l'identification canonique

0:G'"(P"(C))^Gr+1(C"+1)
(10.4) P^P
avec la grassmannienne Gr+1(C,î+1) des sous:espaces vectoriels de dimension r + 1 de

Cn+l, le sous-espace P étant défini par (10.2). Nous aurons donc sur Gr(P/?(C))

une structure de variété analytique complexe compacte et connexe de dimension

(r+ 1) ((* + 1) - (r+ 1)) (r+ 1) (n - r) (cf. [Wh3] 5.13B et [Di2] (16.11.8) et (16.11.9)).

C'est en fait une structure de variété algébrique (cf. [Dil] §3, n° 5). Dans le cas particulier
où r 0, on a l'isomorphisme canonique

P"(C)^G°(P"(C))
(10.5)

X H> {x}

Mais on a aussi un plongement analytique

(10.6) ¥ : Gr + 1 (C n + 1 >— P ^1 (C)
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avec N
U + M ^ + ^ r+ ^ qui à F e Gr+ liCn+ l) fait correspondre leCI!) (r+1)!

point ¥ (F) de P^- *(Q dont des coordonnées homogènes sont données par un système de

coordonnées grassmanniennes de F. On obtient un tel système en portant en colonnes d'une

matrice les coordonnées des vecteurs d'une base de F et en en prenant les mineurs d'ordre

r + 1 (ordonnés par exemple lexicographiquement mais qu'il est plus commode d'indexer par
le multiindice des lignes choisies); le point ^(F) ne dépend pas du choix de cette base

(cf. [Wh3] 5.13 D). Ce plongement est en fait algébrique (cf. [Dil] §3, n° 5). On a alors aussi

le plongement

(10.7) l(C)

et, pour P e Gr(P"(C)), on appelle aussi «coordonnées grassmanniennes de P» les

coordonnées grassmanniennes de O(P). Dans le cas particulier où r — 0, on a N - 1 n et

foo est un isomorphisme, réciproque de l'isomorphisme (10.5); et pour x e P"(C), les

coordonnées grassmanniennes de {x} coïncident avec les coordonnées homogènes de x.
D'après le plongement (10.7), pour montrer Talgébricité d'un sous-ensemble de

Gr(Pn(C)), nous pourrons nous contenter d'un raisonnement d'analyticité dans Gr(PA7(C))

car, d'après le théorème de Chow (cf. [Wh3] 5.9G), l'ensemble ¥(0(10) est algébrique fermé
si et seulement s'il est analytique fermé dans P^-1^) donc si et seulement si CS est

analytique fermé dans Gr(P"(C)). Notons qu'alors les dimensions au sens algébrique et au
sens analytique de coïncident (cf. [H-P] chap. X, §§5 et 14).

Il sera aussi question d'algébricité de sous-ensembles de la variété algébrique
P"(C) x G/"(P"(C)). Comme elle se plonge dans PW(C) x P^-1^) et qu'on a aussi

l'analogue du théorème de Chow pour les sous-ensembles algébriques fermés d'un produit
d'espaces projectifs complexes (cf. [Wh3] 5.11 B), un sous-ensemble J"- de

P"(C) x Gr(Pn(C)) sera algébrique fermé si et seulement s'il est analytique fermé dans

P"(C) x Gr(P/î(C)). Ici aussi les dimensions algébrique et analytique complexe de y
coïncident.

Etant donnée une sous-variété analytique pure S de PW(C), avec n ^ 0,
nous considérons, pour 0 ^ r ^ n, l'ensemble

(10.8) ^r(5) {(x' P) 6 P"(C) x G7P"(C»
et P n'est pas transverse en x à dans P"(C)}

Et, si © est un ensemble de sous-variétés pures de P"(C), nous posons

(10.9) Xr(©) u 9"r(S)
S e <&

Voici alors l'énoncé de la proposition principale de ce paragraphe:

Proposition 10.10. Soit A un ensemble algébrique fermé de P"(C)
avec n ^ 0 et soit © une stratification de A satisfaisant à la condition
(a) de Whitney (mais pas forcément à la condition (b) et ne possédant pas
forcément la propriété de frontière: cf. [§§7et 19, [L-T2] (1.2) et [Ch3]
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2epartie, §5/ Alors, avec les notations (10.9) et (10.8) ci-dessus, est

un sous-ensemble algébrique fermé de P"(C) x Gr(P"(C)) pour
0 ^ r ^ n. Pour n ^ 1 et r n - 1, on a la majoration dim
^ n - 1 (avec la convention dim 0 - \).

Remarque 10.11. On peut en fait montrer que, si A est un sous-ensemble

propre de P"(C) (c'est-à-dire distinct de P"(C)) et non vide et si d dim;4,
on a, pour 0 ^ r ^ n,

(cf. [Ch3] 2e partie, corollaire 6.9). Nous nous contenterons ici de la majoration

dim < h - 1 pour r n - 1 qui est plus simple à établir. Elle

nous servira à montrer que certains sous-ensembles algébriques sont distincts
de l'ambiant.

Nous ferons reposer la démonstration de la proposition 10.10 sur les deux
lemmes suivants:

Lemme 10.12. Sous les hypothèses de la proposition 10.10, les ensembles

^r(S) pour S e @ sont analytiques locaux d'adhérence analytique dans

P"(C) x Gr(P"(C)).

Lemme 10.13. Sous les hypothèses de la proposition 10.10, l'ensemble

(@) est fermé dans Pn(C) x Gf(P"(C)).

Le premier lemme est dû à ce que toute strate S est différence de deux

ensembles analytiques fermés; il en résultera grâce à l'analyticité de la
modification de Nash de S. Le second lemme provient de la condition (a) de

Whitney satisfaite par Nous commençons par démontrer ces lemmes:

(10.14) Démonstration du lemme 10.12.

Nous ferons comme annoncé mais nous lirons les choses sur cartes. Soit S une strate de

@ de dimension d. Il nous suffit de montrer que l'assertion du lemme est vraie au voisinage
de tout point de l'adhérence de lAr{S) dans P"(C) x G/"(P"(C)). Nous allons en fait voir
qu'étant donné

dim .5^ (©)
r(n - r) + d si r + d < n

(r + 1) (n - r) - 1 si r + d ^ n - 1

X S

il existe un ouvert Q de P"(C) x Gr(P"(C)) de la forme

(10.14.1) Q U x Gr(P"(C))

avec U voisinage ouvert de x dans P"(C), tel que fAr(S) n Q soit différence de deux

ensembles analytiques fermés de Q. Il sera alors clair que fAr(S) n Q est analytique local

et le fait que son adhérence dans Q soit analytique résultera de [Wh3] 5.3 (U).
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En fait U sera simplement l'ouvert de définition d'une carte standard de PW(C) au

voisinage de x:

(10.14.2) cp:U^Cn

A une permutation des coordonnées près, on peut supposer et nous supposerons que U est

formé des points y de P"(C) de coordonnées homogènes (j>o •' ••• • yn) avec yo ^ 0 et que

(p(j') (yi/yo, ~>>yn/yo)- Nous allons tout lire sur cette carte. Il nous sera commode de

poser:

(10.14.3)
f y' <p(.y) Pour y 6 U
l E' cp (E n U) pour E C P"(C)

Alors S' (qui est non vide puisque xeS) est une sous-variété pure de dimension d de C77 et

on a

S7 q>(adhï/(5 n U)) q>(S n U) (S)'

où on a noté adh^y pour l'adhérence dans U. Par définition d'une stratification, S et S\S
sont analytiques fermés. La relation ci-dessus montre alors qu'il en est de même pour S' et

S'\S' et, d'après [Wh2] lemma 3.13, S' est de dimension constante d.

Notons d'autre part

(10.14.4) H P n(C)\U

l'hyperplan projectif à l'infini associé à U. Alors, pour tout P e Gr(Pn(Q) tel que
P <t H, P' est un r-plan affine de Cn. Pour un tel P, nous noterons

(10.14.5) P" le r-plan vectoriel parallèle à P'.

La raison pour considérer P" est que, si P e Gr(Pn (C)) et y e P n U (donc P C H),
l'espace tangent à P en y se lit à travers la carte (10.14.2) comme

(10.14.6) Ty^{TyP) Ty'P' P"
ae sorte que, si P e Gr(Pn(C)) et y e P n N n U, on a l'équivalence

14 ^ P est non transverse en y à N dans P"(C) &
P" est non transverse à Ty> S' dans C".

Introduisons alors

(10.14.8) | (m, ö)eC"x C(CW) I ueS'etQ n'est pas transverse à TUS' dans C"}

(10.14.9) S:K^G''(C) avec vGr(P"(C))
P- P'..(10.14.10) Ç? {(y,P)6P"(C) X C(P"(C» e P}.

On a, d'après (10.14.7),

C10-14-11) ' '(S) nû=fn(»x fi) ;v)

Nous allons nous servir de ce que l'image réciproque d'un ensemble analytique fermé par
une application analytique est un ensemble analytique fermé de l'espace de départ (cf. [Wh3]
5.3 (BB)). Remarquons d'autre part que "if nQc UxF donc que l'intersection avec Sfd'un
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ensemble fermé de U x V est fermée dans ß r\ Q. Pour montrer, comme annoncé, que
&r(S) n Q est différence de deux ensembles analytiques fermés de Q et achever ainsi la
démonstration du lemme 10.12, il nous suffira donc de prouver les trois points suivants:

(i) rß est un ensemble analytique fermé;

(ii) V est ouvert et 5 est une application analytique;

(iii) est différence de deux ensembles analytiques fermés de Cn x Gr(Cn).

Le point significatif est le troisième. Nous les justifions dans l'ordre.

(i) Nous avons vu que cette assertion implique l'algébricité de T et c'est en fait une
démonstration directe d'algébricité que nous allons faire. La relation y e P est équivalente
à y C P (avec les notations (10.1) et (10.2)). Si alors Y est la matrice colonne formée des

coordonnées d'un vecteur non nul de y (c'est-à-dire d'un système de coordonnées homogènes

dey), et si M est la matrice (n + 1) x (r + 1) obtenue en portant en colonnes les coordonnées

d'une base de P, la relation y C P s'exprime par l'annulation de tous les mineurs d'ordre

r + 2 de la matrice formée par la juxtaposition de Y et M. En développant ces mineurs suivant
la première colonne, on obtient des polynômes séparément homogènes, de degré 1 en les

coordonnées homogènes de y et de degré 1 en les mineurs d'ordre r + 1 de M, lesquels forment

un système de coordonnées grassmanniennes de P ; l'algébricité de ß résulte alors de [Wh3]
5.11 A et 5.11 D compte tenu du plongement (10.7).

(ii) Nous allons utiliser les plongements (10.7) de Gr(Pw(C)) dans PN_1(C) et (10.6)

de Gr(C") dans PN'_1(C). Pour commencer, un élément P de Gr(Pw(C)) appartient à F si

et seulement si ses systèmes de coordonnées grassmanniennes comportent au moins une

coordonnée de multiindice contenant 0 non nulle. La même condition sur les coordonnées

homogènes d'un point de PN_1(Q donne un ouvert u dont la trace sur l'image du

plongement de G/"(Pn(C)) est l'image de V par ce plongement. Cela montre que V est

ouvert. Pour voir ensuite la relation entre P et P", identifions Cn d H - {0} X Cn C Cn+l
(cf. fig. 10.1): alors, pour P e V, le r-plan affine P' est identifié à la projection de

P n ({1} x C") sur {0} x C" et P" est identifié àP n ({0} x Cn). Soit ((|ji, • ••> Znù*

(4ir, £wr)) une base de P". Alors

((0, ^n\), •••> (0, ^lr> •••> t=nrj)

est une base de P n ({0} x Cn) et on peut la compléter en une base de P par un vecteur
de P n'appartenant pas à {0} x Cn dont on peut normaliser la coordonnée d'indice 0 de

sorte qu'il s'écrive (1, £io, •••> !«o)- Posons

/I 0 0 \
4l0 £ll ••• 4l r

M '

\ £>n0 t>n 1 ••• £\nrj

Un système de coordonnées grassmanniennes de P est donné par les mineurs d'ordre r + 1

de M. On voit alors que ceux de ces mineurs qui contiennent la lre ligne de M donnent un
système de coordonnées grassmanniennes de P". Il y a donc une projection de CN dans CN'

qui, par passage au quotient, donne une application analytique de l'ouvert u de PN~'(C)
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>yo

/ \\
1

|1}xC" /
\ yn

P'\ M Y /\° \Ar H= {0} xC"

y

\p\
/yi

Figure 10.1

dans PN' ~l(C) dont ô peut être considérée comme une restriction grâce aux plongements

(10.7) et (10.6). Nous avons en fait montré que ô est un morphisme algébrique.

(iii) Cette assertion résultera de ce que S' est différence des deux ensembles analytiques
fermés S' et S'\S' et de l'analyticité de la modification de Nash de S' qui est le fait essentiel

sur lequel repose la démonstration de ce lemme. Rappelons que S' est de dimension

constante d. Si 5'° désigne la partie lisse de S', la modification de Nash de S' est alors

(10.14.12) {{u, TU~S'°) | u e S70} C Cn x Gd(Cn)

L'analyticité de / est démontrée dans [Wh2] theorem 16.4 à l'aide d'un système de champs
de vecteurs analytiques au voisinage de tout point de S'tels que, pour u e S'0, les vecteurs
correspondants engendrent TUS'°; l'existence de ces champs de vecteurs résulte de la
cohérence du faisceau des idéaux des germes de fonctions holomorphes au voisinage de

chaque point de S' qui s'annulent sur le germe de S' en ce point (cf. [Wh2] lemma 15.1).
Nous allons relier y/i à JK Commençons par constater que

(10.14.13) ,// n (S' x Gd(C")){{u, ') |

puisque l'application u\-+TuS' de S'dansGd(C") est continue. Posons ensuite

&= {(u,T, Q)eC" x Gd(C")Gr(C") | (u, T) e ./^
et Q n'est pas transverse à T dans C"}

^ projection de sur C" x Gr(C")
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D'après (10.14.13), on a

d n (S' x Gr(C"))

L'assertion (iii) résultera alors de ce que S' est différence de S' et S'\S' et de l'analyticité
de d que nous allons déduire de celle de ,/k. Comme Gd{Cn) est compact, il nous suffit
de montrer que d est analytique fermé dans C" x Gd(Cn) x G/"(C/?) pour en déduire,
grâce au théorème de l'application analytique propre (cf. [Wh3] 5.4A), que d est analytique
fermé dans Cn x Gr(C"). Mais l'analyticité de & dans C" x Gd(Cn) x C(C") résulte bien
de l'analyticité de ,/V dans Cn x Gd(Cn) car la non transversalité de Q à T est donnée par
des relations algébriques entre les coordonnées de Q et T dans des cartes standard de G^C")
et CXC") (cf. [Di2] (16.11.10) et [Wh3] chap. 5, §13). On a, en effet, des bases de Q et T
qui sont fonctions affines de ces coordonnées et la non transversalité en question s'exprime

par le fait que ce système est de rang < n donc par l'annulation de déterminants en les

composantes des vecteurs de ces bases. Cela achève de justifier l'assertion (iii).
La démonstration du lemme 10.12 que nous avions ramenée aux assertions (i), (ii) et (iii)

se trouve ainsi terminée. LU

(10.15) Démonstration du lemme 10.13.

Pour ce lemme aussi nous raisonnons sur cartes. Il nous suffit de montrer que la trace
de .7T(©) sur tout élément d'un recouvrement ouvert de PW(C) x G/*(P"(C)) est fermée dans

cet élément. Nous pouvons réaliser ce recouvrement, comme dans la démonstration qui
précède, par des ouverts £3 du type (10.14.1) où U est un ouvert de carte standard de PW(C).
Nous fixons un tel U en faisant la même hypothèse de commodité qu'après (10.14.2). Nous

pouvons donc nous servir de tout ce qui a été fait dans la démonstration (10.14). Nous utiliserons

les mêmes notations excepté qu'au lieu de d nous noterons P/ls pour pouvoir faire
varier S dans ©. Nous écrirons donc, pour 5e©,

{(", Q) e Cn x CXC") lue S'
(10.15.1)

y n
et Q n'est pas transverse à TUS' dans C"}

(la notation S' est définie en (10.14.3)). Nous posons maintenant

(10.15.2) .^= U <%s-

5e©

La relation (10.14.11) donne alors

(10.15.3) £*r(@) nQ=. ?n((pxô)"1^).
D'après la remarque qui suit (10.14.11) et la continuité de ô démontrée dans l'assertion (ii)
de la démonstration (10.14), il nous suffit donc de montrer que d est fermé.

Comme C" et Gr(C") sont métrisables (cf. [Wh3] chap. 5, § 14), nous pouvons raisonner

sur des suites. Soit ((»*, Qk)) («, Q) une suite de M convergeant vers un point
(u, Q) e C" x Gr(Crt). Puisque A est fermé, on a u e A' et il existe donc une strate T de

© telle que u e T'. Comme d'autre part © est localement finie (dans notre cas, finie), il n'y
a au voisinage de u qu'un nombre fini de S'pour S e © et, quitte à procéder à une extraction
de suite, nous pouvons supposer que Uk e S' pour tout k pour une strate S fixe. Soit d sa

dimension. Nous pouvons aussi supposer alors, grâce à la compacité de G^(C"), que

(TUkS') L pour un certain öf-plan L. Maintenant, par hypothèse, Qk est non transverse à
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TUkS' dans Cn pour tout k. Nous avons vu, dans la preuve de l'assertion (iii) de la démonstration

(10.14), que l'ensemble des couples (R, K) e Gr(Cn) X Gd(Cn) qui sont non
transverses dans Cn est algébrique fermé. La non transversalité se conserve donc à la limite
et Q est non transverse à L dans C". Mais nous avons supposé que la stratification ©
satisfaisait à la condition (a) de Whitney. Comme cette condition est de nature locale et

invariante par isomorphisme analytique, le couple (S', T') y satisfait au point w. Ona donc

TUT' C L. Le r-plan Q est alors a fortiori non transverse à TUT\ ce qui signifie que
(iu, Q) e C Cela montre que & est fermé. La démonstration du lemme 10.13 que
nous avions ramenée à cette assertion se trouve ainsi terminée. CH

(10.16) Démonstration de la proposition 10.10.

D'après le lemme 10.13, 9^(0) est fermé dans P"(C) x Gr(P*(C)). Il est donc réunion
des adhérences des f/'r{S) pour S e 0. Comme cette réunion est localement finie (en fait
finie), il résulte alors du lemme AO. 12 que 9'r(@) est analytique (cf. [Wh3] 5.3(1)). Et nous
avons vu que cela impliquait que est algébrique.

Ce qui précède montre aussi que

(10.16.1) dim sup dim ://r(S)
S e e

(cf. [Wh3] 5.3(K)). Mais on a

(10.16.2) dim f/r(S) dim yr(S)

égalité valable pour tout ensemble analytique local V d'adhérence analytique: en effet, il est
d'une part clair que dim V < dim V. D'autre part, étant donné un point lisse de V de
dimension maximum 5, il possède un voisinage ouvert dans V composé de points lisses de
même dimension et ce voisinage rencontre nécessairement V; comme V est localement fermé,
les points de rencontre sont aussi des points lisses de dimension ô de V, d'où
dim V ^ dim V.

Pour majorer dim il suffit donc de majorer dim f/r{S) pour Se®. Lorsque
>//r(S) 0 (ce qui arrive pour r n ou dim S n), on a la convention dim 0 - 1. En
dehors de ce cas exceptionnel, on peut faire la majoration en évaluant, pour x e S, la
dimension des fibres Fx du morphisme d'espaces analytiques /: .9^(5) S induit par la
projection de P"(C) x Gr(Pw(C)) sur P*(C). Ces fibres sont, en effet, des sous-ensembles
analytiques fermés de f/r(S) (cf. [Wh3] 5.3(BB)) et on a, pour (x,P) e ,9*r(S),

(10.16.3) dim^ ,Ç^r(S) ^ dim^-^S + dim^ p^E1^

(cf. [Wh3j chap. 4, theorem 6D auquel on peut se ramener par une lecture sur cartes).
L'évaluation de dim(x>P)Fx est simple dans le cas où n ^ 1 et r n - 1 : on a, en effet,

f*~\x}xGx où Gx est alors formé des hyperplans projectifs de P"(C) contenant le tf-plan
projectif tangent en x à S (avec d dim S =£ n), c'est-à-dire l'unique d-plan projectif T tel
que x e T et TXT TXS. Alors aussi, on a un isomorphisme de dualité entre G^P^C))
et P"(C) (cf. [Dil] §3, n° 5) qui transforme Gx en un (n - d - l)-plan projectif de PW(C)
Ainsi donc, dans ce cas particulier, dimu>P)F^ n - d - \ et l'inégalité (10.16.3) donne:

dim c/n~x{S) ^d+(n-d-l) n- l.
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Cette majoration et les relations (10.16.1) et (10.16.2) entraînent la majoration de l'énoncé
concernant dim f/n ~ 1

(0). D

Voici maintenant les corollaires de la proposition 10.10 justifiant les

assertions d'algébricité et de généricité des paragraphes précédents:

Corollaire 10.17. Soit A un ensemble algébrique fermé de P"(C)
avec n ^ 0, muni d'une stratification © satisfaisant à la condition (a) de

Whitney. Soit P un r-plan projectif de P^C) avec 0 ^ r ^ n. Alors
l'ensemble 5^(©, P) des points en lesquels P rencontre non
transversalement dans PW(C) une strate de © est un sous-ensemble algébrique
fermé de P.

Démonstration. Le sous-ensemble .9^(0, P) de P"(C) est relié à l'ensemble !Ar(<&) de

la proposition 10.10 par la relation

9^(0, P) x {P} f/rm n (P"(C) x {P})

ce qui montre que 9'(0, P) est analytique fermé donc algébrique fermé dans P"(C). EU

Le corollaire 10.17 justifie l'algébricité de l'ensemble C qui intervient dans

la preuve du point (iv) du lemme 9.2, point clef dans la démonstration du

théorème 1.1 à partir du théorème 1.3.

Corollaire 10.18. Soit A un ensemble algébrique fermé de P"(C)
avec n ^ 0, muni d'une stratification © satisfaisant à la condition (a) de

Whitney. Alors, pour 0 ^ r ^ n, l'ensemble 9)'"(©) des r-plans projectifs
de P"(C) qui ne sont pas transverses à toutes les strates de © est un sous-
ensemble algébrique fermé propre de Nous convenons, comme
dans l'énoncé du théorème 7.7, que chaque r-plan projectif est transverse à

toute strate qu'il ne rencontre pas.

Démonstration. L'ensemble est la projection de .97/"(©) sur le second facteur
de P"(C) x Gr(P"(C)). Comme Pn(C) est compact, cette projection est propre et il résulte

du théorème de l'application propre (cf. [Wh3j 5.4 A) que é?r(<&) est analytique fermé donc

algébrique fermé dans G^P^C)). Si d'autre part / est la restriction de cette projection à

.9^(0), le même théorème donne dim eér(<&) rg/ < dim .9?r(0) où rg/désigne le rang de

/. Dans le cas où n ^ 1 et r — n - 1, la proposition 10.10 donne donc

dim .95"_1(0) ^ n - 1 et comme dim G" - ^"(C)) n on a

(10.18.1) * g"-HP"(C))

i Nous allons voir par récurrence descendante sur r qu'en fait

(10.18.2) ^r(0) * Gr(P"(C))

pour 0 ^ r ^ n. Cette relation est trivialement vraie pour r n car .9^(0) 0 et



COMPLÉMENTAIRE D'UN ENSEMBLE ALGÉBRIQUE 371

Gn(Pn(C)) {P " (C)}. Supposons maintenant que n ^ 1 et que la relation soit vraie pour

r r0 ^ 1. Cela signifie qu'il existe un r0-plan projectif Pq qui est transverse à toutes les

strates de © dans P"(C). Mais alors la restriction ©0 de © à P0 est une stratification de

Pq n A satisfaisant à la condition (a) de Whitney (cf. [Ch3] 2e partie, proposition 5.42). Et,

comme Po est projectivement isomorphe à P^C), la relation (10.18.1) pour ©o dans Pq

montre qu'il existe un (fo — l)-plan projectif Qq contenu dans Po et transverse dans Pq à

'toutes les strates de ©o. Or on voit comme dans la démonstration du lemme 9.1 que Qq est

alors transverse dans P*(C) à toutes les strates de ©, ce qui prouve que ^""o-^©)

# Gr°_ !(Pn(C)) et achève la récurrence. Ainsi donc la relation (10.18.2) est vraie

pour 0 ^ r ^ n, autrement dit .^r(©) est un sous-ensemble algébrique propre de

Gr(P"(C)).

Le corollaire 10.18 justifie la généricité de rhyperplan projectif Sd du

théorème 1.1 et celle du (n - 2)-plan projectif du théorème 1.3. Nous nous

en sommes aussi servis, au travers de la démonstration du lemme 9.1, dans

la récurrence qui permet de déduire le théorème 1.1 du théorème 1.3.

Corollaire 10.19. Soit A un ensemble algébrique fermé de P"(C)
avec n ^ 1, muni d'une stratification @ satisfaisant à la condition (a) de

Whitney et soit Q un r-plan projectif de P"(C) avec 0 ^ r ^ n - 1.

Alors l'ensemble 2dr+l(Q) des (r+\)-plans projectifs de P"(C)
contenant Q est un ensemble algébrique fermé irréductible de

Gr+i(P"(C)), isomorphe à P"~r_1(C), et l'ensemble ^r+1(©3, Q) des

éléments de &r+l(Q) qui ne sont pas transverses dans PW(C) à toutes les

strates de © en est un sous-ensemble algébrique fermé (les éléments de

jfr+l(Q) ne rencontrant pas une certaine strate lui sont considérés comme
transverses).

Démonstration. Soit R un (n-r - l)-plan projectif de P"(C) ne rencontrant pas Q.

Considérons, dans R, des coordonnées homogènes par rapport à une base donnée de R

(notation (10.2)) et, dans G7*"1" !(P"(C)), des coordonnées grassmanniennes par rapport à une
base de Cn + 1 obtenue en complétant la base de R par une base de Q. Les coordonnées
grassmanniennes avec lesquelles nous avons défini les plongements (10.6) et (10.7) étaient prises

par rapport à la base canonique de Cn + utiliser une autre base revient à faire subir à Cn+1

un automorphisme linéaire qui induit un automorphisme algébrique de Gr+ !(P"(C)). Avec
les choix que nous avons faits, /+ 1 (ô) est formé des éléments de Gr+1(Pn(C)) dont les

coordonnées grassmanniennes de multiindices ne contenant pas ceux de la base de Q sont
nuls. Et, pour P e ^Ar+1(Q), les coordonnées homogènes dans R de Tunique point d'intersection

de P avec R sont obtenues à partir des coordonnées grassmanniennes de P en omettant
précisément ces zéros. Cela montre que 5Ar+l(Q) est un sous-ensemble algébrique fermé de

Gr+1(Pn(C)) et que l'application qui à tout (r+ l)-plan projectif contenant Q fait
correspondre son unique point d'intersection avec R donne un isomorphisme de r+1(Q) avec
R donc avec P"-''"1^). Maintenant, on a, avec les notations du corollaire 10.18,
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^r+1(&, Q) ^r+l(Q) n .^/"+1(©)

et la dernière assertion résulte alors du corollaire 10.18. d

Cela ne veut pas dire que la transversalité aux strates de © soit une
propriété générique des éléments de 2?r+x(Q) car il se peut qu'on ait

(Q), par exemple si Q contient le sous-espace projectif
tangent en un point à une strate de © tout en étant de dimension ^ n - 2.

Mais la proposition ci-dessous implique que cette généricité est assurée si Q
est transverse dans P"(C) à toutes les strates de ©. Contrairement au
corollaire 10.18, cette proposition ne peut être déduite de la proposition 10.10

par des considérations de dimension et nous aurons recours au théorème de

Sard pour la justifier.

Proposition 10.20. Les hypothèses et notations étant celles du

corollaire 10.19, supposons de plus que Q soit transverse dans P"(C) à

toutes les strates de ©. Alors ,^r+1(©, Q) est distinct de £dr+l{Q).

Démonstration. Il s'agit de montrer qu'il existe un (r + l)-plan projectif contenant Q

et transverse dans P"(C) à toutes les strates de ©. Pour chaque strate Se©, nous allons

interpréter cette transversalité en termes de valeurs critiques d'une projection de centre Q.

Cela est rendu possible par le fait que, pour x e S n Q, tout élément de 9fr + X{Q) est

transverse en x à S dans P"(C) puisqu'il contient Q et que, par hypothèse, Q possède cette

propriété de transversalité. On peut alors choisir un (n - r - l)-plan projectif R ne rencontrant

pas Q et considérer la projection sur R de centre Q

p\ P"(C)\<2 -> R

qui à tout y e Pn(C)\Q fait correspondre l'unique point d'intersection p(y) de R avec le

(r + l)-plan projectif déterminé par Q et y. Alors, si x e S\Q et P est l'unique élément de

9?r+l(Q) passant par x, on a Timplicaticm

P est non transverse en x à S dans P"(C) =>

(10.20.1)
x est un point critique de p\s\Q

(c'est en fait une équivalence à cause de la submersivité de p). En effet, si j est l'injection
canonique de S\Q dans P"(C)\<2, l'application linéaire tangente Tx(j?\S\q) &P\s\q est

égale à Txp° Txj et, d'après le lemme 7.4, si cette application est surjective, alors

Im Txj + Ker Txp T^P^C) (et réciproquement d'après la surjectivité de Txp). Comme

Im Txj - TXS et Ker Txp TXP, cette égalité est équivalente à la transversalité de P à S en

x dans P"(C), ce qui justifie (10.20.1). Alors, compte tenu de la transversalité de P à S en

tout point de S n Q et de la convention selon laquelle, si P ne rencontre pas S, il lui est

considéré comme transverse, on a, pour Pe 9fr+1(Q), cette autre implication (en fait

équivalence) :
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P est non transverse à S dans PW(C) =>

(10.20.2)
le point d'intersection de P avec R est valeur critique de p\s\Q •

Ces valeurs critiques sont les mêmes que celles de l'application de classe C°° sous-jacente

entre variétés réelles. D'après le théorème de Sard (cf. [Di2] (16.23.1)), l'ensemble Ks de ces

valeurs critiques est de mesure nulle dans R. La réunion K des Ks pour S e 0 étant finie,

est donc aussi de mesure nulle et en particulier distincte de R. Alors, si t e R\K, l'élément

de ^r+l(Q) déterminé par Q et t est, d'après (10.20.2), transverse dans PW(C) à toutes les

strates de 0. Cela montre que d?r+ ^0, Q) =£ Sâf+ l(Q)- Notons que ce raisonnement serait

encore valable si 0 était une quelconque famille finie ou dénombrable de sous-variétés. CH

Dans le cas particulier où n ^ 2 et où Q est un (n - 2)-plan projectif transverse

dans P"(C) à toutes les strates de 0, le corollaire 10.19 et la proposition
10.20 prouvent que Q) est vide ou composé d'un nombre fini de

points. Cela justifie la finitude des hyperplans «mauvais» du théorème 1.3.

Toutes les assertions d'algébricité ou de généricité que nous avons avancées
dans l'énoncé des théorèmes 1.1 et 1.3 ou utilisées dans leur démonstration sont
maintenant justifiées. Les démonstrations de ces théorèmes sont donc enfin
complètes.

11. Extension du théorème 1.3 à une variété quasi-projective lisse

On peut généraliser sans trop de changements le théorème 1.3 au cas où

l'espace ambiant PW(C) est remplacé par un sous-ensemble algébrique fermé

X de Pn(C) avec l'importante restriction, toutefois, que X\A soit lisse. Le
pinceau A continue à être un pinceau d'hyperplans projectifs dans P"(C)
mais l'ensemble dont on considère les sections, au lieu d'être le complémentaire
Pn(C)\A d'un ensemble algébrique fermé A, est une variété quasi-projective
lisse X\A. On doit, dans ce cas, munir X tout entier d'une stratification de

Whitney 0 + telle que A soit union de strates, ce qui est toujours possible
(cf. [L-T2] (1.2.7)), et l'axe Jl de A doit être pris transverse dans P*(C) à

toutes les strates de @ + C'est bien une généralisation de la situation du
théorème 1.3 car la stratification 0 de A qui y est considérée peut être
trivialement étendue en une stratification de Whitney 0+ de P"(C) par la strate
P"(C)\^4 à laquelle et & sont trivialement transverses. Dans notre
nouvelle situation, le «bon» hyperplan S7 et les hyperplans «mauvais» %
sont considérés relativement à 0+. Cela signifie que, pour la détermination
des 3, entrent non seulement en compte la non transversalité à des strates
de A mais au moins aussi, dans l'hypothèse d'une stratification minimale, les
points de tangence à X\A.
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