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Les lemmes 8.2, 8.4, 8.5 et 8.7 démontrent l’assertion d’injectivit¢ du
théoreme 1.3.

L’assertion de surjectivité ayant été prouvée au terme du §7, le théoreme 1.3
se trouve donc démontré. Y compris, remarquons-le, ’assertion selon laquelle il
est possible de considérer artificiellement comme «mauvais» des hyperplans de
A qui sont en fait «bons». Nulle part, en effet, dans la démonstration qui
précéde, nous n’avons fait intervenir le fait que les hyperplans «mauvais»
fussent vraiment «mauvaisy». ] [

9. DEMONSTRATION DU THEOREME 1.1 ET DU COROLLAIRE 1.2

1°. DEMONSTRATION DU THEOREME 1.1 A PARTIR DU THEOREME 1.3

Pour montrer les assertions du théoréme 1.1, le théoréme 1.3 va nous
permettre une récurrence qui nous rameénera a une situation en basse dimension
ou un calcul direct est possible. On pense naturellement a une récurrence sur
la dimension »n de ’espace ambiant P”(C). Mais cela n’est pas commode car
nous verrons que, dans 1’étape de récurrence ou nous utilisons les sections par
un pinceau d’hyperplans comme dans le théoréme 1.3, la codimension de A4
peut diminuer dans les sections exceptionnelles si I’on ne suppose pas que
dim A > 1. Nous ferons donc une récurrence sur d = dim A amorcée a d = 0
avec n donc g quelconques. Nous écarterons le cas trivial ou 4 = P*(C),
c’est-a-dire g = 0.

Pour commencer, le cas ou A est vide, pour lequel nous avons convenu
que g = n + 1, correspond donc a d = — 1 et se trouve hors récurrence. Dans
ce cas, P*(C)\A = P"(C) et L n (P"(C)\A) = &. Or, 2 homéomorphisme
pres, P”(C) peut étre obtenu en attachant & & une 2n-boule fermée B2 le
long de la (2n — 1)-sphére S27-! formant son bord. On a donc

H(P"(C), &) = H(B*,S*-1)=0 pour k<2n-1

(cf. [Gb] chap. 19). Comme dans cecas n + ¢ — 2 = 2n — 1, les conclusions

du théoréme 1.1 résultent alors de la suite exacte d’homologie relative pour
le couple (P"(C), &¥).

La récurrence débute & d = dimA4 = 0. Dans ce cas, 4 = {ai, ..., a,}
est compose d’un nombre fini de points avec p#0. On a P"(O)\A4
=P"(O\a,...,a,} et Zn(P(C)\A) = < Mais P"(O)\{ay, ..., a,} se
rétracte par déformation sur un bouquet composé de & et de p—1
(2n — 1)-spheres, donc [l’inclusion %< P"(O\{ay, ...,a,} induit des
isomorphismes

H(Z) > Hi(P"(O)\a, ...,a,}) pour k<2m—2.
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Comme cette fois n + g — 2 = 2n — 2, les conclusions du théoréme 1.1 sont
bien valables dans ce cas. Remarquons que, pour k = n — 2, nous avons
seulement besoin de la surjectivité de I’homomorphisme ci-dessus. Nous
pourrions donc nous contenter de la relation H,(P"(C)\{ay, ..., a,}, &) =0
pour k < 2n — 2.

Pour I’étape de récurrence, nous supposons que les conclusions du
théoréme 1.1 sont valables pour dimA = d, > 0 et nous allons montrer
qu’elles sont alors aussi valables pour dim A = d, + 1. Dans la suite de cette
partie, A sera donc un ensemble algébrique fermé de P7(C) de codimension
q avec dimA = d, + 1 et A # P*(C); notons que cela implique que #n > 2.
Nous allons nous ramener au cas ou dim A = d, a ’aide du théoréme 1.3.

La premicére chose, dans cette réduction, est d’intégrer & a un pinceau A
satisfaisant aux hypothéses du théoréme 1.3:

LEMME 9.1. Sous les hypotheses du théoreme 1.1 et si n > 2, il existe
un (n — 2)-plan projectif # contenu dans < et transverse dans P"(C)
a toutes les strates de la stratification © de A.

Démonstration. 7 est projectivement isomorphe a P” ~1(C) et ZZ n A en est un sous-
ensemble algébrique fermé. Comme d’autre part & est transverse a toutes les strates de &,
la restriction &| » de @ a Z, composée des S N ' non vides pour S € &, est une stratifica-
tion de Whitney de 22 n A (cf. [Chl] lemme 2.2.2). D’apreés le corollaire 10.18 de la proposi-
tion d’algébricité 10.10 ci-dessous, il existe donc un hyperplan projectif .# de Z transverse
dans 2 a toutes les strates de &| . Alors .# est un (n— 2)-plan de P"(C) transverse dans
P"(C) a toutes les strates de &. En effet, supposons que .# rencontre S € © en x. D’aprés
la transversalité de & a S dans P"(C) d’une part et la transversalité de .# a S n 2/ dans
< d’autre part, on a les relations suivantes entre espaces tangents en Xx:

T.S + Ty % = T,P"(C)
T.(SNnZ)=TSNnT,Z
T.(SN L)+ Tott =T L.
Une vérification algébrique simple montre que ces relations impliquent
TS + Ty # = T, P"(C),

ce qui est le résultat de transversalité annoncé. L]

Soit donc .# comme dans le lemme 9.1 et soit A le pinceau d’hyperplans
d’axe .#. Alors A satisfait aux hypotheses du théoreme 1.3 vis-a-vis de A4 et
de © et & en est un «bon» hyperplan. Notons, comme dans ce théoréme,
A, ..., Z. les «mauvais» hyperplans de A; nous pouvons supposer que s = 2
pour nous conformer aux hypotheses du théoréme, en considérant au besoin
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comme «mauvais» de «bons» hyperplans, artifice que 1’énoncé du theo-
reme 1.3 permet.

Nous adoptons aussi, dans notre situation, les autres notations du théoreme
1.3. La conclusion que nous recherchons pour 1’étape de récurrence est la sur-
jectivité de I, pour k < n+ g — 2 et son injectivité pour k < n+q- 3.
Cela résultera du théoréme 1.3 si nous montrons que les my et m; satisfont
a des propriétés de surjectivité ou d’injectivité convenables. Nous allons voir
qu’elles sont données par 1’hypothése de récurrence appliquée aux ensembles
algébriques fermés & N A et < n A pour 1 < i < s respectivement dans <
et & (qui sont projectivement isomorphes a P”~1(C)) avec .# comme
hyperplan. /

Il s’agit donc de constater qu’on peut user de I’hypothese de récurrence
dans ces circonstances. Il y a deux choses dont il faut s’assurer:

— que la. dimension de I’ensemble algébrique diminue bien et donc que
corrélativement la codimension ne diminue pas lorsqu’on passe de A C P"(C)
AaYNAC L ovaux K NnACL;

— que .# est transverse dans & aux strates d’une stratification de Whit-
ney de & n A et aussi transverse dans chaque < aux strates d’une stratifica-
tion de Whitney de & N A.

Ces exigences sont satisfaites de maniére naturelle pour & N A en raison
de la transversalité de & aux strates de ©. D’une part, en effet, une section
transversale fait chuter la dimension de 4 dés lors que A est non vide. D’autre
part, la trace de © sur & est alors une stratification de Whitney de & n A4
qui convient. Cela est précisé dans les points (i) et (iii) du lemme ci-dessous.

La situation n’est plus la méme pour les &; N A puisque précisément les
Z; sont «mauvais». Mais la transversalité de .# dans P"(C) aux strates de
© permet de satisfaire malgré tout aux deux exigences ci-dessus:

En ce qui concerne la premiére, en effet, & N A se trouve pris en
tenailles entre A et .# N A. Or il y a, d’une part, grace a la transversalité de
-4 aux strates de ©, une chute de dimension de 2 lorsqu’on passe de 4 a
-« N A, pourvu que dim 4 > 1. Mais nous avons précisément organisé notre
récurrence de manicre a ce que cette inégalité soit satisfaite lors de I’étape de
récurrence. D’autre part, de 4 & L nA et de L nA a #nA, la
dimension ne peut a chaque fois chuter de plus de 1 car il s’agit de sections
hyperplanes dans des espaces projectifs complexes. La dimension a donc di
forcément chuter exactement de 1 & chaque fois. Cette question est précisée
dans le point (ii) du lemme ci-dessous.
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Le point clef dans la déduction du théoréme 1.1 a partir du théoréme 1.3
est que & N A satisfait aussi 4 la deuxiéme exigence. Autrement dit que
I’axe .# est «bon» méme au sein des hyperplans «mauvais». Nous montrons,
'en effet, qu’en raison de la transversalité de .# aux strates de &, chaque Z;
est transverse a ces strates sauf en un nombre fini de points non situés sur .#.
Cela permet de raffiner la trace de © sur & en une stratification de Whitney
de & N A sans rien toucher au voisinage de .# et de répondre ainsi a la
question. Cela fait ’objet du point (iv) du lemme ci-dessous.

Les ¢éléments qui nous permettront d’appliquer I’hypothese de récurrence
a LNAet # dans &, d’une part, et 3 & N A et .# dans chaque &,
d’autre part, sont donc rassemblés dans le lemme suivant:

LEMME 9.2. Avec les hypotheses et notations du théoréeme 1.3, le pinceau
N posséde les propriétés suivantes:

() dmZnA=dmA4 -1 si  dimA > 0;

([ dmZ nA=dmAd -1 pour 1<i<s si dmAd>1;

(iii) /la restriction &4 de © a < (composée des S N & non vides
pour S € ©) est une stratification de Whitneyde <L A et _# est
transverse dans < a toutes les strates de & g;

(iv) pour 1<i<s, la restricion &4 de & a < peut étre
raffinée en une stratification de Whitney ©; de < N A aux strates
de laquelle _# soit transverse dans <.

Avant de démontrer ce lemme, nous menons a son terme 1’étape de récur-
rence avec son aide, achevant ainsi la démonstration du théoréme 1.1:

(9.3) Fin de la démonstration du théoréeme 1.1.

Rappelons que dans la situation de [’étape de récurrence, nous avons
dimA =d, + 1 > 1. D’aprés les points (i) et (iii) du lemme 9.2, nous
pouvons donc appliquer ’hypothése de récurrence a & n A dans & avec .«
pour hyperplan; comme la codimension de £ n A dans & est encore g, cela
nous donne que

m, est surjectif pour k< (@m-1)+qg—-2,
my est injectif pour k<@n-1)+qg—-3.

D’apreés les points (ii) et (iv) du lemme 9.2, I’hypothése de récurrence peut
aussi étre appliquée, pour 1 <i<s, & & n A dans & avec .# comme
hyperplan et on obtient que, pour 1 < i< s,
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m! est surjectif pour k< (n—-1)+gq-2,

<
mi est injectif  pour kA< (m-1)+g—3.

Les hypothéses qui permettent, a ’aide du théoréme 1.3, de conclure ala
surjectivit¢é de /, sont donc remplies pour k< n+ g — 2 et celles qui
permettent de conclure & son injectivité le sont pour Kk <n + g — 3. La
récurrence se trouve ainsi terminée a I’aide du théoréme 1.3. [

Remargue 9.4. L’hypothése de récurrence nous a donné pour les mj( des
conclusions de surjectivité et d’injectivité un rang plus loin que ce dont nous
avions besoin.

Remarque 9.5. Nous avons dit dans I’introduction que la validité du
théoréme 1.1 était conditionnée par la particularit¢é de I’espace ambiant
permettant ’amorce de la récurrence. Nous pouvons maintenant préciser cela.
Notre espace ambiant est P"(C) tout entier et sa section hyperplane générique
Z tout entier. Nous avons amorcé la récurrence en nous servant de la relation
H.(P"(O\{a,...,a,}, ) =0 pour k <2n — 2. Nous pourrions en fait
tirer parti de la remarque précédente, faire une récurrence sur » sans nous
servir du point (ii) du lemme 9.2 et descendre-dans la récurrence jusqu’a la
situation ou soit n = 1, soit A = &, ce qui nous donnerait la condition plus
simple H,(P"(C), &) = 0 pour k < 2n — 1. D’autre part, dans ’étape de
récurrence, nous avons appliqué ’hypothése de récurrence a des situations ou
I’espace ambiant était une section hyperplane générique ou exceptionnelle de
I’espace ambiant de départ: dans notre cas, il s’agissait de & et des & qui
sont tous isomorphes & P"~1(C) donc du méme type que I’espace ambiant de
départ, ce qui nous a permis de poursuivre la récurrence. Ce sont 1a des
exigences tres particulieres. C’est pourquoi, bien qu’au § 11 nous généralisions
le théoreme 1.3 au cas d’une variété quasi-projective lisse X\ A, nous ne
pourrons en déduire un analogue général du théoréme 1.1 qui tienne compte
de la codimension de A. Il faudrait, en effet, qu’on ait la relation
Hy(X, ZnX)=0 pour k <2dimX — 1 (en supposant X de dimension
pure) et que, de plus, cette relation soit héréditaire par sections hyperplanes
successives de X. Mais cela ne doit pas étre impossible: voir (12.2).

Pour terminer la démonstration du théoréme 1.1, il reste maintenant a
prouver le lemme 9.2:

(9.6) Démonstration du lemme 9.2.

Nous démontrons les points dans 1’ordre (iii), (i), (ii), (@iv).

Preuve de (iii). Nous avons déja vu, dans la démonstration du lemme 9.1, que & est
une stratification de Whitney de & n A. Et I’existence de .# y a été prouvée en le prenant
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précisément transverse a toutes les strates de &|g. Mais, réciproquement, n’importe quel
(n —2)-plan .# contenu dans <& et transverse dans P”(C) a toutes les strates de © posseéde
cette propriété. En effet, si x est un point commun a .# et a une strate SN Z de ©| g,
on a alors les relations

TS + To M = TP"(C)
TSN P)=T, SN Ty ¥
Toll C T

d’ou I’on tire aisément que
T.8N L)+ Tyt =T, Z.

Preuve de (i). Pour commencer, A est réunion localement finie (donc finie puisque A
est compact) des strates de &. Il est aussi réunion de leurs adhérences qui sont analytiques
fermées. On a donc, si x € A4,

dim,4 = sup dim,S
Se&

avec la convention dim,S = — 1 pour x ¢S (cf. [Wh3] 5.3(K)). Mais chaque strate étant
pure, on a dimx§ = dim S pour tout x € S (cf. [Wh2] lemma 3.13; ce lemme y est énoncé
dans un ouvert de C” mais est valable dans une variété analytique complexe quelconque: cf.
[Ch3] 2¢ partie, §5 pour plus de détails). Par conséquent

dimyA = sup dim S .
Se g
xeS
(On peut en fait montrer cette égalité sans se servir de ’analyticité de I’adhérence des strates
(cf. [Ch3] 2¢ partie, corollaire 5.36)). De la méme maniére, puisque &| est une stratifica-
tionde XN A, ona, pourxe Zn A,

dim(ZnA)= sup dim(Sn &).
Se®

xeSn Y

Mais, si S " & # &, on a, par transversalité de & a S,

dim(S N &) = dim S + dim & — dimP"(C) = dim S — 1 .
Il en résulte que, pour x € N A4,
9.6.1) dimy(Z N A) < dimy4 — 1.

D’un autre cO6té, on a la formule valable pour une intersection d’ensembles analytiques
locaux complexes quelconques (cf. [Wh3] 2.12C)

(9.6.2) dim(Z N A) > dim, & + dimeA — dim P"(C) = dim,4 — 1

sans avoir a utiliser d’hypothése de transversalité.

Maintenant, si Zn A # &, on a, d’apres (9.6.1), dim (¥ n A) < dim A — 1, relation
- valable aussi quand & N A = O avec la convention dim & = — 1, dés lors que dim A > 0.
- D’autre part, dans I’espace projectif complexe P"(C), I’hyperplan projectif & rencontre
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toute composante irréductible de A de dimension > 1. Il résulte alors de (9.6.2) que, si
dimA > 1, on a dim(Z n 4) > dimA — 1, relation qui est aussi trivialement valable pour
dim A < 0. On obtient donc que dim (¥ N A) = dimA — 1 dés lors que dimA4 = 0.

Preuve de (ij). On ne peut raisonner comme en (i) car < n’est en général pas
transverse aux strates de ©&. Toutefois I’inégalité suivante, analogue a (9.6.2) qui n’utilise pas
cette hypothése, est toujours valable:

(9.6.3) dim (% N A) > dimed — 1 pour xe Z;nA.

Nous faisons intervenir d’autre part la transversalité de .# dans P"(C) a toutes les
strates de &: par la méme méthode que dans la preuve de (i), on obtient

(9.6.4) dim,(# N A) < dimy4 —2 pour yE€ MNA .

Mais on a aussi la formule concernant 'intersection des sous-ensembles analytiques &; N 4
et .# dans 4 qui donne

dim,(# n A) > dim,(ZnA) -1 pour ye .#ZnA.
Des deux inégalités précédentes on tire alors
(9.6.5) dim,(Z; n A) < dim,4 -1 pour ye .ZnA.

Maintenant, comme dans la preuve de (i), la relation (9.6.3) donne
dim(Z; n A) > dimA — 1. D’autre part, dans < qui est projectivement isomorphe
a P7"~1(C), ’hyperplan .# rencontre toute composante irréductible de dimension > 1 de
’ensemble algébrique fermé &; N A. 1l résulte alors de (9.6.5) que, si dim(Z; N A) > 1, on
adim (% n A) < dim A — 1. Mais cette relation est aussi valable quand dim (¢; N A) < 0,
pourvu que dimA4 > 1. On obtient donc que dim(Z; N A) = dimA — 1 dés lors que
dim A > 1. Remarquons que cette égalité peut &tre mise en défaut si I’on ne suppose pas que
dim A > 1 lors de I’étape de récurrence: il suffit de considérer I’exemple ou A est composé
d’un nombre fini de points que ne rencontre pas .# et ou <; contient certains d’entre eux.

Preuve de (iv): C’est, comme nous I’avons annoncé, le point clef de la déduction du
théoréme 1.1 a partir du théoréme 1.3.
Nous commengons par montrer que la transversalité de .# aux strates de & dans P”(C)

implique que chaque <; est transverse a ces strates sauf peut-&tre en un nombre fini de
points. Fixons donc i et posons

(9.6.6) C={xe & nA|<Z nest pas transverse en x dans P"(C)
a la strate de & passant par x} .

Comme Z; contient .#, la transversalité dans P”(C) de .# aux strates de & implique qu’a
fortiori <; est transverse a ces strates en tout point de rencontre situé sur .#. On a donc
4 " C = . Cela entrainera la finitude de C car C est en fait un sous-ensemble algébrique
Sfermé de ;. L’algébricité de C est démontrée au §10: elle est donnée par le corollaire 10.17
de la proposition d’algébricité 10.10. Comme donc, dans I’espace projectif complexe &
’hyperplan projectif .# ne rencontre pas I’ensemble algébrique fermé C, on a forcément

dim C < 0, ce qui montre que C est vide ou composé d’un nombre fini de points c;, ..., Cp-
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SiC = O, c’est que & est en fait un «bon» hyperplan de A, artificiellement considéré
comme «mauvais», donc se comporte comme <. D’aprés le point (iii) du méme lemme on
peut prendre dans ce cas ©; = & ,.

Supposons maintenant que C # &. Alors C = {¢}, ..., ¢,} avec p > 1. Nous allons voir
que, dans ce cas, on peut prendre, de maniére fort naturelle

(9.6.7) &, = @|§Zi\CU{{C1}’--~’{Cp}} .

Pour montrer que ©; convient, nous commen¢ons par prouver l’assertion suivante:

9.6.8) {@5[:/,.\0 est une stratification de Whitney de I’ensemble analytique fermé

(Z; " A)\C dans Z\C et .# est transverse dans Z;\C a toutes ses strates.

Notons que .# est bien contenu dans Z;\C puisqu’il ne rencontre pas C. Pour montrer
(9.6.8), nous constatons que &|y\c est la restriction a ZN\C de S|prc)\c. Comme
P*(C)\C est un ouvert de P"(C), il est aisé de voir que @|pn(c)\c est une stratification de
Whitney de A\C (pour plus de détails, cf. [Ch3] 2¢ partie, §5) aux strates de laquelle .# est
transverse. Or, par définition de C, la sous-variété Z\C de P"(C)\C est transverse a toutes
les strates de @|pn(c)\c- La situation est alors analogue a celle du point (iii) et conduit donc
a une conclusion analogue qui est précisément 1’assertion (9.6.8).

Nous allons maintenant passer en revue pour &; toutes les propriétés qui définissent une
stratification de Whitney (cf. [Wh2] §§18 et 19. [L —T2] (1.2) et [Ch3] 2¢ partie, §5):

Lissité des strates. Compte tenu de (9.6.8), il est clair que &; est une partition finie de
%; N A en sous-variétés analytiques pures de ;.

Caractere strict des strates. 1l s’agit de voir que chaque strate S’ € &; est stricte dans
%, c’est-a-dire que son adhérence S’ dans Z; (ou, ce qui revient au méme, dans P"(C))
ainsi que S’\S’ sont des sous-ensembles analytiques fermés de &;. Cela est clair si
S" = {cj}. Si S” est de la forme S N (Z\C) avec S € &, alors S’ = (S N Z)\((S\S) U C),
ce qui est une différence de deux ensembles analytiques fermés de P”(C) puisque S est stricte
dans P"(C). L’analyticité de S’ est alors donnée par {Wh3] 5.3(U). Comme d’autre part
S"CS A %, on a Pégalité S\S" =5 n ((S\S) U C), ce qui donne aussi I’analyticité
de S'\S".

Propriété de frontiere. 11 s’agit de montrer que, pour toute strate S € &;, son
adhérence S est réunion de strates. Cela est encore une fois clair si S = {cj}. SiS e @z,
nous écrivons S = (5 N (%\C)) U (S N C). Le premier terme de cette union est ’adhé-
rence de S dans Z;\C donc est réunion d’éléments de © |\ ¢ €tant donnée la propriété de
frontiére possédée par @|QI\C qui, d’apres (9.6.8), est une stratification dans Z;\C. Le
deuxiéme terme est un sous-ensemble (éventuellement vide) de C donc est réunion de {c;}.
On obtient bien, au total, une réunion d’éléments de &;.

Conditions (a) et (b) de Whitney. Avec ’algébricité de C, c’est 1a le deuxieme €élément
important dans la démonstration du point (iv). Nous devons montrer que tout couple (S, 7))
de strates de ©; vérifie ces conditions. Nous savons deja, d’apres (9.6.8), que & | .\ c est
une stratification de Whitney dans Z;\C. Par conséquent, si S, T € ©|z:\c, le couple
(S, T) vérifie les conditions (a) et (b) dans Z;\C donc dans Z; puisqu’il s’agit de conditions
de nature locale. Parmi les autres couples (S, T) de strates, les seuls pour lesquels il y ait un
probléme sont ceux qui sont tels que
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SeB|ync et T = {cj} avec cjeS_.

Nous allons traiter ce probléme comme un cas trés particulier de ’important lemme de
Whitney selon lequel les points de la petite strate en lesquels un couple vérifie les conditions
(a) et (b) sont génériques (cf. [Wh2] lemma 19.3, récemment précisé par Teissier: [Te] VI.2.1).

Le lemme de Whitney est énoncé dans un ouvert de C” mais, compte tenu du caractére local
des conditions (a) et (b) et de leur invariance par isomorphisme analytique, nous pourrions,

nous aussi, nous ramener & un ouvert de C”~! par ’intermédiaire d’une carte de Z; au
voisinage de ¢;. Nous continuerons a raisonner dans &, laissant au lecteur le soin de vérifier
que les autres éléments du raisonnement sont susceptibles de subir la méme réduction. Les
hypothéses du lemma 19.3 de [Wh2] sont qu’on est en présence de deux ensembles analytiques

fermés V et W de dimension constante, avec dim V > dim W. Ici, les réles de V et W seront

joués respectivement par S et {c;}. Vérifions qu’ils satisfont aux hypothésesuen guestion.

Nous avons vu que les strates de &; sont strictes dans Z;, ce qui implique que S et S\S sont
analytiques fermés. Comme S est pure, S est alors de dimension constante et

dim(S\S) < dim S, d’apres [Wh2] lemma 3.13. D’autre part, {c;} est trivialement

analytique fermé de dimension constante 0 et, comme {c;} C S\S, on a bien

dim {¢;} < dim S. La conclusion du lemma 19.3 de [Wh2] est qu’il existe un sous-ensemble

analytique fermé Z de W avec dim Z < dim W tel que, V0 et W0 étant les parties lisses de

Vet W, le couple (V°, WO\Z) satisfasse aux conditions (a) et (b). Dans notre cas ou

W = {c;}, 'inégalité dim Z < dim W implique que Z = &. Notre conclusion est donc que

le couple (S°, {c;}), ot S désigne la partie lisse de S, satisfait aux conditions (a) et (b).

Comme S est un ouvert de S°, on obtient « JSortiori que le couple (S, {c;}) vérifie les

conditions (a) et (b) de Whitney.

Nous avons ainsi fini de vérifier que ©&; est une stratification de Whitney de & n 4. 11
est clair, d’apres la définition (9.6.7), que c’est un raffinement de S|z

Il reste & nous assurer que .# est transverse dans & aux strates de ©;. Mais c’est bien
le cas car, d’une part, d’aprés (9.6.8), .« est transverse aux éléments de & | zA\c dans Z\C
donc dans Z; et, d’autre part, .# ne rencontre pas les {cj}.

Cela achéve la preuve du point (iv) donc la démonstration du lemme 9.2. L]

Remarque 9.7.  Une démonstration du point (iv) figure déja dans [Ch2] au cours de la
preuve de la proposition 3 dans une récurrence similaire. Mais elle comporte deux erreurs
que voici:

1°. Dans [Ch2] aussi on considére I’ensemble C introduit en (9.6.6) dans la démonstra-
tion ci-dessus (il est nommé D dans [Ch2]). Mais on n’y montre pas que C est algébrique
fermé. On se contente de montrer que C est analytique local d’adhérence algébrique. Il est
ensuite affirmé que C ne rencontre pas .# a partir de ’argument suivant: &; étant trans-
verse a toutes les strates de & en tout point de #, le serait aussi en tout point d’un voisinage
de .#. Or, si cela est clair au voisinage de chaque point de .# N A pour la strate passant
par ce point, ce ne I’est plus pour d’autres strates auxquelles il peut étre adhérent. Ce n’est
effectivement le cas qu’en raison de la condition (a) de Whitney qui a d’ailleurs été introduite
par Whitney en vue de I’ouverture de la transversalité (cf. [Wh1] Introduction). Ici, la
condition (a) intervient dans la démonstration de la proposition 10.10 qui permet, au travers
de son corollaire 10.17, de montrer que C est fermé.
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2°. Dans [Ch2], la condition (b) de Whitney pour &; est justifiée par I’inclusion
C3 C C4 du cOne tangent classique C; en un point d’un ensemble analytique (C est ensem-
ble des limites de sécantes menées par ce point) dans le céne Cy4, ensemble des directions
contenues dans une limite d’espaces tangents en des points lisses convergeant vers ce point
(cf. [Wh1] (3.1)). Cet argument est doublement erroné. D’une part, ce n’est pas parce qu’une
limite de sécantes m, m € N, est contenue dans une limite d’espaces tangents que pour
autant il est clair qu’elle soit contenue dans /a limite, quand elle existe, des espaces tangents
en les x,,. D’autre part, on doit présupposer I’analyticité de S au voisinage de ¢; que nous
démontrons ici directement; dans [Ch2] elle est censée résulter de la propriété de frontiére,
mais ce n’est vrai que si I’on entend cette propriété au sens de [Wh2], c’est-a-dire avec une
condition supplémentaire de dimension (cf. [Wh2] (18.3)); or cette condition de dimension
est censée, dans [Ch2], résulter précisément de la condition (b), ce qui constitue un cercle
vicieux.

La démonstration du théoréme 1.1 qui avait été ramenée au lemme 9.2 est
maintenant terminée. [ []

Remarque 9.8. Nous avons montré, au cours de la démonstration du
point (iv) du lemme 9.2, qu’étant donné un ensemble algébrique fermé A de
P"(C), avec n > 2, et un pinceau A d’hyperplans d’axe transverse dans P”(C)
a toutes les strates d’une stratification de Whitney © de A, chaque hyperplan
de A est transverse a toutes les strates de & sauf peut-€tre en un nombre fini
de points non situés sur ’axe. Cela résultait de la proposition d’algébricité
10.10 au travers de son corollaire 10.17. Un autre corollaire de cette proposi-
tion, le corollaire 10.19, joint a la proposition 10.20 qui provient du théoréme
de Sard, montre qu’il n’y a en fait qu’un nombre fini d’hyperplans de A qui
ne soient vraiment transverses a toutes les strates de &, fait dont nous nous
sommes servis des I’énoncé du théoréme 1.3. Un pinceau A comme ci-dessus
présente donc une certaine analogie avec les pinceaux de Lefschetz (cf. [Lf]
II.8 et V.2 et [La] §1). Mais, a la différence de ceux-ci, un méme hyperplan
de A peut rencontrer non transversalement une méme strate de & en plusieurs
points distincts et les contacts ne sont pas forcément quadratiques.

2°. DEMONSTRATION DU COROLLAIRE 1.2 A PARTIR DU THEOREME 1.1

L’hypothése g > 2 implique que P”(C)\A est simplement connexe car le complé-
mentaire d’un ensemble algébrique fermé de codimension > 2 dans P”(C) est, nous le
redémontrons ci-dessous, simplement connexe. D’autre part, la section Z n (P*(C)\A)
est non vide et, elle aussi, simplement connexe. En effet, si A est vide, ona Z n (P"(C)\A)
= % et si dimA > 0, alors la transversalité de & a toutes les strates de & implique que
% N A est de dimension dim A — 1 (comme dans la preuve du point (i) du lemme 9.2) donc
est aussi de codimension > 2 dans <. L’assertion est triviale dans le premier cas et
dans le second, le méme argument que ci-dessus s’applique puisque Z N (P"(C)\A)
= Z\(Z N A) et que Z est projectivement isomorphe 4 P” ~1(C). Dans ces conditions de

1
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simple connexité, le théoréme de Whitehead (cf. [Sp] 7.5.9) dit que les conclusions du
théoréme 1.1 impliquent celles du corollaire 1.2.

Il nous reste a justifier que le complémentaire d’un ensemble algébrique fermé de
codimension > 2 de P"(C) est simplement connexe. On peut le faire en se ramenant a un
théoréme selon lequel le groupe fondamental d’une variété différentiable connexe n’est pas
modifié par ’ablation d’une sous-variété fermée de codimension > 3 (cf. [Go] X.2.3). Mais
il est intéressant de constater que notre assertion peut aussi étre démontrée a I’aide d’un
théoreme du type de Lefschetz, plus précisément a I’aide du théoréme de Zariski mentionné
au §1, dans une version valable pour le complémentaire d’un ensemble algébrique fermé
quelconque de P"(C), celle de [Ch1] ou de [H-L2] par exemple. En fait, la proposition préli-
minaire plus faible (5.1.4) de [Chl] est suffisante. On procéde par récurrence sur la dimen-
sion d de I’ensemble algébrique 4. Si A = J, c’est-a-dire d = — 1, son complémentaire est
P"(C) qui est bien simplement connexe. Supposons maintenant [’assertion valable pour
d = dy>= — 1 et plagons-nous dans le cas ou dimA = dy + 1. On a alors dimA > 0 donc
n > 2 et on peut appliquer la proposition (5.1.4) de [Chl] (voir la remarque ci-dessous).
D’aprés cette proposition, on peut choisir un hyperplan projectif &’ de P"(C) transverse a
toutes les strates d’une stratification de Whitney © de A et tel que I’inclusion
Z" n (P"(C)\A) & P"(C)\A induise une surjection

T (Z" A (PMC)\A), e )»n; (P (C)\A4, e’)

avec un point base e’ quelconque de &’ n (P"(C)\A). Mais le choix de ¥’ fait que,
comme ci-dessus, ’ensemble algébrique fermé %’ n A est de dimension dyp donc de
codimension > 2 dans <”. On peut donc lui appliquer I’hypothése de récurrence qui donne
que &' n (P" (C)\A) = Z'\(Z’ n A) est simplement connexe. La surjection en question
implique alors que I’espace connexe par arcs P”(C)\ A est aussi simplement connexe, ce qui
acheve la récurrence. La simple connexité du complémentaire d’un ensemble algébrique fermé
de codimension > 2 dans P"(C) est ainsi établie.

La démonstration du corollaire 1.2 qui avait été ramenée a cette assertion se trouve alors
terminée. [ ]

Remargue 9.9. La proposition (5.1.4) de [Chl] que nous avons appliquée dans la
démonstration ci-dessus au complémentaire d’un ensemble algébrique fermé de A4 de P"(C),
avec n 2= 2, est énoncée dans [Ch1] pour le cas ou A est une hypersurface mais, comme nous
’avons signalé au §1, sa démonstration est valable pour un ensemble algébrique fermé
quelconque. Signalons d’autre part que I’hyperplan &’ que nous avons utilisé est, dans la
démonstration de [Chl], pris dans un ouvert de Zariski non vide Q contenu dans I’ensemble
7 des hyperplans projectifs de P"(C) transverses aux strates de ©, choix que nous avons
respecté ci-dessus. La proposition (5.1.4) est pourtant énoncée dans [Chl] pour ¥’ € &, ce

qui est un glissement injustifié (mais que le corollaire 10.18 ci-dessous, selon lequel 7 est
un ouvert de Zariski, justifie).

Remarque 9.10. Dans le cas ou la codimension q de A est 1, on a
ntq—-2=n-1letn+q—-3=n-2etles conclusions du corollaire 1.2

sont encore valables d’aprés le theorem 3.4.1 et le lemma de I’appendix de
[H-L4].
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