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Les lemmes 8.2, 8.4, 8.5 et 8.7 démontrent l'assertion d'injectivité du
théorème 1.3.

L'assertion de surjectivité ayant été prouvée au terme du §7, le théorème 1.3

se trouve donc démontré. Y compris, remarquons-le, l'assertion selon laquelle il
est possible de considérer artificiellement comme «mauvais» des hyperplans de

A qui sont en fait «bons». Nulle part, en effet, dans la démonstration qui
précède, nous n'avons fait intervenir le fait que les hyperplans «mauvais»
fussent vraiment «mauvais».

9. Démonstration du théorème 1.1 et du corollaire 1.2

1°. Démonstration du théorème 1.1 à partir du théorème 1.3

Pour montrer les assertions du théorème 1.1, le théorème 1.3 va nous

permettre une récurrence qui nous ramènera à une situation en basse dimension
où un calcul direct est possible. On pense naturellement à une récurrence sur
la dimension n de l'espace ambiant P"(C). Mais cela n'est pas commode car
nous verrons que, dans l'étape de récurrence où nous utilisons les sections par
un pinceau d'hyperplans comme dans le théorème 1.3, la codimension de A
peut diminuer dans les sections exceptionnelles si l'on ne suppose pas que
dim ^4^1. Nous ferons donc une récurrence sur d dim A amorcée à d 0

avec n donc q quelconques. Nous écarterons le cas trivial où A P"(C),
c'est-à-dire q 0.

Pour commencer, le cas où A est vide, pour lequel nous avons convenu
que q n + 1, correspond donc à d - 1 et se trouve hors récurrence. Dans
ce cas, P"(C)\^4 P"(C) et S7 n (P"(C)\v4) i5f. Or, à homéomorphisme
près, P"(C) peut être obtenu en attachant à une 2n-boule fermée B2n le
long de la (2n - l)-sphère S2n~l formant son bord. On a donc

Hk(P"(C),2) Hk(B2», S2n~l)=0 pour - 1

(cf. [Gb] chap. 19). Comme dans ce cas + 2 In — 1, les conclusions
du théorème 1.1 résultent alors de la suite exacte d'homologie relative pour
le couple (P"(C), S7).

La récurrence débute à d dim^4 0. Dans ce cas, A {au
est composé d'un nombre fini de points avec p 0. On a Pn(C)\A

P"(C)\{a,,...,ap} et £?n (P*(C)\A) £?. Mais P"(C)\{a,,..., se
rétracte par déformation sur un bouquet composé de et de — 1

(2n -l)-sphères, donc l'inclusion induit des
isomorphismes

pour k ^ 2n - 2
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Comme cette fois n + q - 2 2n - 2, les conclusions du théorème 1.1 sont
bien valables dans ce cas. Remarquons que, pour k n - 2, nous avons
seulement besoin de la surjectivité de l'homomorphisme ci-dessus. Nous

pourrions donc nous contenter de la relation /4(P"(C)\{tfi, ap), ££) 0

pour k ^ 2n - 2.

Pour l'étape de récurrence, nous supposons que les conclusions du
théorème 1.1 sont valables pour dim A d0 ^ 0 et nous allons montrer
qu'elles sont alors aussi valables pour dim d0 + 1. Dans la suite de cette
partie, A sera donc un ensemble algébrique fermé de P*(C) de codimension
q avec dim A d0 + 1 et A P^C); notons que cela implique que n ^ 2.

Nous allons nous ramener au cas où dim^l d0 à l'aide du théorème 1.3.
La première chose, dans cette réduction, est d'intégrer «âf à un pinceau A

satisfaisant aux hypothèses du théorème 1.3:

Lemme 9.1. Sous les hypothèses du théorème 1.1 et si n ^ 2, il existe

un {n - 2)-plan projectif Jé contenu dans J et transverse dans P"(C)
à toutes les strates de la stratification 0 de A.

Démonstration. 7 est projectivement isomorphe à Pn ~ l(C) et 7 n A en est un sous-
ensemble algébrique fermé. Comme d'autre part 7 est transverse à toutes les strates de ©,
la restriction ©| y de © à 7, composée des S n 7 non vides pour 5 e©, est une stratification

de Whitney de 7 n A (cf. [Chi] lemme 2.2.2). D'après le corollaire 10.18 de la proposition

d'algébricité 10.10 ci-dessous, il existe donc un hyperplan projectif y/é de 7 transverse
dans 7 à toutes les strates de ©| y. Alors .Jé est un (n - 2)-plan de P"(C) transverse dans

P"(C) à toutes les strates de ©. En effet, supposons que .Jé rencontre S e © en x. D'après
la transversalité de 7 à S dans P"(C) d'une part et la transversalité de .Jé à S n 7 dans

7 d'autre part, on a les relations suivantes entre espaces tangents en x:

TXS + Tx7 TxP"(C)

TX(S n 7) TXS n Tx7
TX(S n 7) + Tx.Jé= Tx7.

Une vérification algébrique simple montre que ces relations impliquent

TXS+ Tx.Jé TxP"(C)

ce qui est le résultat de transversalité annoncé. d

Soit donc Jé comme dans le lemme 9.1 et soit A le pinceau d'hyperplans
d'axe Jé. Alors A satisfait aux hypothèses du théorème 1.3 vis-à-vis de A et

de 0 et S7 en est un «bon» hyperplan. Notons, comme dans ce théorème,
«Sfi, les «mauvais» hyperplans de A; nous pouvons supposer que s ^ 2

pour nous conformer aux hypothèses du théorème, en considérant au besoin
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comme «mauvais» de «bons» hyperplans, artifice que l'énoncé du théorème

1.3 permet.
Nous adoptons aussi, dans notre situation, les autres notations du théorème

1.3. La conclusion que nous recherchons pour l'étape de récurrence est la sur-

jectivité de lk pour k ^ n + q - 2 et son injectivité pour k ^ n + q - 3.

Cela résultera du théorème 1.3 si nous montrons que les mk et mlk satisfont

à des propriétés de surjectivité ou d'injectivité convenables. Nous allons voir

qu'elles sont données par l'hypothèse de récurrence appliquée aux ensembles

algébriques fermés Ä7 n A et 2/ n A pour 1 ^ z ^ s respectivement dans S7

et 2* (qui sont projectivement isomorphes à P"_1(C)) avec Jï comme

hyperplan.
^

Il s'agit donc de constater qu'on peut user de l'hypothese de récurrence

dans ces circonstances. Il y a deux choses dont il faut s'assurer:

— que la. dimension de l'ensemble algébrique diminue bien et donc que
corrélativement la codimension ne diminue pas lorsqu'on passe de A C P"(C)
à n A C Q? ou aux n A C 2J-;

— que „ä est transverse dans S7 aux strates d'une stratification de Whitney

de i? n ^4 et aussi transverse dans chaque aux strates d'une stratification

de Whitney de 2^- n A.

Ces exigences sont satisfaites de manière naturelle pour 2" n A en raison
de la transversalité de S7 aux strates de ©. D'une part, en effet, une section
transversale fait chuter la dimension de A dès lors que A est non vide. D'autre
part, la trace de © sur 2" est alors une stratification de Whitney de i?n 4
qui convient. Cela est précisé dans les points (i) et (iii) du lemme ci-dessous.

La situation n'est plus la même pour les 2J n A puisque précisément les

2/ sont «mauvais». Mais la transversalité de Jt dans P"(C) aux strates de

© permet de satisfaire malgré tout aux deux exigences ci-dessus:

En ce qui concerne la première, en effet, 2J n A se trouve pris en
tenailles entre A et ,// n A. Or il y a, d'une part, grâce à la transversalité de
..// aux strates de ©,' une chute de dimension de 2 lorsqu'on passe de A à

• M n ^4, pourvu que dim A ^ 1. Mais nous avons précisément organisé notre
récurrence de manière à ce que cette inégalité soit satisfaite lors de l'étape de
récurrence. D'autre part, de A à 2- n A et de 2} n A à ^ n A, la
dimension ne peut à chaque fois chuter de plus de 1 car il s'agit de sections
hyperplanes dans des espaces projectifs complexes. La dimension a donc dû
forcément chuter exactement de 1 à chaque fois. Cette question est précisée
dans le point (ii) du lemme ci-dessous.
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Le point clef dans la déduction du théorème 1.1 à partir du théorème 1.3

est que 5^- n A satisfait aussi à la deuxième exigence. Autrement dit que
l'axe Jé est «bon» rpême au sein des hyperplans «mauvais». Nous montrons,
en effet, qu'en raison de la transversalité de Jé aux strates de ©, chaque ^
est transverse à ces strates sauf en un nombre fini de points non situés sur Jé.

Cela permet de raffiner la trace de 0 sur ^ en une stratification de Whitney
de n A sans rien toucher au voisinage de Jé et de répondre ainsi à la

question. Cela fait l'objet du point (iv) du lemme ci-dessous.

Les éléments qui nous permettront d'appliquer l'hypothèse de récurrence
à i? n A et dans 5f, d'une part, et à n A et Jé dans chaque 5^-,

d'autre part, sont donc rassemblés dans le lemme suivant:

Lemme 9.2. Avec les hypothèses et notations du théorème 1.3, le pinceau
A possède les propriétés suivantes:

(i) dim «âf n A dim A — 1 si dim ^4 ^ 0 ;

(ii) dim n A dim A — 1 pour 1 ^ ^ v si dim A ^ 1 ;

(iii) la restriction ©| g de 0 à 2F (composée des S n 2F non vides

pour S e ©) est une stratification de Whitney de 2F n A et Jé est

transverse dans S? à toutes les strates de ©|^;
(iv) pour 1 ^ i < s, la restriction ©| de © à 2Fi peut être

raffinée en une stratification de Whitney ©,- de 2Fi n A aux strates
de laquelle .Jé soit transverse dans 2F[.

Avant de démontrer ce lemme, nous menons à son terme l'étape de récurrence

avec son aide, achevant ainsi la démonstration du théorème 1.1:

(9.3) Fin de la démonstration du théorème 1.1.

Rappelons que dans la situation de l'étape de récurrence, nous avons

dim A d0 + l ^ l. D'après les points (i) et (iii) du lemme 9.2, nous

pouvons donc appliquer l'hypothèse de récurrence dans 2F avec Jé

pour hyperplan; comme la codimension de i5f n A dans S7 est encore q, cela

nous donne que

mk est surjectif pour k^(n-l) + q~2,
mk est injectif pour k ^ (n- 1) + q - 3

D'après les points (ii) et (iv) du lemme 9.2, l'hypothèse de récurrence peut
aussi être appliquée, pour 1 < i ^ s, à 2Fi n A dans % avec Jé comme

hyperplan et on obtient que, pour 1 ^ i ^ s,
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mlk est surjectif pour k^(n-\) + q- 2,
mlk est injectif pour k ^ (n - 1) + q - 3

Les hypothèses qui permettent, à l'aide du théorème 1.3, de conclure à la

surjectivité de lk sont donc remplies pour k ^ n + q - 2 et celles qui

permettent de conclure à son injectivité le sont pour k ^ n + q - 3. La

récurrence se trouve ainsi terminée à l'aide du théorème 1.3. D

Remarque 9.4. L'hypothèse de récurrence nous a donné pour les mlk des

conclusions de surjectivité et d'injectivité un rang plus loin que ce dont nous

avions besoin.

Remarque 9.5. Nous avons dit dans l'introduction que la validité du

théorème 1.1 était conditionnée par la particularité de l'espace ambiant

permettant l'amorce de la récurrence. Nous pouvons maintenant préciser cela.

Notre espace ambiant est P"(C) tout entier et sa section hyperplane générique

i? tout entier. Nous avons amorcé la récurrence en nous servant de la relation
//A:(Pn(C)\{öfi, ap), S7) 0 pour k ^ 2n - 2. Nous pourrions en fait
tirer parti de la remarque précédente, faire une récurrence sur n sans nous
servir du point (ii) du lemme 9.2 et descendre dans la récurrence jusqu'à la
situation où soit n 1, soit A 0, ce qui nous donnerait la condition plus
simple Hk{P"(C), S7) 0 pour k ^ 2n - 1. D'autre part, dans l'étape de

récurrence, nous avons appliqué l'hypothèse de récurrence à des situations où

l'espace ambiant était une section hyperplane générique ou exceptionnelle de

l'espace ambiant de départ: dans notre cas, il s'agissait de âf et des qui
sont tous isomorphes àP"_1(C) donc du même type que l'espace ambiant de

départ, ce qui nous a permis de poursuivre la récurrence. Ce sont là des

exigences très particulières. C'est pourquoi, bien qu'au § 11 nous généralisions
le théorème 1.3 au cas d'une variété quasi-projective lisse X\A, nous ne

pourrons en déduire un analogue général du théorème 1.1 qui tienne compte
de la codimension de A. Il faudrait, en effet, qu'on ait la relation
Hk(X, n X) 0 pour k ^ 2&\mX - 1 (en supposant X de dimension
pure) et que, de plus, cette relation soit héréditaire par sections hyperplanes
successives de X. Mais cela ne doit pas être impossible: voir (12.2).

Pour terminer la démonstration du théorème 1.1, il reste maintenant à

prouver le lemme 9.2:

(9.6) Démonstration du lemme 9.2.

Nous démontrons les points dans l'ordre (iii), (i), (ii), (iv).

Preuve de (iii). Nous avons déjà vu, dans la démonstration du lemme 9.1, que <g| ^ est
une stratification de Whitney de 0n A. Et l'existence de // y a été prouvée en le prenant
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précisément transverse à toutes les strates de ©| g. Mais, réciproquement, n'importe quel
(n - 2)-plan Jé contenu dans SA et transverse dans P"(C) à toutes les strates de © possède

cette propriété. En effet, si x est un point commun à Jl et à une strate S n SA de ©|^f,
on a alors les relations

TXS + TxJl TxP"(C)

TX(S n &)= TXS n TXSA

Tx Jl C TXSA

d'où l'on tire aisément que

TX(S n SA) + TX,J?= TxSA.

Preuve de (i). Pour commencer, A est réunion localement finie (donc finie puisque A
est compact) des strates de ©. Il est aussi réunion de leurs adhérences qui sont analytiques
fermées. On a donc, si x e A,

dinv4 sup dimx5
s e ©

avec la convention dimx5 - 1 pour x (cf. [Wh31 5.3 (K)). Mais chaque strate étant

pure, on a dim^S dim S pour tout x e S (cf. [Wh2] lemma 3.13; ce lemme y est énoncé

dans un ouvert de C" mais est valable dans une variété analytique complexe quelconque: cf.

[Ch3] 2e partie, §5 pour plus de détails). Par conséquent

dimxA sup dim S

Se©
xe?

(On peut en fait montrer cette égalité sans se servir de l'analyticité de l'adhérence des strates

(cf. [Ch3] 2e partie, corollaire 5.36)). De la même manière, puisque ©|^ est une stratification

de SA n A, on a, pour x e SA n A,

dïmx(SA n A sup dim (S n SA)

Se©
x e S n

Mais, si S n SA ^ 0, on a, par transversalité de SA à S,

dim (5 n SA) dim S + dim SA - dim P"(C) dim S - 1

Il en résulte que, pour x 6 n A,

(9.6.1) dimX(SA n A) ^ dinv4 - 1

D'un autre côté, on a la formule valable pour une intersection d'ensembles analytiques
locaux complexes quelconques (cf. [Wh3] 2.12C)

(9.6.2) dimx(^n A) ^ dimx SA + dim^ - dimP"(C) dinv4 - 1

sans avoir à utiliser d'hypothèse de transversalité.

Maintenant, si SA n A =£ 0, on a, d'après (9.6.1), dim (SA n A) ^ dim A - 1, relation

valable aussi quand SA n A 0 avec la convention dim 0 - 1, dès lors que dim A ^ 0.

D'autre part, dans l'espace projectif complexe P"(C), l'hyperplan projectif SA rencontre
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toute composante irréductible de A de dimension ^ 1. Il résulte alors de (9.6.2) que, si

dim A ^ 1, on a dim (üf n A) ^ dim A - 1, relation qui est aussi trivialement valable pour

dim .4 ^ 0. On obtient donc que dim (J n A) dim A — 1 dès lors que dimy4 ^ 0.

Preuve de (ii). On ne peut raisonner comme en (i) car ^ n'est en général pas

transverse aux strates de ©. Toutefois l'inégalité suivante, analogue à (9.6.2) qui n utilise pas

cette hypothèse, est toujours valable:

(9.6.3) dimn A) ^ dimx^ - 1 pour x e n A

Nous faisons intervenir d'autre part la transversalité de J/ dans P"(C) à toutes les

strates de ©: par la même méthode que dans la preuve de (i), on obtient

(9.6.4) dimy(J/n A) ^ dim^ - 2 pour y e J/ n A

Mais on a aussi la formule concernant l'intersection des sous-ensembles analytiques %nA
et .// dans Sf qui donne

'dimy{_Jl r\ A) ^ dimy{ßi n A) - 1 pour y e J/ n A

Des deux inégalités précédentes on tire alors

(9.6.5) dimy(&i n A) ^ dim^ - 1 pour y e Jt n A

Maintenant, comme dans la preuve de (i), la relation (9.6.3) donne

dim(..// n A) ^ d\mA - 1. D'autre part, dans qui est projectivement isomorphe

à P"_1(C), l'hyperplan rencontre toute composante irréductible de dimension ^ 1 de

l'ensemble algébrique fermé n A. Il résulte alors de (9.6.5) que, si dimn A) ^ 1, on

a dim n A) ^ dim A - 1. Mais cette relation est aussi valable quand dim (izf/ n A) ^ 0,

pourvu que dim A ^ 1. On obtient donc que dim n A dim A - l dès lors que

dimyl ^ 1. Remarquons que cette égalité peut être mise en défaut si l'on ne suppose pas que
dim A ^ 1 lors de l'étape de récurrence: il suffit de considérer l'exemple où A est composé

d'un nombre fini de points que ne rencontre pas Jé et où contient certains d'entre eux.

Preuve de (iv): C'est, comme nous l'avons annoncé, le point clef de la déduction du

théorème 1.1 à partir du théorème 1.3.

Nous commençons par montrer que la transversalité de Jl aux strates de © dans P"(C)
implique que chaque est transverse à ces strates sauf peut-être en un nombre fini de

points. Fixons donc i et posons

(9.6.6) C {x e 2) n A \ J, n'est pas transverse en x dans Pn(C)
à la strate de © passant par x}

Comme contient JA, la transversalité dans P"(C) de Jé aux strates de © implique qu'a
fortiori J[ est transverse à ces strates en tout point de rencontre situé sur Jé. On a donc

• A n C 0. Cela entraînera la finitude de C car C est en fait un sous-ensemble algébrique
fermé de L'algébricité de C est démontrée au § 10: elle est donnée par le corollaire 10.17
de la proposition d'algébricité 10.10. Comme donc, dans l'espace projectif complexe
l'hyperplan projectif Jt ne rencontre pas l'ensemble algébrique fermé C, on a forcément
dim C ^ 0, ce qui montre que C est vide ou composé d'un nombre fini de points c\, cp.
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Si C 0, c'est que est en fait un «bon» hyperplan de A, artificiellement considéré

comme «mauvais», donc se comporte comme D'après le point (iii) du même lemme on
peut prendre dans ce cas ©/ ©|s;..

Supposons maintenant que C ^ 0. Alors C {c\,..., cp) avec p ^ 1. Nous allons voir
que, dans ce cas, on peut prendre, de manière fort naturelle

(9.6.7) ©]sr<\C u {{q},..., {cp}}

Pour montrer que ©/ convient, nous commençons par prouver l'assertion suivante:

(9 6 8) j 0\c est une stratification de Whitney de l'ensemble analytique fermé
1 (^/ n A)\C dans ,^-\C et ^ est transverse dans ^\C à toutes ses strates.

Notons que ^ est bien contenu dans 5/\C puisqu'il ne rencontre pas C. Pour montrer
(9.6.8), nous constatons que ©|^;.\c est la restriction à ^/\C de ©|p«(c)\c- Comme

P"(C)\C est un ouvert de P^C), il est aisé de voir que ©jp«(c)\c est une stratification de

Whitney de A\C (pour plus de détails, cf. [Ch3] 2e partie, §5) aux strates de laquelle ^ est

transverse. Or, par définition de C, la sous-variété ^\C de P"(C)\C est transverse à toutes
les strates de ©|p«(C)\c- La situation est alors analogue à celle du point (iii) et conduit donc
à une conclusion analogue qui est précisément l'assertion (9.6.8).

Nous allons maintenant passer en revue pour ©/ toutes les propriétés qui définissent une
stratification de Whitney (cf. [Wh2] §§18 et 19. [L-T2] (1.2) et [Ch3] 2e partie, §5):

Lissité des strates. Compte tenu de (9.6.8), il est clair que ©/ est une partition finie de

n A en sous-variétés analytiques pures de se,.

Caractère strict des strates. Il s'agit de voir que chaque strate S' e ©/ est stricte dans

5/, c'est-à-dire que son adhérence S' dans ^ (ou, ce qui revient au même, dans P"(C))
ainsi que S'\S' sont des sous-ensembles analytiques fermés de «£/. Cela est clair si

S' {Cj}. Si S' est de la forme S n (â}\C) avec Se©, alors S' (S n &j)\((S\S) u C),
ce qui est une différence de deux ensembles analytiques fermés de P"(C) puisque S est stricte

dans P"(C). L'analyticité de S' est alors donnée par [Wh3] 5.3 (U). Comme d'autre part
S' C S n 9?i, on a l'égalité S'XS7 S' n ((S\S) u C), ce qui donne aussi l'analyticité
de S~'\S\

Propriété de frontière. Il s'agit de montrer que, pour toute strate Se©/, son

adhérence S est réunion de strates. Cela est encore une fois clair si S {cy}. Si S e ©| &.\c,
nous écrivons S (S n (2/\C)) u (S n C). Le premier terme de cette union est l'adhérence

de S dans donc est réunion d'éléments de ©|g.\c étant donnée la propriété de

frontière possédée par ©|g\c qui, d'après (9.6.8), est une stratification dans i^\C. Le

deuxième terme est un sous-ensemble (éventuellement vide) de C donc est réunion de {cf.
On obtient bien, au total, une réunion d'éléments de ©/.

Conditions (a) et (b) de Whitney. Avec l'algébricité de C, c'est là le deuxième élément

important dans la démonstration du point (iv). Nous devons montrer que tout couple (S, T)
de strates de ©/ vérifie ces conditions. Nous savons déjà, d'après (9.6.8), que ©|g.\C est

une stratification de Whitney dans âfXC. Par conséquent, si S, T e © | ^,\c> le couple

(5, T) vérifie les conditions (a) et (b) dans f£fC donc dans £?/ puisqu'il s'agit de conditions
de nature locale. Parmi les autres couples (S, T) de strates, les seuls pour lesquels il y ait un

problème sont ceux qui sont tels que
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S e ©| y.\c et T {cy) avec cj e S

Nous allons traiter ce problème comme un cas très particulier de l'important lemme de

Whitney selon lequel les points de la petite strate en lesquels un couple vérifie les conditions

(a) et (b) sont génériques (cf. [Wh2] lemma 19.3, récemment précisé par Teissier: [Te] VI.2.1).
Le lemme de Whitney est énoncé dans un ouvert de Cm mais, compte tenu du caractère local
des conditions (a) et (b) et de leur invariance par isomorphisme analytique, nous pourrions,
nous aussi, nous ramener à un ouvert de Cn~l par l'intermédiaire d'une carte de iZ/ au

voisinage de cy. Nous continuerons à raisonner dans â/, laissant au lecteur le soin de vérifier

que les autres éléments du raisonnement sont susceptibles de subir la même réduction. Les

hypothèses du lemma 19.3 de [Wh2] sont qu'on est en présence de deux ensembles analytiques
fermés F et W de dimension constante, avec dim V > dim W. Ici, les rôles de V et W seront
joués respectivement par S et {cy}. Vérifions qu'ils satisfont aux hypothèses en question.
Nous avons vu que les strates de ©/ sont strictes dans =Z/, ce qui implique que S et S \S sont
analytiques fermés. Comme S est pure, S est alors de dimension constante et

dim(5\S) < dim S, d'après [Wh2] lemma 3.13. D'autre part, {cy} est trivialement
analytique fermé de dimension constante 0 et, comme {cy} C S\S, on a bien
dim {cy} < dim S. La conclusion du lemma 19.3 de [Wh2] est qu'il existe un sous-ensemble
analytique fermé Z de W avec dim Z < dim W tel que, F0 et W° étant les parties lisses de
V et W, le couple (F0, W°\Z) satisfasse aux conditions (a) et (b). Dans notre cas où
W — {cj}, ^'inégalité dimZ < dim W implique que Z 0. Notre conclusion est donc que
le couple (5°, {cy}), où 5° désigne la partie lisse de S, satisfait aux conditions (a) et (b).
Comme S est un ouvert de 5°, on obtient a fortiori que le couple (S, (cyf) vérifie les
conditions (a) et (b) de Whitney.

Nous avons ainsi fini de vérifier que ©/ est une stratification de Whitney de ^ n A. Il
est clair, d'après la définition (9.6.7), que c'est un raffinement de ©]|k.

Il reste à nous assurer que Jé est transverse dans ^ aux strates de ©/. Mais c'est bien
le cas car, d'une part, d'après (9.6.8), ._// est transverse aux éléments de © | y.\C dans %\C
donc dans iZ/ et, d'autre part, Jé ne rencontre pas les {cy}.

Cela achève la preuve du point (iv) donc la démonstration du lemme 9.2.

Remarque 9.7. Une démonstration du point (iv) figure déjà dans [Ch2] au cours de la
preuve de la proposition 3 dans une récurrence similaire. Mais elle comporte deux erreurs
que voici:

1°. Dans [Ch2] aussi on considère l'ensemble C introduit en (9.6.6) dans la démonstration
ci-dessus (il est nommé D dans [Ch2]). Mais on n'y montre pas que C est algébrique

fermé. On se contente de montrer que C est analytique local d'adhérence algébrique. Il est
ensuite affirmé que C ne rencontre pas ^ à partir de l'argument suivant: étant transverse

à toutes les strates de © en tout point de le serait aussi en tout point d'un voisinage
de .//. Or, si cela est clair au voisinage de chaque point de A7 n A pour la strate passant
par ce point, ce ne l'est plus pour d'autres strates auxquelles il peut être adhérent. Ce n'est
effectivement le cas qu'en raison de la condition (a) de Whitney qui a d'ailleurs été introduite
par Whitney en vue de l'ouverture de la transversalité (cf. [Whl] Introduction). Ici, la
condition (a) intervient dans la démonstration de la proposition 10.10 qui permet, au travers
de son corollaire 10.17, de montrer que C est fermé.
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2°. Dans [Chi], la condition (b) de Whitney pour ©/ est justifiée par l'inclusion
C3 C C4 du cône tangent classique C3 en un point d'un ensemble analytique (C3 est l'ensemble

des limites de sécantes menées par ce point) dans le cône C4, ensemble des directions
contenues dans une limite d'espaces tangents en des points lisses convergeant vers ce point
(cf. [Whl] (3.1)). Cet argument est doublement erroné. D'une part, ce n'est pas parce qu'une
limite de sécantes CjXm,m e N, est contenue dans une limite d'espaces tangents que pour
autant il est clair qu'elle soit contenue dans la limite, quand elle existe, des espaces tangents
en les xm. D'autre part, on doit présupposer l'analyticité de S au voisinage de cj que nous
démontrons ici directement; dans [Ch2] elle est censée résulter de la propriété de frontière,
mais ce n'est vrai que si l'on entend cette propriété au sens de [Wh2], c'est-à-dire avec une
condition supplémentaire de dimension (cf. [Wh2] (18.3)); or cette condition de dimension
est censée, dans [Ch2], résulter précisément de la condition (b), ce qui constitue un cercle
vicieux.

La démonstration du théorème 1.1 qui avait été ramenée au lemme 9.2 est
maintenant terminée.

Remarque 9.8. Nous ayons montré, au cours de la démonstration du

point (iv) du lemme 9.2, qu'étant donné un ensemble algébrique fermé A de

P"(C), avec n ^ 2, et un pinceau A d'hyperplans d'axe transverse dans P"(C)
à toutes les strates d'une stratification de Whitney © de A, chaque hyperplan
de A est transverse à toutes les strates de © sauf peut-être en un nombre fini
de points non situés sur l'axe. Cela résultait de la proposition d'algébricité
10.10 au travers de son corollaire 10.17. Un autre corollaire de cette proposition,

le corollaire 10.19, joint à la proposition 10.20 qui provient du théorème
de Sard, montre qu'il n'y a en fait qu'un nombre fini d'hyperplans de A qui
ne soient vraiment transverses à toutes les strates de ©, fait dont nous nous

sommes servis dès l'énoncé du théorème 1.3. Un pinceau A comme ci-dessus

présente donc une certaine analogie avec les pinceaux de Lefschetz (cf. [Lf]
II.8 et V.2 et [La] § 1). Mais, à la différence de ceux-ci, un même hyperplan
de A peut rencontrer non transversalement une même strate de © en plusieurs

points distincts et les contacts ne sont pas forcément quadratiques.

2°. Démonstration du corollaire 1.2 À partir du théorème 1.1

L'hypothèse q ^ 2 implique que P^(C)\A est simplement connexe car le

complémentaire d'un ensemble algébrique fermé de codimension ^ 2 dans P"(C) est, nous le

redémontrons ci-dessous, simplement connexe. D'autre part, la section n (PW(C)\^4)
est non vide et, elle aussi, simplement connexe. En effet, si A est vide, on a iAn (P"(C)V4)

et si dim^4 ^ 0, alors la transversalité de iA à toutes les strates de © implique que

H n A est de dimension dim A - 1 (comme dans la preuve du point (i) du lemme 9.2) donc

est aussi de codimension ^ 2 dans iA. L'assertion est triviale dans le premier cas et

dans le second, le même argument que ci-dessus s'applique puisque 5?n (P"(C)V4)
â?\(S?n A) et que i? est projectivement isomorphe à '(C). Dans ces conditions de
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simple connexité, le théorème de Whitehead (cf. [Sp] 7.5.9) dit que les conclusions du

théorème 1.1 impliquent celles du corollaire 1.2.

Il nous reste à justifier que le complémentaire d'un ensemble algébrique fermé de

codimension ^ 2 de Pn(C) est simplement connexe. On peut le faire en se ramenant à un

théorème selon lequel le groupe fondamental d'une variété différentiable connexe n'est pas

modifié par l'ablation d'une sous-variété fermée de codimension ^ 3 (cf. [Go] X.2.3). Mais

il est intéressant de constater que notre assertion peut aussi être démontrée à l'aide d'un
théorème du type de Lefschetz, plus précisément à l'aide du théorème de Zariski mentionné

au §1, dans une version valable pour le complémentaire d'un ensemble algébrique fermé

quelconque de Pn(C), celle de [Chi] ou de [H-L2] par exemple. En fait, la proposition
préliminaire plus faible (5.1.4) de [Chi] est suffisante. On procède par récurrence sur la dimension

d de l'ensemble algébrique A. Si A 0, c'est-à-dire d - 1, son complémentaire est

Pn(C) qui est bien simplement connexe. Supposons maintenant l'assertion valable pour
d do ^ - 1 et plaçons-nous dans le cas où dim A do + 1. On a alors dim A ^ 0 donc
n ^ 2 et on peut appliquer la proposition (5.1.4) de [Chi] (voir la remarque ci-dessous).
D'après cette proposition, on peut choisir un hyperplan projectif iC de PW(C) transverse à

toutes les strates d'une stratification de Whitney © de A et tel que l'inclusion
iZ" n (P"(C)\A) c» P"(C)\A induise une surjection

n (P"(C)\A), e/)-»,n1(P'I(C)M4, e')

avec un point base e' quelconque de 9?' n (P"(C)M4). Mais le choix de g' fait que,
comme ci-dessus, l'ensemble algébrique fermé n A est de dimension d0 donc de
codimension ^ 2 dans £dr. On peut donc lui appliquer l'hypothèse de récurrence qui donne
que £/;" n (P" (C)\A) n A) est simplement connexe. La surjection en question
implique alors que l'espace connexe par arcs Pn(Ç)\A est aussi simplement connexe, ce qui
achève la récurrence. La simple connexité du complémentaire d'un ensemble algébrique fermé
de codimension > 2 dans P"(C) est ainsi établie.

La démonstration du corollaire 1.2 qui avait été ramenée à cette assertion se trouve alors
terminée. CH

Remarque 9.9. La proposition (5.1.4) de [Chi] que nous avons appliquée dans la
démonstration ci-dessus au complémentaire d'un ensemble algébrique fermé de A de P"(C),
avec 7i ^ 2, est énoncée dans [Chi] pour le cas où A est une hypersurface mais, comme nous
l'avons signalé au §1, sa démonstration est valable pour un ensemble algébrique fermé
quelconque. Signalons d'autre part que l'hyperplan J0' que nous avons utilisé est, dans la
démonstration de [Chi], pris dans un ouvert de Zariski non vide Q contenu dans l'ensemble
& des hyperplans projectifs de P"(C) transverses aux strates de ©, choix que nous avons
respecté ci-dessus. La proposition (5.1.4) est pourtant énoncée dans [Chi] pour JC e ce
qui est un glissement injustifié (mais que le corollaire 10.18 ci-dessous, selon lequel rr est
un ouvert de Zariski, justifie).

Remarque 9.10. Dans le cas où la codimension q de A est 1, on a
n + q- 2 n- 1 et n + q - 3 n - 2 et les conclusions du corollaire 1.2
sont encore valables d'après le theorem 3.4.1 et le lemma de l'appendix de
[H-L4].
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