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croix. Cette derniére partie de la proposition 4.23 repose ainsi sur la derniére assertion du
lemme 4.18, donc sur la réduction a la formule (4.10) de I’isomorphisme de Wang dans le

cas trivial. L]

Remarque 4.24. Nous avons vu, lors de la description informelle de
I’isomorphisme de Wang, que le premier point clef dans la démonstration du
théoreme 1.3 consistait en la naturalité de cet isomorphisme par rapport aux
sous-fibrés et sa réduction a un produit-croix dans le cas trivial. D’apres la
démonstration ci-dessus, cela est manifesté dans la proposition 4.23 par la
commutativité du diagramme qui y figure, d’une part, et, d’autre part, par la
présence des homomorphismes nuls et des sections x, dans sa suite exacte
inférieure qui font qu’elle n’est qu’une version de la formule de Kiinneth pour
le produit M x Pi.

Remarqgue 4.25. D’aprés la formule (4.11), on a pour & les formules
suivantes qui ne nous serviront pas dans cet article:

4.25.1) £ (E® [o]el) = (=D " 18;x1(2) —2) pour 1<j<s~—1,

ou 0;,_, est, & isomorphisme de L avec L#* pres, la monodromie en
homologie de rang k — 1 au-dessus d’un lacet ®; ayant servi a orienter le
cercle C; du bouquet sur lequel on a choisi de rétracter par déformation P..

Remarque 4.26. D’aprés la démonstration qui en a été donnée, la proposition 4.23 et
la remarque 4.25 sont valables pour n’importe quel couple formé d’un fibré topologique
localement trivial et d’un sous-fibré trivialisable sur une base séparée et paracompacte qui
se rétracte faiblement par déformation sur un bouquet de cercles. Il convient d’y remplacer
le couple (L, M) par un couple de fibres types et les injections j, j* par un homéomorphisme
de ce couple sur le couple de fibres au-dessus du sommet du bouquet choisi.

5. REINTRODUCTION DES HYPERPLANS MAUVAIS DANS L’ECLATE

Dans ce paragraphe nous passons de I’homologie du couple (P*,M*) a
celle du couple (P M) (cf fig. 3.2). C’est-a-dire que, nous limitant toujours
au complémentaire de A, nous étudions I’incidence en homologie de la
réintroduction des transformées strictes des hyperplans «mauvais» que nous
avions di oter au §3 pour aboutir a une fibration localement triviale. L’étude
de I’homologie du couple (P*,M*) menée au §4 ¢Etait basée sur cette
fibration. Quand on passe de P, aPon perd la structure de fibré localement
t1:1v1al, mais celle de fibré trivial de M* = M x P, se prolonge a
M = M x P'(C). Pour connaitre donc les perturbations apportées par la
réintroduction des hyperplans mauvais, nous cherchons & caractériser
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conjointement les groupes ‘Hk(ls, 15*) et Hk(M, M*). Nous sommes devant
1’homologie relative d’une variété complexe modulo le complémentaire d’une
sous-variété fermée. Lorsque, comme c’est le cas ici, la variété ambiante est
séparée paracompacte, on dispose, pour cette caractérisation, de 1’isomor-
phisme de Leray que nous décrirons. Bien que, pour avoir cet isomorphisme,
il ne soit pas nécessaire que la sous-variété Otée soit connexe, la description
sera plus naturelle si ’on réintroduit chaque hyperplan mauvais séparément.
Le premier lemme ci-dessous montre qu’on peut s’y ramener.
Rappelons (cf. fig. 3.2) que

{ﬁ* =P\(L¥u..UL?
My=M\WM] U ..uM?),

qui sont fibrés au-dessus de
Pi = PO\, .., A}

Nous voulons réintroduire chacun des L] séparément. Pour chaque

i(1 <i<5s), nous posons donc (cf. fig. 5.1)
P =Py u{A}
(5.1) P,- —P*UL#

M =M, oM =MxP.

Notons que ce sont des ouverts de P!(C), P et M respectivement. On a en
effet les égalités

(5.2) P =PICO\{N|j#i}, PP=P\UL}, M;=M\UM!

J#EI J#FI

et les L} et M} sont fermés dans Pet M respectlvement puisque ce sont les
traces sur P et M des 77 qui sont fermés dans P (cf. fig. 3.2).

LEMME 5.3. On a, pour tout k, les isomorphismes entrant dans le
diagramme commutatif suivant

@ H(Pi,Py) > H(P,P,)

t C 1
® H(M, My) > H(M,M,)

i=1

Eoiz toutes les fleches sont obtenues a partir d’homomorphismes induits par
inclusion.
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Démonstration. Elle ressemble a celle du lemme 4.6. Pour 1 <~ i <, il existe des
voisinages ouverts mutuellement disjoints U; des L,-# dans P. En effet, P” étant compact est
normal et il existe donc des voisinages ouverts mutuellement disjoints %1, ..., %s des fermes
;7’1#,..., Q”f dans P"; on prend alors U; = %P pour 1<i<s (cf. fig. 3.2).
Considérons alors le diagramme suivant

S - - 1 — -
@ Hk(Pi,P*) - Hk(P> P*)

P=1

T2 T3
S # 4 S S S ”
@ Hx(Ui, U\L7) - Hp (U U, J UNU L)

i=1 i=1 i=1 i=1

ou toutes les fléches sont obtenues & partir d’homomorphismes induits par inclusion. II est

commutatif par le méme argument élémentaire que dans la démonstration du lemme 4.6. La
S

fléche numérotée 3 est un isomorphisme obtenu en excisant le fermé P\ U U, dans ’ouvert

- - i=1

P, de P. La fléche 2 est somme directe des isomorphismes obtenus en excisant le fermé
N

13,-\ U; dans I’ouvert 15* = ISi\Li# de }31. La fléche 4 est un isomorphisme car U U, est

i=1
déconnecté en les U; qui en sont des unions de composantes connexes par arcs. On obtient
alors que la fléche 1 est un isomorphisme et c’est la fléche supérieure du diagramme de
I’énoncé. On montre de la méme maniere que la fleche inférieure de ce diagramme est aussi
un isomorphisme. Quant a sa commutativité, elle résulte du méme argument élémentaire que
dans la démonstration du lemme 4.6. [

Pour caractériser conjointement les groupes d’homologie Hk(ls,-,ls*) et
Hk(Mi,]\;l*) auxquels nous nous sommes ramenés, nous allons utiliser la
version en homologie singuliere a coefficients entiers d’un isomorphisme
envisagé par Jean Leray dans la définition de son opération «cobord» (cf. [Lr]
chap. II, n° 19), isomorphisme qui a des propriétés de naturalité et de
réduction a un produit-croix dans le cas trivial analogues a celles de I’isomor-
phisme de Wang. Nos couples s’écrivent, en effet,

(P, Py) = (P;, PAL})

(5.4) Do ool
(M;, My) = (M;, M\M)

pour 1<i<s

et liisongorphisme de Leray porte sur les groupes Hk(ﬁ,-, 15,~\L,~#) et
H(M;, MA\M) sous des conditions concernant les couples (P;,L}) et
(M;, M) qui sont données par le lemme suivant. Ce lemme donne aussi des
conditions qui assurent la naturalité et la réduction a un produit croix de
I’isomorphisme concernant Hk(M,-, M,-\M,.#).

LEMME 5.5. Pour 1<i<s, les couples (P;,LY) et (M;, M})
vérifient les conditions suivantes:
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(i) P; et M; sont des variétés analytiques complexes séparées para-
compactes et LT et M} en sont des sous-variétés fermées
respectives de codimension complexe pure 1.

(1) La variété Mi est une sous-variété fermée de P; transverse a
LY dans P; etl’ona M} =ML} (cf. fig. 5.1).

(iii)) Ona (]\;[,-,Mf) = (M xP;,Mx{\}), les facteurs M et P} sont
des variétés analytiques complexes séparées paracompactes et I’égalité est

non seulement ensembliste mais aussi valable pour les structures de
variété.

Démonstration. Nous démontrons les points dans ’ordre (iii), (i), (ii):

(iii) L’égalité ensembliste est contenue dans (3.25) et (5.1). Les facteurs M et P} sont
des variétés analytiques complexes en tant qu’ouverts de .# et P!(C) respectivement.
Comme .# et P!(C) sont compactes, M et P} sont séparées paracompactes car cette
propriété se transmet d’une variété a ses sous-variétés: en effet, pour une variété topologique
séparee, 1l est équivalent d’€tre paracompacte ou d’avoir une base dénombrable d’ouverts
pour chacune de ses composantes connexes (cf. [Ms] II.15, theorem 1 et [Bk] 1.9.10, propo-
sitions 16 et 18). Nous avons d’autre part vu, aprés (3.5), que les structures de variété de
M= WX P !(C) comme sous-variété de P" et comme variété produit coincident. Quand
ensuite on prend le produit de sous-variétés de chacun des facteurs, on obtient bien une variété
dont les structures comme sous-variété de .# et comme variété produit coincident.

(i) Compte tenu de la caractérisation des variétés séparées paracompactes que nous
venons de donner, cette propriété se conserve par produit. Les assertions concernant
(M e M ) sont alors claires d’aprés le point (iii). En ce qui concerne P,, nous avons vu que
C’est un ouvert de P qu1 est une variété analytique complexe en tant qu’ouvert de pP”
(cf. fig. 3.2). Comme P,~ est donc une sous-variété de la variété compacte P, elle est aussi
séparée paracompacte puisque, nous l’avons vu, cette propriété se transmet d’une variété a
ses sous-variétés. D’autre part, Li# est la trace de Zl-# sur I'ouvert P de P” (cf. fig. 3.2).
Comme 7 I.# est une sous-variété fermée de codimension complexe pure 1 dans l;”, il en est
donc de méme pour L ,-# dans P donc dans P;.

(i) L’égalité M, =M n L# est claire a partir des définitions (cf. figs. 3.2 et 5.1).
Pour les autres assertions, constatons que, d’apres ces définitions, M est la trace de M sur
P (cf. les mémes figures). Comme P est un ouvert de P, il nous suffit donc de voir que M
est une sous -variété fermée de P transverse a L dans P. Mais M et L sont les traces de

A et f sur P qui est un ouvert de p" (cf flg 3.2). Nous sommes donc ramenés a
montrer que _/# est une sous-variété fermée de P” transverse a / dans P". Le premier
point ayant été vu au §3, il nous reste la transversalité a prouver.

Pour cela, constatons que la démonstration du lemme 3.13 prouve en fait les assertions
suivantes concernant une sous-variété S de P"(C), indépendamment du fait qu’elle fasse ou
non partie d’une stratification:

si .# est transverse a S dans P”(C) alors la transformée totale S de S est une
(5.5.1) sous-variété de P” transverse a .#, ce qui fait que si S N .4 est non vide, c’est
aussi une sous-variété de P”;
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si, de plus, un hyperplan % du pinceau A est transverse a S dans P"(C), alors
(5.5.2) sa transformée stricte %% est transverse dans P” a4 S n .# et & S\ .# donc
aussi 2 S.

Ces assertions nous serviront également au §11. Si nous les appliquons ici avec S = P"(C)
et # = 77, nous trouvons le résultat de transversalité voulu.

,/l‘,

Sous la condition (i) du lemme 5.5, on a, pour tout k, les isomorphismes
que nous qualifierons de Leray

!

pour 1<<i1<s,

s He o(L?) S H.(P,, P\L?
(5.6) {T,k i—2( ,) x( ,)

1 He (M) S HoM;, MAMY)

avec la convention H;_,(L7) = H;_,(M]) = 0 pour k < 2. On peut décrire
informellement ces isomorphismes de la maniére suivante: Soit §; un
(k — 2)-cycle de L7 (cf. fig. 5.1); faisons-le «épaissir» dans P;, chaque point
donnant un 2-disque fermé transverse & L dans 15,~: ce n’est pas un produit
mais un fibré localement trivial; les fibres ont une orientation déduite de celles
de L7 et 15,~ qu’on peut suivre continuement le long de §;; orientons alors le
tout conformément aux orientations de &; et de ces fibres: on «obtient» un k-
cycle relatif A; de P; modulo Isi\L,-#; I’isomorphisme de Leray 7;, fait
correspondre la classe d’homologie de A; a la classe d’homologie de §,.

4 7
/| A
a /
/ | / I
/ M;
| I Il |
| | | i
I ) i ) P,
Iy I/
V. L* Vi
:)Vl A A As Pll

e

FIGURE 5.1
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Le deuxieme point clef dans la démonstration du théoréme 1.3 est que, de
maniere analogue a ce qui se passait pour I’isomorphisme de Wang, 1’isomor-
phisme de Leray pour le couple (M,‘, M) se comporte, sous la condition (ii)
du lemme 5.5, naturellement par rapport a ’isomorphisme pour le couple
(]5,-, L7). Cela veut dire que le diagramme suivant, ou les fléches verticales
sont induites par inclusion, est commutatif’:

ik

Hy ,(L}) S H(P:, P\L})
(5.7) T G T
T},k _ -

H_,(M?) >  H.(M;, M\M})

Ainsi donc, reprenant notre description informelle, si §; est homologue
dans L7 a un cycle §; de M * (compte tenu des isomorphismes (3.29), c’est
le cas si ’homomorphisme ), _ , considéré dans le théoréme 1.3 est surjectif),
alors A; est homologue dans P modulo P \L” a un cycle relatif A/ de M
modulo M,\M,.# obtenu en faisant «épaissir» &;dans M,- (cf. fig. 5.1). Cela
précise I’assertion de I’introduction selon laquelle, si certains cycles de L; sont
homologues a des cycles de M, alors les perturbations apportées par les
hyperplans mauvais peuvent €tre «poussées» dans 1’axe.

Mais, d’autre part, le couple (M,-, M) ayant la forme triviale
(M X P},M X {A\;}) donnée par le point (iii) du lemme 5.5, I’isomorphisme
de Leray t; , prend la forme triviale d’un produit-croix homologique

(5.8) @) =2 xu, pour z' e He (M),

ou u; e H,(P }, P.) est la classe fondamentale définissant 1’orientation
canonique de P ,1 au voisinage de A; (cf. [Gb] chap. 22) et ou z;* correspond
a z’ dans I’isomorphisme induit en homologie de rang k — 2 par ’identification
canonique de M & M/ = M x {)\;}. On tombe a nouveau sur une forme de
la formule de Kiinneth, cette fois pour le couple de produits
(M x P}, M X P.).

Revenant a notre description informelle, ce qui précéde signifie qu’en
raison de la forme triviale du couple (M,-, M7), I«épaississement» de §; peut
étre réalisé comme le produit par un 2-disque fermé convenablement orienté
‘entourant A; dans P} (cf. fig. 5.1). Cela précise I’affirmation de I’introduction
‘selon laquelle les perturbations dues aux hyperplans mauvais qui peuvent étre
«poussées» dans 1’axe s’y «trivialisent».

Nous donnons en annexe des indications sommaires sur la maniére dont
on peut établir la version de I’isomorphisme de Leray que nous avons
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présentée. Nous y justifions en méme temps les assertions (5.7) de naturalité
et (5.8) de réduction & un produit-croix dans le cas trivial.

Ayant en main les isomorphismes de Leray pour les couples (P;, L) et
(Mi, M7), nous allons en déduire, grace au lemme~ 5.~3, la prop~osiEion
principale du paragraphe concernant les groupes H;(P, P,) et H.(M, M,).
Nous aurons a faire intervenir, en connexion avec la formule (5.8), les images
des classes fondamentales u; € H,(P;, P%) par les homomorphismes naturels
H,(P;,Pl) = Hy,(P'(C), PL); nous les noterons w;. Il est plus suggestif
géométriquement de considérer

D,, ..., D s disques fermés
mutuellement disjoints dans P!(C)
(5.9) centreés respectivement en A, ..., A

oD, ..., 0D, leurs frontiéres respectives
et, pour 1 <i<s,

(5.10) Q; un 2-cycle fondamental
de D; modulo 8D;
compatible avec 1’orientation
canonique de P!(C).

On a alors, pour 1 <7< s,
(5.11) w; = [Qi](Pl(C),P}k) ;

classe d’homologie de Q; considéré comme 2-cycle relatif de P!(C) modulo
P.. D’autre part, de méme que dans le lemme 4.18 et la proposition 4.23
nous avons remplacé L* et M#* par L et M, nous ferons ici figurer
directement les L; et M a la place des L/ et M7 grice aux isomorphismes
suivants, réciproques des isomorphismes (3.29),

{ci Ly > L7

(5.12) i ~
¢t M= MT =M x {\}

pour 1<i<s,

\ ,i . . . . e . . \
ou ¢' coincide avec Pidentification canonique,de M a M X {X:}. Nous
pouvons alors définir, pour tout k,

(5.13)

i=1

{rk: ® Hi_»(L)) = Hy(P, P,)

T @ He_ (M) > H (M, M,)

au moyen des formules suivantes utilisant les isomorphismes de Leray (5.6)
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I Tk (‘@ Zi) = Z incly (Ti,k(cﬁc—z(zi)))
(5.13.1) = =

T (® z)) = X incli(t] (¢"}_,(z)))

i=1 i=1

avec la convention d’écriture (2.1) appliquée aux isomorphismes ¢’ et ¢’ et en
notant indistinctement incl, tous les homomorphismes induits en homologie
par inclusion.

Nous pouvons maintenant énoncer la proposition principale de ce
paragraphe:

PROPOSITION 5.14. On a, pour tout k, les isomorphismes 71, et T,
entrant dans le diagramme commutatif suivant

N Tk _
@ Hi_»(Li)) = Hi(P, Py)

i=1

lm;<~2 g T

{

(5.14.1) 1

D«

Tk

@ SHy_,(M) > H (M, M)

dont les fleches verticales sont naturelles. Nous y avons mis en évidence les
homomorphismes m'_, intervenant dans I’énoncé du théoréme 1.3. Les
isomorphismes 1, et T, sont définis par les formules (5.13.1) qui
font intervenir les isomorphismes de Leray (5.6). Pour <t,, on a aussi
’expression suivante

N S
(5.14.2) (@D z)= Yz X w,

i=1 i=1

o w;e H,(P(C),PL) est la classe d’homologie d’un «petit» 2-cycle
?relatif Q, définissant au voisinage de \; [‘orientation canonique de
fPl(C). Les w; sont plus précisément définis par (5.9), (5.10) et (5.11).
' Nous convenons que Hy(.) =0 pour k <O.

« Démonstration. Si1’on prend pour 14 et T, les homomorphismes définis en (5.13) et
§(5 .13.1), le diagramme de I’énoncé est I’enveloppe externe du diagramme suivant:

i
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OH, 0 5 @ HeMP) TS @® H(, M) —~ H(GT, M)
i =1 i=1

@ C;\_z s iC:DI T,k S o
® He oLy '~ ® Hi-al; *y TS @ Hi(P, Py — Hy(P,P,)
i=1 | = =1
1 s 1 , 1 1
Cf) ;\1»2 @ T,{,k

ou toutes les fléches non nommées sont naturelles. Pour montrer la premiére partie de la
proposition, il suffit alors de voir que les fleches horizontales sont des isomorphismes et que
les trois rectangles sont commutatifs. Dans le rectangle de gauche, les fleches horizontales
sont sommes directes d’isomorphismes induits par les isomorphismes (5.12); ce rectangle est
commutatif car ces isomorphismes commutent aux inclusions. Le rectangle de droite est celui
du lemme 5.3 qui contient les assertions nécessaires le concernant. Les faits significatifs sont
rassemblés dans le rectangle central. Ses fléeches horizontales sont, compte tenu des égalités
(5.4), sommes directes pour 1 < i < s des isomorphismes de Leray (5.6). Il est commutatif
en raison de la naturalité de I’isomorphisme de Leray par rapport a la trace sur une
sous-variété fermeée transversale, naturalité qui s’exprime dans la commutativité des
diagrammes (5.7). Ce qui concerne le diagramme (5.14.1) se trouve ainsi établi. Pour ce qui
est de la formule (5.14.2), elle résulte de la réduction a un produit-croix de I’isomorphisme
de Leray dans le cas trivial, donnée par la formule (5.8). En effet, si ’on substitue les résultats
de la formule (5.8) pour 1 < i < s dans la formule (5.13.1) concernant Ty, OnN trouve,
compte tenu de ce que ¢’/ coincide avec I’identification canonique de M a M x {A;},

S

Tk(@) z)) = ), incl,(z; x u;)

i=1 i=1

et comme w; = incl, (1;), il ne reste plus qu’a utiliser la naturalité du produit-croix pour
aboutir a la formule de 1’énoncé.

Remarque 5.15. Le méme raisonnement que pour le lemme 5.3, mais dans
une situation plus simple, montre, de maniére classique, qu’on a, pour
tout k, ’isomorphisme naturel

@ Hi(P},Py) > H(P(C),PL)
i =1

somme des homomorphismes induits par inclusion. Il en résulte que
H,(P'(C), P}) = 0 pour k # 2 et que H,(P!(C), PL) est libre sur les w; qui
interviennent dans la proposition 5.14. La formule (5.14.2) montre alors que
'isomorphisme 1, de cette proposition n’est autre que celui donné par la
formule de Kiinneth pour le couple de produits (M x P(C), M x P).

Nous allons terminer ce paragraphe de maniére similaire au précédent, en
remplacant Hk(P P*) et Hk(M M*) dans les suites exactes d’homologie
relative de ces couples par les expressions que la proposition 5.14 en donne.
Nous tirerons aussi les conséquences de la formule explicite (5.14.2) dans ce
contexte. Pour cela, il nous faut i/ntroduire
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- (5.16) w e H,(P(C)) la classe fondamentale de P!(C)
compatible avec son orientation canonique.

' En relation avec la description géométrique (5.9) a (5.11) pour les w;, il sera
souvent plus parlant d’écrire

(5.17) w = [Q],

ou Q est un 2-cycle appartenant & w. La classe w interviendra a travers le
lemme suivant:

LEMME 5.18. Si e: H,(P!(C)) » Hy(P'(C), P}) est I’homomorphisme
naturel, alors on a
eW) = wy + ... + w,.
Démonstration. En se servant des expressions (5.11) et (5.17), la formule ci-dessus
s’écrit
S

[Qleio.ply = L [Qleic).pl,
* i=1 *

' ce qui est géométriquement clair. Voici toutefois une démonstration en bonne et due forme:

Considérons, pour 1 < i < s, le diagramme commutatif suivant

Hy(P1(C)) 5 Hy(PL(C), Pl
i a; \/ﬁl . T Yi
8

i~

H,(PLC), PLONMY) < Hy®P!, Pl

ou toutes les fleches sont induites par inclusion. La fleche §; est un isomorphisme d’excision.
Rappelons que w; = v;(u;) ol u; est la classe fondamentale de HZ(P} , P,lk) compatible avec
I’orientation canonique de P 11 . Mais, comme celle-ci est induite par I’orientation canonique
de PI(C), on a &§;(u;) = a;(w). On en tire les égalités

Bi(e(w)) = &;(u;) pourtout .

La remarque 5.15 donne d’autre part I’isomorphisme naturel
> 1ol ~ 1
v: @ Hy(P;,P}) = Hy(P'(C),P,)
i=1
qui est somme des y; et on a B;9y; = 0 pour j # [ puisque P} C PI(C)\{A;}. Si donc

; N
- H,(P(C), P.) est identifié¢ a @ HZ(P}, Pl) au moyen de v, les y; en sont les sections et

i=1

- les B; sont, aux isomorphismes &; prés, les projections associées. Il en résulte qu’on a

Bi(wi + ... + wg) = 8;(u;) pourtout i,
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et il en résulte aussi que ces égalités comparées aux précédentes impliquent 1’égalité
e(W) = Wy + .. + Wws. L

La considération simultanée des suites exactes d’homologie relative des
couples (]5,15*) et (]\Zl, M,) fait intervenir le diagramme commutatif
d’inclusions suivant:

P, P
(5.19) I G
M., . M

Les inclusions i, i’ et & y sont nommeées pour la premiére fois mais #* a déja
été nommeée en (4.22) et intervient dans la proposition 4.23.

Nous pouvons maintenant énoncer le corollaire de la proposition 5.14 que
ces suites exactes permettent d’obtenir:

COROLLAIRE 5.20. On a les deux suites exactes longues entrant dans le
diagramme commutatif suivant

s Ck+1 ~ i ~ Mk S Ck ~
™ @ Hy (L) > Hi(Py) = Hi(P) — .®1Hk—2(Li) > He 1(Py) — ...
i=1 =

5201 T @me Ctm Gtm G T @m,G 1 m

Cis - i ~ i y
o @ He (M) S Ho(My) > He(M) = @° Hy (M) > Hy_((My) — ...

ou nous avons appliqué la convention d’écriture (2.1) aux homomorphismes
induits par les inclusions i,i’, h* et h qui forment le diagramme (5.19).
Nous y avons mis en évidence les homomorphismes m),_, et m)_,
induits par les inclusions m' qui figurent dans [’énoncé du théoreme 1.3.
Toutes les fléeches verticales sont donc naturelles. On a de plus, pour (;, la
formule explicite

(5.20.2) c,;(éL)1 z)) = (= ¥ i:lz,f X 0w,

ou w; e H(P(C),Py) est la classe d’homologie d’un «petit» 2-cycle
relatif Q; définissant au voisinage de \; [’orientation canonique de
PI(C). Les w; sont plus précisément définis par (5.9), (5.10) et (5.11).
Enfin, m, vérifie la relation suivante

(5.20.3) N @& X w)= @z pour z' € H,_,(M),
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ou we H,(P'(C)) est, conformément a la définition (5.16), la classe
Jondamentale de P!(C) compatible avec son orientation canonique.
L’homomorphisme v, est d’ailleurs complétement déterminé par cette
Jormule car il s’annule sur les éléments de la forme 7z’ X v, avec
" e H(M) et ve Hy(P(C)), et ceux-ci décrivent un supplémentaire
dans Hk(M) des éléments de la forme z' X w avec z' € Hy_,(M).
Nous convenons toujours que H,(.) =0 pour k <O.

N

Démonstration. On obtient le diagramme (5.20.1) en substituant @ Hj_,(L;) et
i=1

@®° Hy _ (M) respectivement a Hk(ﬁ, 15*) et Hy(M, M*) pour tout k dans le diagramme
commutatif constitué par les suites exactes d’homologie relative des couples (P, P,) et
(M, M,) reliées entre elles par les homomorphismes naturels. Cette substitution est permise
par les isomorphismes 1, et t; de la proposition 5.14; ce faisant, la fléche naturelle

—_— —~ —~ —~ S *
Hy(M, M) = Hy(P, P,) est transmuée en ’homomorphisme naturel @ mj{_z en raison

i=1

de la commutativité du diagramme (5.14.1). Cela donne bien le diagramme (5.20.1).

D’apres ces substitutions, ’homomorphisme {; est obtenu en composant I’homorphisme
bord 9: Hy(M, M,) = Hy _(M,) avec I’isomorphisme t,. La formule (5.14.2) pour 7,
donne alors

S A N _
Ce (@ z)) = 0(tp (@D z{)) = 0( EIZZ X W) .
i=1 i=1 i=

Mais on a

Az} x wy) = (- 1)k2z! x dw;,

en notant aussi 8 ’homomorphisme bord H,(P'(C), PL) » Hy(PL) (cf. [Sp] 5.3.15). La
formule (5.20.2) en résulte.

L’homorphisme m; est obtenu en faisant suivre ’homomorphisme naturel e: Hk(]\;I)
- Hp(M, M,) de I'isomorphisme réciproque (1) ~ ldet - Alors, par naturalité du produit-
Croix, on a, pour z' € Hy _,(M) ,
N x w) = (1;) " ep@ X w) = (1) "Mz’ x e(w)) ,
ou ¢ est I’homorphisme naturel H,(P!(C)) - H,(P(C), P,lk). Mais, d,’aprés le
lemme 5.18 et par bilinéarité du produit-croix

ZXeMW) =2 X W1+ ..+ W) =2 X Wi+ ...+ 2" X wg.

La formule (5.20.3) résulte alors, elle aussi, de la formule (5.14.2).
Par ailleurs, la formule de Kiinneth pour M = M x P!(C) donne un isomorphisme

(H (M) ® Hy(P1(C))) ® (Hy— (M) ® Hy(P'(C))) = Hy(M)

qui est le produit-croix homologique dont la restriction aux éléments décomposables s’écrit
7 ®@ubz’ x v. Comme H,(P!(C)) est libre sur la classe fondamentale w, 1’image de
Hj_ (M) ® H,(P'(C)) par cet isomorphisme est précisément formée des éléments de
Hk(M) de la forme z’ X w avec z' € Hy_,(M). Un supplémentaire des éléments de cette
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forme est donc donné par l'image de Hy(M) ®AH0(P1(C)). Mais les é;\éments de ce
supplémentaire sont eux-mémes de la forme z’ X A ou z' € Hy(M) et ou A est la classe
d’homologie du 0-simplexe singulier de P!(C) d’image A, classe sur laquelle Hy(P(C)) est
libre. Si donc A est la classe d’homologie dans Ho(P 3,‘) du méme O-simplexe, on a, par
naturalité du produit-croix,

2 X A= i@ X A)

et 1 s’annule donc dessus d’apres I’exactitude de la ligne inférieure du diagramme (5.20.1).
Cela montre la derniére assertion du corollaire 5.20. (]

Dans la suite, nous ne nous servirons de ce qui a été fait dans ce paragraphe
qu’a travers le corollaire 5.20 (excepté que, de maniére indépendante de tout
le reste, nous renverrons aux lemmes élémentaires 5.15 et 5.18 pour la démons-
tration du lemme élémentaire 7.7). On retrouve bien, dans ce corollaire, le
deuxiéme point clef de la démonstration du théoréme 1.3 dont nous avons parlé
au moment de la présentation informelle de ’isomorphisme de Leray. En effet,
d’aprés les démonstrations de la proposition 5.14 et du corollaire 5.20, la
naturalité de I’isomorphisme de Leray par rapport a une sous-variété fermée
transverse s’exprime dans la commutativité du diagramme (5.20.1) et la
réduction a un produit-croix de I’isomorphisme de Leray dans le cas trivial est
manifestée par les formules explicites (5.20.2) et (5.20.3).

6. RETOUR DE L’ECLATE A L’ESPACE INITIAL

Dans ce paragraphe, nous étudions d’un point de vue homologique la
relation entre, d’une part, les éléments P, M, L*, L¥ M*, M}? dans P" sur
lesquels a porté notre étude aux paragraphes précédents et, d’autre part, les
éléments P,L,L;,M dans P7"(C) sur lesquels porte le théoréeme 1.3
(cf. fig. 3.2). Nous nous étions en effet placés dans P pour rendre compte
de I’«isotopie» décrite informellement dans 1’introduction et 1’éclatement de
P"(C) le long de ’axe .# du pinceau A avait été motivée par la nécessité de
«répéter» cet axe. Toute I’étude géométrique qui précéde a été faite dans P,
Nous allons maintenant «redescendre» de P 2 P7(C) au moyen du
morphisme d’éclatement f. Comme nous ne nous intéressons qu’a ce qui se
passe en dehors de A dans P"(C) et de sa transformée totale A dans f’”, nous
allons en fait étudier la géométrie de

6.1) I PP application induite par le morphisme d’éclatement f

(cf. fig. 3.1 et 3.2).
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