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croix. Cette dernière partie de la proposition 4.23 repose ainsi sur la dernière assertion du

lemme 4.18, donc sur la réduction à la formule (4.10) de l'isomorphisme de Wang dans le

cas trivial. EU

Remarque 4.24. Nous avons vu, lors de la description informelle de

l'isomorphisme de Wang, que le premier point clef dans la démonstration du

théorème 1.3 consistait en la naturalité de cet isomorphisme par rapport aux

sous-fibrés et sa réduction à un produit-croix dans le cas trivial. D après la

démonstration ci-dessus, cela est manifesté dans la proposition 4.23 par la

commutativité du diagramme qui y figure, d'une part, et, d'autre part, par la

présence des homomorphismes nuls et des sections %'k dans sa suite exacte

inférieure qui font qu'elle n'est qu'une version de la formule de Künneth pour
le produit M x P*.

Remarque 4.25. D'après la formule (4.11), on a pour \k les formules

suivantes qui ne nous serviront pas dans cet article:

(4.25.1) lk(z® [œylpi)* (~1)*-1 (z)~z) pour

où 0y,Ar-i est, à l'isomorphisme de L avec L* près, la monodromie en

homologie de rang k - 1 au-dessus d'un lacet coy ayant servi à orienter le

cercle C7 du bouquet sur lequel on a choisi de rétracter par déformation P*.

Remarque 4.26. D'après la démonstration qui en a été donnée, la proposition 4.23 et

la remarque 4.25 sont valables pour n'importe quel couple formé d'un fibré topologique
localement trivial et d'un sous-fibré trivialisable sur une base séparée et paracompacte qui
se rétracte faiblement par déformation sur un bouquet de cercles. Il convient d'y remplacer
le couple (L, M) par un couple de fibres types et les injections j,j' par un homéomorphisme
de ce couple sur le couple de fibres au-dessus du sommet du bouquet choisi.

5. Réintroduction des hyperplans mauvais dans l'éclaté

Dans ce paragraphe, nous passons de l'homologie du couple (P*, M*) à

celle du couple (P, M) (cf. fig. 3.2). C'est-à-dire que, nous limitant toujours
au complémentaire de A, nous étudions l'incidence en homologie de la
réintroduction des transformées strictes des hyperplans «mauvais» que nous
avions dû ôter au §3 pour aboutir à une fibration localement triviale. L'étude
de l'homologie du couple (P*,M*) menée au §4 était basée sur cette
fibration. Quand on passe de P* à P on perd la structure de fibré localement
trivial, mais celle de fibré trivial de M* M X P* se prolonge à

M Mx P'(C). Pour connaître donc les perturbations apportées par la
réintroduction des hyperplans mauvais, nous cherchons à caractériser
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conjointement les groupes Hk(P, P*) et Hk{M,M%). Nous sommes devant

l'homologie relative d'une variété complexe modulo le complémentaire d'une
sous-variété fermée. Lorsque, comme c'est le cas ici, la variété ambiante est

séparée paracompacte, on dispose, pour cette caractérisation, de l'isomor-
phisme de Leray que nous décrirons. Bien que, pour avoir cet isomorphisme,
il ne soit pas nécessaire que la sous-variété ôtée soit connexe, la description
sera plus naturelle si l'on réintroduit chaque hyperplan mauvais séparément.
Le premier lemme ci-dessous montre qu'on peut s'y ramener.

Rappelons (cf. fig. 3.2) que

p* P\(Lf u u L*)
\ M* M\{M*.u u

qui sont fibrés au-dessus de

Pi P'(C)\{V,...,U •

Nous voulons réintroduire chacun des Lf séparément. Pour chaque

/(I ^ i ^ s), nous posons donc (cf. fig. 5.1)

p; pi u {x,-}

(5.1) \P,=P*uL?
Mi M* u Mf MXP,1

Notons que ce sont des ouverts de P^C), P et M respectivement. On a en

effet les égalités

(5.2) P,1 P'(C)\{Xy I j ±i)U Mi U Mjj±iet les Lf et Mf sont fermés dans P et M respectivement puisque ce sont les

traces sur P et M des C£f qui sont fermés dans P" (cf. fig. 3.2).

Lemme 5.3. On a, pour tout k, les isomorphismes entrant dans le

diagramme commutatif suivant

® Hk(Pi, P*) - Hk(P,P,)
i 1

î c î

®Hk(MhM*) - Hk(M, M*)

où toutes les flèches sont obtenues à partir d'homomorphismes induits par
inclusion.
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Démonstration. Elle ressemble à celle du lemme 4.6. Pour 1 il existe des

voisinages ouverts mutuellement disjoints £// des Lf dans P. En effet, Pw étant compact est

normal et il existe donc des voisinages ouverts mutuellement disjoints ,Jà\, °às des fermés

dans P"; on prend alors Ui=%nP pour 1 ^ ^ s (cf. fig. 3.2).

Considérons alors le diagramme suivant

® Hk(Pi,PJ - Hk(P,P*)
/ î

© Hk(Ui, Uj\L*)^HkUU Uj\ U Lf)

où toutes les flèches sont obtenues à partir d'homomorphismes induits par inclusion. Il est

commutatif par le même argument élémentaire que dans la démonstration du lemme 4.6. La

flèche numérotée 3 est un isomorphisme obtenu en excisant le fermé P\ U (7/ dans l'ouvert
i= i

P* de P. La flèche 2 est somme directe des isomorphismes obtenus en excisant le fermé
5

P/\Ui dans l'ouvert P# P^L* de P/. La flèche 4 est un isomorphisme car U Uj est
I î

déconnecté en les Uj qui en sont des unions de composantes connexes par arcs. On obtient
alors que la flèche 1 est un isomorphisme et c'est la flèche supérieure du diagramme de

l'énoncé. On montre de la même manière que la flèche inférieure de ce diagramme est aussi

un isomorphisme. Quant à sa commutativité, elle résulte du même argument élémentaire que
dans la démonstration du lemme 4.6. EU

Pour caractériser conjointement les groupes d'homologie Hk(Pi9P*) et

M*) auxquels nous nous sommes ramenés, nous allons utiliser la
version en homologie singulière à coefficients entiers d'un isomorphisme
envisagé par Jean Leray dans la définition de son opération «cobord» (cf. [Lr]
chap. II, n° 19), isomorphisme qui a des propriétés de naturalité et de

réduction à un produit-croix dans le cas trivial analogues à celles de l'isomor-
phisme de Wang. Nos couples s'écrivent, en effet,

^ f(Â>Â.) ={P„Pi\Lf)
(5.4) < _ ~ pour 1 ^ i ^ s

l (M/, M*) (M/, Mi\Mf)
et l'isomorphisme de Leray porte sur les groupes Hk(Pi9Pj\L?) et

Hk(Mi,Mj\Mf) sous des conditions concernant les couples (.P,,Lf) et
(M/, Mf) qui sont données par le lemme suivant. Ce lemme donne aussi des

conditions qui assurent la naturalité et la réduction à un produit croix de

l'isomorphisme concernant Hk(Mi9

Lemme 5.5. Pour 1 ^ ^ s, les couples (.Pi9Lf) et {Mi9Mf)
vérifient les conditions suivantes:
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(i) Pf et Mi sont des variétés analytiques complexes séparées para-
compactes et Lf et Mf en sont des sous-variétés fermées
respectives de codimension complexe pure 1.

(ii) La variété Mt est une sous-variété fermée de Pt transverse à

Lf dans Pt et l'on a Mf Mt n Lf (cf. fig. 5.1).

(iii) On a (Mh Mf (M x Pj, M x {A,/})» les facteurs M et Pj sont
des variétés analytiques complexes séparées paracompactes et Légalité est

non seulement ensembliste mais aussi valable pour les structures de

variété.

Démonstration. Nous démontrons les points dans l'ordre (iii), (i), (ii):

(iii) L'égalité ensembliste est contenue dans (3.25) et (5.1). Les facteurs M et p) sont
des variétés analytiques complexes en tant qu'ouverts de 71 et P!(C) respectivement.
Comme .7 et P!(C) sont compactes, M et pj sont séparées paracompactes car cette

propriété se transmet d'une variété à ses sous-variétés: en effet, pour une variété topologique
séparée, il est équivalent d'être paracompacte ou d'avoir une base dénombrable d'ouverts

pour chacune de ses composantes connexes (cf. [Ms] 11.15, theorem 1 et [Bk] 1.9.10, propositions

16 et 18). Nous avons d'autre part vu, après (3.5), que les structures de variété de

.Jt — .//xP'(C) comme sous-variété de P" et comme variété produit coïncident. Quand
ensuite on prend le produit de sous-variétés de chacun des facteurs, on obtient bien une variété
dont les structures comme sous-variété de .Jt et comme variété produit coïncident.

(i) Compte tenu de la caractérisation des variétés séparées paracompactes que nous

venons de donner, cette propriété se conserve par produit. Les assertions concernant

(M/, Mf) sont alors claires d'après le point (iii). En ce qui concerne P/, nous avons vu que
c'est un ouvert de P qui est une variété analytique complexe en tant qu'ouvert de P"
(cf. fig. 3.2). Comme P/ est donc une sous-variété de la variété compacte PC elle est aussi

séparée paracompacte puisque, nous l'avons vu, cette propriété se transmet d'une variété à

ses sous-variétés. D'autre part, Lf est la trace de 7lf sur l'ouvert P de P" (cf. fig. 3.2).

Comme 57f est une sous-variété fermée de codimension complexe pure 1 dans P", il en est

donc de même pour Lf dans P donc dans Pz.

(ii) L'égalité Mf M[ n Lf est claire à partir des définitions (cf. figs. 3.2 et 5.1).

Pour les autres assertions, constatons que, d'après ces définitions, M/ est la trace de M sur

Pi (cf. les mêmes figures). Comme P/ est un ouvert de P, il nous suffit donc de voir que M
est une sous-variété fermée de P transverse à Lf dans P. Mais M et Lf sont les traces de

.7/ et 7§f sur P qui est un ouvert de P" (cf. fig. 3.2). Nous sommes donc ramenés à

montrer que J5 est une sous-variété fermée de P" transverse à 57* dans PC Le premier

point ayant été vu au §3, il nous reste la transversalité à prouver.
Pour cela, constatons que la démonstration du lemme 3.13 prouve en fait les assertions

suivantes concernant une sous-variété S de P"(C), indépendamment du fait qu'elle fasse ou

non partie d'une stratification:

{si
..// est transverse à S dans P*(C), alors la transformée totale S de S est une

sous-variété de P" transverse à ce qui fait que si S n Jé est non vide, c'est

aussi une sous-variété de P";
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(5.5.2)

si, de plus, un hyperplan :'/A du pinceau A est transverse à S dans P"(C), alors

sa transformée stricte AAA* est transverse dans Pn à S n JA et à S\JA donc
aussi à S.

Ces assertions nous serviront également au §11. Si nous les appliquons ici avec S Pn(C)
et JA= JWf, nous trouvons le résultat de transversalité voulu. EU

Sous la condition (i) du lemme 5.5, on a, pour tout k, les isomorphismes

que nous qualifierons de Leray

(5.6)
f Ti,k'.

K.*:
pour 1 ^ < s

t: Hk_2(L?) - Hk(PhPi\Lf)
Hk-2(Mf) ^ Hk(Mi, Mt\Mf)

avec la convention Hk-2{Lf) Hk^2{Mf) 0 pour k < 2. On peut décrire

informellement ces isomorphismes de la manière suivante: Soit 0/ un

{k- 2)-cycle de Lf (cf. fig. 5.1); faisons-le «épaissir» dans Pi9 chaque point
donnant un 2-disque fermé transverse à Lf dans Pj ce n'est pas un produit
mais un fibré localement trivial; les fibres ont une orientation déduite de celles

de Lf et Pt qu'on peut suivre continuement le long de ô/*, orientons alors le

tout conformément aux orientations de 5/ et de ces fibres: on «obtient» un k-
cycle relatif À/ de Pt modulo Pi\Lf ; Pisomorphisme de Leray xi}k fait
correspondre la classe d'homologie de A, à la classe d'homologie de 8/.

Vl*

Xi Xi

Figure 5.1
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Le deuxième point clef dans la démonstration du théorème 1.3 est que, de

manière analogue à ce qui se passait pour l'isomorphisme de Wang, l'isomor-
phisme de Leray pour le couple (M/,Mf) se comporte, sous la condition (ii)
du lemme 5.5, naturellement par rapport à l'isomorphisme pour le couple

(Pi,Lf). Cela veut dire que le diagramme suivant, où les flèches verticales
sont induites par inclusion, est commutatif:

Hk-2{Lf) -3 Hk(PhPMf)
(5.7) T ^ T

* Hk(MhMi\Mf)

Ainsi donc, reprenant notre description informelle, si 8, est homologue
dans Lf à un cycle 8- de Mf (compte tenu des isomorphismes (3.29), c'est
le cas si l'homomorphisme mlk_2 considéré dans le théorème 1.3 est surjectif),
alors Ai est homologue dans Pi modulo P{\Lf à un cycle relatif À - de M,
modulo Mf\Mf obtenu en faisant «épaissir» 8,'dans M/ (cf. fig. 5.1). Cela

précise l'assertion de l'introduction selon laquelle, si certains cycles de Lt sont

homologues à des cycles de M, alors les perturbations apportées par les

hyperplans mauvais peuvent être «poussées» dans l'axe.
Mais, d'autre part, le couple ayant la forme triviale

(M x P •, M x {X/}) donnée par le point (iii) du lemme 5.5, l'isomorphisme
de Leray x'itk prend la forme triviale d'un produit-croix homologique

(5.8) Ti,k(z'i*)Z' x M, pour z'e Hk.2{M)

où Ui e H2(P!,P*) est la classe fondamentale définissant l'orientation
canonique de P- au voisinage de Xi (cf. [Gb] chap. 22) et où z\* correspond
à z' dans l'isomorphisme induit en homologie de rang k — 2 par l'identification
canonique de M à Mf M x {7,,}. On tombe à nouveau sur une forme de

la formule de Kùnneth, cette fois pour le couple de produits

(M xPj,Mx P *).

Revenant à notre description informelle, ce qui précède signifie qu'en
raison de la forme triviale du couple (M,, Mf), l'«épaississement» de 8 • peut
être réalisé comme le produit par un 2-disque fermé convenablement orienté

entourant Xt dans P,1 (cf. fig. 5.1). Cela précise l'affirmation de l'introduction
selon laquelle les perturbations dues aux hyperplans mauvais qui peuvent être

«poussées» dans l'axe s'y «trivialisent».
Nous donnons en annexe des indications sommaires sur la manière dont

on peut établir la version de l'isomorphisme de Leray que nous avons
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présentée. Nous y justifions en même temps les assertions (5.7) de naturalité
et (5.8) de réduction à un produit-croix dans le cas trivial.

Ayant en main les isomorphismes de Leray pour les couples (Ph Lf) et

(MhMf), nous allons en déduire, grâce au lemme 5.3, la proposition
principale du paragraphe concernant les groupes Hk(P, P*) et Hk(M, M*).
Nous aurons à faire intervenir, en connexion avec la formule (5.8), les images
des classes fondamentales ut e H2{P-, P*) par les homomorphismes naturels
H2(j>), P*) - H2(J*l{C), Pi); nous les noterons wh II est plus suggestif
géométriquement de considérer

(5.9)

Du A s disques fermés

mutuellement disjoints dans P*(Q
centrés respectivement en Xv, ...,XS

dDi, QDS leurs frontières respectives

et, pour 1 ^ ^ s,

(5.10) Qj un 2-cycle fondamental
de Dl modulo dDt
compatible avec l'orientation
canonique de P](C).

On a alors, pour 1 ^ ^ s9

(5.11) Wj [Q/](P1(q >Pi)

classe d'homologie de Q, considéré comme 2-cycle relatif de P*(C) modulo
Pi. D'autre part, de même que dans le lemme 4.18 et la proposition 4.23
nous avons remplacé L* et M# par L et M, nous ferons ici figurer
directement les L, et M à la place des Lf et Mf grâce aux isomorphismes
suivants, réciproques des isomorphismes (3.29),

<5'12) P°°r 1Si^'
où c'coïncide avec l'identification canonique.de M à x {X,}. Nous
pouvons alors définir, pour tout k,

(5.13)
'T*: © Hk.2(L,) -* *)

r 1

t'k'-®sHk_2(M)-»*)

au moyen des formules suivantes utilisant les isomorphismes de Leray (5.6)



330 D. CHÉNIOT

s

x* © Zi) Yincl* (x,-, * (c* _ 2 (z,)))
/ 1 / 1

(5.13.1)
s

s

U;(© z'i) Yinclu(1,-^(0' Jt_2(z,')))
/ 1 / 1

avec la convention d'écriture (2.1) appliquée aux isomorphismes cl et c'' et en

notant indistinctement incl* tous les homomorphismes induits en homologie
par inclusion.

Nous pouvons maintenant énoncer la proposition principale de ce

paragraphe:

Proposition 5.14. On a, pour tout k, les isomorphismes Tk et %'k

entrant dans le diagramme commutatif suivant

®Hk.2(Li)
/ - 1

(5-14.1) î é «U C î
i 1

© sHk_2(M) 4 Hk(M,M,)

dont les flèches verticales sont naturelles. Nous y avons mis en évidence les

homomorphismes mlk_2 intervenant dans l'énoncé du théorème 1.3. Les

isomorphismes ik et i'k sont définis par les formules (5.13.1) qui
font intervenir les isomorphismes de Leray (5.6). Pour %'k, on a aussi

l'expression suivante
s s

(5.14.2) x;(© z'i)Yi z'i x
i 1 / 1

où Wi e 7f2(P'(C),Pl) est la classe d'homologie d'un «petit» 2-cycle
\ relatif Q/ définissant au voisinage de Xi l'orientation canonique de

P^C). Les Wi sont plus précisément définis par (5.9), (5.10) et (5.11).

Nous convenons que Hk{ 0 pour k < 0.

Démonstration. Si l'on prend pour xk et x'k les homomorphismes définis en (5.13) et

(5.13.1), le diagramme de l'énoncé est l'enveloppe externe du diagramme suivant:
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© 4-2 ®.

© Hk-2(Lj)© Hk-2(L*)"4© „) -+

i=l i= 1 i 1

î î
' î î

© ci-'-2 - © *;,* 5

®sHk^2(M) © Hk-.2(M?) © Hk(Mi,M*) - Hk{M,M*)

où toutes les flèches non nommées sont naturelles. Pour montrer la première partie de la

proposition, il suffit alors de voir que les flèches horizontales sont des isomorphismes et que
les trois rectangles sont commutatifs. Dans le rectangle de gauche, les flèches horizontales

sont sommes directes d'isomorphismes induits par les isomorphismes (5.12); ce rectangle est

commutatif car ces isomorphismes commutent aux inclusions. Le rectangle de droite est celui

du lemme 5.3 qui contient les assertions nécessaires le concernant. Les faits significatifs sont
rassemblés dans le rectangle central. Ses flèches horizontales sont, compte tenu des égalités

(5.4), sommes directes pour 1 ^ ^ s des isomorphismes de Leray (5.6). Il est commutatif
en raison de la naturalité de l'isomorphisme de Leray par rapport à la trace sur une
sous-variété fermée transversale, naturalité qui s'exprime dans la commutativité des

diagrammes (5.7). Ce qui concerne le diagramme (5.14.1) se trouve ainsi établi. Pour ce qui
est de la formule (5.14.2), elle résulte de la réduction à un produit-croix de l'isomorphisme
de Leray dans le cas trivial, donnée par la formule (5.8). En effet, si l'on substitue les résultats
de la formule (5.8) pour 1 < z s dans la formule (5.13.1) concernant t© on trouve,
compte tenu de ce que c" coïncide avec l'identification canonique de M à M H {A,/},

4( © ©) £ incl*(z'i x Ui)
i 1 / 1

et comme w/ incl*(w/), il ne reste plus qu'à utiliser la naturalité du produit-croix pour
aboutir à la formule de l'énoncé. EU

Remarque 5.15. Le même raisonnement que pour le lemme 5.3, mais dans
une situation plus simple, montre, de manière classique, qu'on a, pour
tout k, l'isomorphisme naturel

© ÄtCPj.pb-tfttP'CQ.Pi)
i 1

somme des homomorphismes induits par inclusion. Il en résulte que
Hk(P1 (C), P*) 0 pour k & 2 et que //2(P'(C)i P*) est libre sur les w, qui
interviennent dans la proposition 5.14. La formule (5.14.2) montre alors que
l'isomorphisme x'k de cette proposition n'est autre que celui donné par la
formule de Künneth pour le couple de produits (M x P'(C),Mx Pj,).

Nous allons terminer ce paragraphe de manière similaire au précédent, en
remplaçant Hk(P, P*)et Hk(M, M*) dans les suites exactes d'homologie
relative de ces couples par les expressions que la proposition 5.14 en donne.
Nous tirerons aussi les conséquences de la formule explicite (5.14.2) dans ce
contexte. Pour cela, il nous faut introduire
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(5.16) we H2(PHQ) la classe fondamentale de P*(Q
compatible avec son orientation canonique.

En relation avec la description géométrique (5.9) à (5.11) pour les w/5 il sera

souvent plus parlant d'écrire

(5.17) w- [QJa

où Q est un 2-cycle appartenant à w. La classe w interviendra à travers le

lemme suivant:

Lemme 5.18. Si s: H2(Fl(C)) H2(Fl(C), P*) est l'homomorphisme
naturel, alors on a

s(w) Wi + + ws

Démonstration. En se servant des expressions (5.11) et (5.17), la formule ci-dessus

s'écrit

[Q](PI(C),PL Ü [^/Lpko.PL >

/ î

ce qui est géométriquement clair. Voici toutefois une démonstration en bonne et due forme:

Considérons, pour 1 ^ < s, le diagramme commutatif suivant

//2(p'(C)) ^ h2(vHC)^1)

1 a/ Si î fi
ô/

/^(PHcxp'cqmm) ^ ^2(P,',PI)

où toutes les flèches sont induites par inclusion. La flèche ô/ est un isomorphisme d'excision.
Rappelons que w/ y/(w/) où w/ est la classe fondamentale de H2ÇP], Pj=) compatible avec

l'orientation canonique de P-. Mais, comme celle-ci est induite par l'orientation canonique
de P^Qj on a ô/(â/) «= a/(w). On en tire les égalités

ß/(s(w)) ô/(w/) pour tout i

La remarque 5.15 donne d'autre part l'isomorphisme naturel

y. © ^(Pj.pb-^CPHQ.pi)
i 1

qui est somme des y/ et on a ß/°yy 0 pour j & i puisque pj C P1(C)\{A./}- Si donc

i/2(p»(C),Pi) est identifié à © H2(Y?), P*) au moyen de y, les y/ en sont les sections et
i 1

les ß/ sont, aux isomorphismes 6/ près, les projections associées. Il en résulte qu'on a

ß/(#i + + w5) ô/(w/) pour tout /
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et il en résulte aussi que ces égalités comparées aux précédentes impliquent l'égalité

e(w) w i + + ws. d
La considération simultanée des suites exactes d'homologie relative des

couples (P,P*) et (M, M*) fait intervenir le diagramme commutatif

d'inclusions suivant:

P* C» P

(5.19) J h' c vî h

M* f M

Les inclusions i, i et h y sont nommées pour la première fois mais h* a déjà

été nommée en (4.22) et intervient dans la proposition 4.23.

Nous pouvons maintenant énoncer le corollaire de la proposition 5.14 que

ces suites exactes permettent d'obtenir:

Corollaire 5.20. On a les deux suites exactes longues entrant dans le

diagramme commutatif suivant

s Cat+1 ~ 'A ~ T\k S CA- ~
-> © Hk^i(Lj) Hk(P*) - Hk(P) -> © Hk-2(Li) •••

/ i / i

(5.20.1) î .©4-1 C î h*k C î C î ©4- 2
^ î

- Hk-,{M)^ Hk(M*) Hk(M) -̂
ow /?ow,s appliqué la convention d'écriture (2.1) aux homomorphismes
induits par les inclusions i, h* et h qui forment le diagramme (5.19).
Nous y avons mis en évidence les homomorphismes mlk_l et mlk_2

induits par les inclusions m' qui figurent dans l'énoncé du théorème 1.3.

Toutes les flèches verticales sont donc naturelles. On a de plus, pour la

formule explicite

(5.20.2) Y
i= 1 /= 1

où Wi e H2(Pl(C), P*) est la classe d'homologie d'un «petit» 2-cycle
relatif Qz définissant au voisinage de l'orientation canonique de
P HC). Les Wi sont plus précisément définis par (5.9), (5.10) et (5.11).
Enfin, v\'k vérifie la relation suivante

(5.20.3) V['k(z' x w) ®sz' pour z' e Hk_2{M)
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où w e //2 (P1 (C)) est, conformément à la définition (5.16), la classe

fondamentale de PUQ compatible avec son orientation canonique.
L'homomorphisme r\'k est d'ailleurs complètement déterminé par cette
formule car il s'annule sur les éléments de la forme z" x u, avec

z"eHk(M) et u e H0(P^C)), et ceux-ci décrivent un supplémentaire
dans Hk(M) des éléments de la forme z' x w avec z' e Hk-2(M).
Nous convenons toujours que Hk( 0 pour k < 0.

Démonstration. On obtient le diagramme (5.20.1) en substituant © Hk_2(Lî) et
/ î

©5 Hk_2{M) respectivement à Hk(P,Pp et Hk{M,M*) pour tout k dans le diagramme
commutatif constitué par les suites exactes d'homologie relative des couples (P, P*) et

(M, Mj) reliées entre elles par les homomorphismes naturels. Cette substitution est permise

par les isomorphismes xk et x'k de la proposition 5.14; ce faisant, la flèche naturelle

Hk(M, Mj) -> Hk(P, P#) est transmuée en l'homomorphisme naturel @ mlk_2 en raison
/ î

de la commutativité du diagramme (5.14.1). Cela donne bien le diagramme (5.20.1).
D'après ces substitutions, l'homomorphisme Çk est obtenu en composant l'homorphisme

bord 0: Hk(M, M*) -> Hk-\{Mf) avec l'isomorphisme xk. La formule (5.14.2) pour x'k

donne alors
.S s s

C*( © z'i)9(t*( © a( £ z'i x w,).
i 1 / 1 / 1

Mais on a

d(z- x Wj) (- l)k~2z'i x 0w/

en notant aussi 0 l'homomorphisme bord H2(T* j(C), P*) -» H2(?\) (cf. [Sp] 5.3.15). La
formule (5.20.2) en résulte.

L'homorphisme r\k est obtenu en faisant suivre l'homomorphisme naturel e'k:Hk{M)
Hk(M, Mj) de l'isomorphisme réciproque (x'j) ~ 1 de x'k. Alors, par naturalité du produit-

croix, on a, pour z' e Hk-2{M)

ri 'k{z'x w)(x 'k)-l{e'k(z'x(xî)_1(z' x e(w))

où e est l'homorphisme naturel Pj,). Mais, d'après le

lemme 5.18 et par bilinéarité du produit-croix

z' x s(w) - z' x (wi + + w5) z' x w{ + + z' x ws

La formule (5.20.3) résulte alors, elle aussi, de la formule (5.14.2).
Par ailleurs, la formule de Kiinneth pour M-Mx P*(C) donne un isomorphisme

® H0(Pl(C))) © (Hk-2(M)(g)
1 (C)» ^ Hk(M)

qui est le produit-croix homologique dont la restriction aux éléments décomposables s'écrit

z' ®v^z' xv. Comme i/^P^C)) est libre sur la classe fondamentale w, l'image de

Hk_2(M) (x) H2(P l(C)) par cet isomorphisme est précisément formée des éléments de

Hk{M) de la forme z' x w avec z' e Hk-2(M). Un supplémentaire des éléments de cette
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forme est donc donné par l'image de (g»i/o(P !(Q)- Mais les éléments de ce

supplémentaire sont eux-mêmes de la forme z' x X où z' e Hk(M) et où X est la classe

d'homologie du O-simplexe singulier de P*(C) d'image X, classe sur laquelle ^(P^Q) est

libre. Si donc X est la classe d'homologie dans 7/oCP*) du même O-simplexe, on a, par

naturalité du produit-croix,
A ~

z' x X ik{z' x X)

et r['k s'annule donc dessus d'après l'exactitude de la ligne inférieure du diagramme (5.20.1).

Cela montre la dernière assertion du corollaire 5.20. CD

Dans la suite, nous ne nous servirons de ce qui a été fait dans ce paragraphe

qu'à travers le corollaire 5.20 (excepté que, de manière indépendante de tout
le reste, nous renverrons aux lemmes élémentaires 5.15 et 5.18 pour la démonstration

du lemme élémentaire 7.7). On retrouve bien, dans ce corollaire, le

deuxième point clef de la démonstration du théorème 1.3 dont nous avons parlé

au moment de la présentation informelle de l'isomorphisme de Leray. En effet,

d'après les démonstrations de la proposition 5.14 et du corollaire 5.20, la

naturalité de l'isomorphisme de Leray par rapport à une sous-variété fermée

transverse s'exprime dans la commutativité du diagramme (5.20.1) et la

réduction à un produit-croix de l'isomorphisme de Leray dans le cas trivial est

manifestée par les formules explicites (5.20.2) et (5.20.3).

6. Retour de l'éclaté à l'espace initial

Dans ce paragraphe, nous étudions d'un point de vue homologique la
relation entre, d'une part, les éléments P, M, L*, L*,M*, M* dans P" sur

lesquels a porté notre étude aux paragraphes précédents et, d'autre part, les

éléments P,L,Lt,M dans P"(C) sur lesquels porte le théorème 1.3

(cf. fig. 3.2). Nous nous étions en effet placés dans P" pour rendre compte
de l'«isotopie» décrite informellement dans l'introduction et l'éclatement de

P"(C) le long de l'axe Jï du pinceau A avait été motivée par la nécessité de

«répéter» cet axe. Toute l'étude géométrique qui précède a été faite dans P".
Nous allons maintenant «redescendre» de P" à P"(C) au moyen du
morphisme d'éclatement f. Comme nous ne nous intéressons qu'à ce qui se

passe en dehors de A dans P"(C) et de sa transformée totale Ä dans P", nous
allons en fait étudier la géométrie de

(6.1) f:P~*P application induite par le morphisme d'éclatement f
(cf. fig. 3.1 et 3.2).
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