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5 et 6 d’autre part. On peut aussi en avoir une vue d’ensemble rapide grace
4 la figure 3.2. D’autres notations, utiles seulement pour les besoins d’un
paragraphe sont introduites au cours de ceux-ci.

Nous utiliserons, pour la durée de la démonstration du théoreme 1.3 au
long des §§3 a 8, la convention d’écriture suivante:

L’apposition d’un indice & a une lettre latine désignant une

2.1) application continue signifiera qu’on considere l’homomorphis.vme
induit par cette application entre les groupes d’homologie singuliere
a coefficients entiers de rang k.

Les notations de 1’énoncé du théoréme 1.3 sont déja cohérentes avec cette
convention; par exemple, ’homomorphisme induit en homologie de rang k
par linjection canonique [: N (P"(C)\A) S P*(C)\A y est noté
le: H(Z n (P"(C)\A)) » H (P"(C)\A).

Pour faire place aux indices inférieurs utilisés dans le cadre de la
convention (2.1), nous avons dii parfois mettre en position supérieure d’autres
indices qu’il aurait été autrement plus naturel de mettre en position inférieure.
C’est par exemple le cas de I’indice i dans les homomorphismes m; du
théoréme 1.3.

Pour éviter toute confusion, nous utiliserons des lettres indexées grecques
pour désigner des homomorphismes entre groupes d’homologie qui ne sont pas
induits par une application. Ce sera par exemple le cas pour certains
homomorphismes bord et pour les homomorphismes notés v, et T, aux
paragraphes 4 et 5 qui désigneront des isomorphismes dérivés de ceux de Wang
et de Leray.

Tous les groupes d’homologie considérés dans cet article sont des groupes
d’homologie singuliére a coefficients entiers. Les seules topologies considérées
sont les topologies ordinaires.

3. ECLATEMENT STRATIFIE ET FIBRATION HORS DES HYPERPLANS MAUVAIS

Dans ce paragraphe, nous précisons et justifions I’assertion d’«isotopie»
de I'introduction. On pense évidemment & une fibration localement triviale
stratifiée dont les bons hyperplans du pinceau seraient les fibres. Mais on veut
donc enlever &, ..., &, tout en conservant I’axe .# dans chaque fibre: un
moyen d’y parvenir est de «répéter» .# autant de fois qu’il y a de directions
d’hyperplan dans le pinceau A. Cela est précisément réalisé par un éclatement
de P"(C) le long de .#. Cette idée apparait déja sous une autre forme dans
[Wa]; on la trouve ensuite sous la forme présente dans [A-F2] et elle est reprise
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de maniere stratifiée dans [Chl] que nous suivrons et auquel nous renverrons
pour plusieurs démonstrations.

Nous construisons un éclaté P” de P*(C) le long de .# de la maniére
suivante: Soit A une droite projective de P"(C) ne rencontrant pas .#. Nous
considérons la projection de centre .# sur A qui a tout point x ¢ .# associe
I’unique point d’intersection avec A de I’hyperplan projectif déterminé par
# et x. En composant avec un isomorphisme projectif de A sur P1(C), on
obtient une «projection»

3.1) p: P(C)\ .#— PI(C) .

C’est une application analytique submersive. Si 77 est un élément du pinceau
N d’axe .#, ’image par p de 2%\ _# est réduite a un seul point de P!(C) qui
représente la direction de 2#. Pour tout k¥ € P!(C), notons % (x) 'unique
élément de A tel que p(Z7(x)\ .#) = {x}. Nous définissons alors:

(3.2) P = {(x,x) € P"(C) x P1(C)|x e #(x)} .

C’est une sous-variété analytique compacte pure de dimension n de
 P7"(C) x PI(C) (cf. [Chl] 2.1). Nous définissons aussi sur P le morphisme
d’éclatement

(3.3) f:P7— P"(C),
et la projection
(3.4) p:P"—>PI(C),

comme étant les restrictions a P” des premic¢re et seconde projections de
P"(C) X P!(C) respectivement. Ainsi donc, dans cette construction, la
direction de chaque hyperplan de A est repérée par un point de P!(C) et P
est composé des points de P”(C) accompagnés de la direction sous laquelle ils
sont vus depuis .#, étant entendu que les points de .# sont vus dans toutes
les directions; le morphisme f consiste a oublier cette direction et le morphisme
p a la désigner.
Dans cet éclatement, .# est donc remplacé par sa transformée totale

(3.5) M =F-( )= H#xPC) .

C’est une sous-variété fermée de P"(C) x P1(C) donc de P” et ses structures
comme sous-variété et comme variété produit coincident. Cette structure de
Eproduit jouera, répétons-le, un réle trivialisant essentiel pour tout ce qui
‘pourra &tre «poussé dans I’axe». Les restrictions de f et pa M coincident
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avec la premiére et la deuxiéme projection. Par ailleurs, I’éclatement ne change
rien en dehors de .# car f induit un isomorphisme analytique

(3.6) P\ .4 > PO\ A

La restriction de p a P”\_.# coincide a cet isomorphisme pres avec p.

F z*

M A As P!(C)

FiGURE 3.1

Pour toute partie E de P”(C), nous considérons, de méme que pour .#,
sa transformée totale dans I’éclatement

(3.7) E = f-Y(E)
et particuliérement la transformée totale A de ’ensemble algébrique A. Mais
pour les hyperplans & et &, ..., <, plus généralement pour un élément

quelconque 7% du pinceau A, il nous sera préférable de considérer sa
transformée stricte

(3.8) H# =R\ M),
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’adhérence étant prise pour la topologie ordinaire, la seule que nous consi-
dérerons dans cet article. L’avantage de considérer la transformée stricte au
lieu de la transformée totale est que f induit des isomorphismes

(3.9) wrS
(3.10) KA MS M

pour tout hyperplan 7% de A, en particulier pour & et pour 7, ..., Z
(cf. fig. 3.1). En effet, pour tout 2% € A de direction k c’est-a-dire tel que
p(Z\.#) = {x}, on a les relations

(3.11) H# = %X {x)=Dp ().

Cette formule interprete aussi les transformeées strictes des éléments de A
comme les fibres de la projection p. Mais cette fois on peut enlever
7t .., ZLF A P” sans toucher aux autres fibres de p qui restent alors
isomorphes aux bons hyperplans de A, axe compris. C’est donc p qui va nous
 donner, en dehors de & roLZ #, la fibration localement triviale rendant
compte de I’«isotopie» dont nous avons parlé dans l’introduction. Elle en
rendra vraiment compte si elle respecte P"\A ainsi que S pour toute strate S
de A et si elle respecte aussi _#. Comme p est propre puisque P est
compact, nous pourrons déduire une telle fibration du premier théoréme
d’ 1sotop1e de Thom-Mather si nous construisons une stratification de Whitney
& de P telle que les S et .# soient unions de strates de & et telle que p soit
submersive sur toutes ces strates pourvu qu’on Se restreigne a P"\(,j Fu
u Z7).

Rappelant la notation (3.7), nous posons

(3.12) &={S\A|Se@}u{Sn 7|Se&}
| U {PNA\ 4, (PNA) " A} .

LEMME 3.13. La partition © de P" est une stratification de Whitney
vérifiant les conditions suivantes:

(1) P\A, les S pour Se€© et .# sont réunions de strates,

() si 2 e A estun «bon» hyperplan transverse a toutes les strates de
& dans P"(C), alors J* est transverse a toutes les strates de © 2

dans Pn.

Bl v
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Démonstration. Elle est donnée dans [Chl] proposition (2.2.1) (I’hypothése faite dans
[Chl] que A est une hypersurface n’y intervient pas). Le fait que .# soit transverse dans
P"(C) aux strates de & y joue un rdle essentiel. Il implique en effet d’une - part que P” est
transverse dans P”(C) x P1(C) 2 S x P1(C) pour tout S € & et alors S = (S x P1~ (©)
N P est obtenue par section transversale de S x P!(C). Il implique d’autre part que . # est
transverse dans P” aux S. On conclut alors a I’aide du lemme (2.2.2) de [Chl1] qui affirme
qu’étant donnée une stratification de Whitney, son produit par une variét€ constante, sa
section par une sous-variété fermée transverse et cette section union son complémentaire
forment aussi des stratifications de Whitney. Notons toutefois que la démonstration de ce
lemme dans [Ch1] utilise comme allant de soi le fait suivant: soient S, S’ deux strates avec
S’ C S et soit V une sous-variété de 1’espace ambiant transverse 4 S et S'; si (x) est une
~ suite de points de S N V convergeant vers un point x de §” N V' telle que les espaces tangents
Ty, S aient une limite 7, alors 7x,S n Ty, V converge vers T n T, V. Cela n’est en fait vrai
que grice a la propriété (a) de Whitney vérifiée par le couple (S, S’) au point x; pour plus
de détails cf. [Ch3] §5 de la 2¢ partie. ] ‘

Remarquons maintenant que p est une submersion. En effet, la restriction
de p a 'ouvert P\ .# de P" coincide, a 1’1somorphlsme (3.6) pres, avec p
qui est une submersion; et p est aussi submersive en tout point de _# car sa
restriction a %/, qui coincide avec la deuxiéme projection, est déja

submersive. Compte tenu de cette submersivité globale de p, la condition (ii)
du lemme 3.13 implique que

la restriction de p & chaque strate de & est submersive en tout
(3.14) point non situé sur les transformées strictes 7, ..., 7 des
hyperplans «mauvais».

En effet, soit S une strate de S , soit x un point de S et soit .## unique transformée stricte
d’élément de A passant par x (on a p(#\.#) = {p(x)}). Si 1 est I'injection canonique de
S dans P”, Papplication linéaire tangente Ty(p|s) & p s est égale & Typ © T\t et, compte tenu
de la surjectivité de T,p, cette application est surjective si et seulement si Im Tyt + Ker 7T,.p
= Txl;” (cf. le lemme algébrique 7.4 ci-dessous). Mais Im Ty1 = T,.S et Ker Typ = % #
donc cette égalité est équivalente 4 la transversalité de .# # a S en x dans P”.

Définissons alors les points A et A, ..., A, de P!(C) par

{{?»} = p(L\ A)

(3.15) (N =p(&\ #) pour 1<i<s,

de sorte que

% = p-I(\
(3.16) { i 13_ *) :
L7 =p M (\) pour 1<i<s,

et posons
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(3.17) Py = PYO\{A, ..., A}

(3.18) P, =P"\(ZFU..uZ?) =p (P

(3.19) Dy:PL— PL ’application induite par p
(3.20) Gy =G ={SNPL|Se&et SNPL %},

Alors il est aisé de voir que la restriction @3* de & a I’ouvert f’”* de P" est une
stratification de Whitney de P’ (pour plus de détails, cf. [Ch3] §5 de la
2¢ partie) et p4 est une application propre submersive sur toutes les strates de
.. Nous sommes donc en situation d’appliquer le premier théoréme
d’isotopie de Thom-Mather (cf. [Ma] proposition 11.1 et corollary 10.3). Il
faut toutefois remarquer au préalable que ce théoréme est énoncé pour des
ensembles munis d’une préstratification de Whitney réelle. Mais pour une
stratification complexe, les conditions de Whitney au sens complexe impliquent
les conditions de Whitney pour les variétés réelles sous-jacentes aux strates.
D’autre part la submersivité au sens complexe de ps implique sa submersivité
au sens réel car I’espace tangent en un point a la variété réelle sous-jacente a
une strate est ’espace vectoriel réel sous-jacent a I’espace tangent complexe.
Nous pouvons donc bien appliquer le théoréme de Thom-Mather et nous
obtenons:

PROPOSITION 3.21. L’application ps est une fibration topologique
localement triviale de P% sur Py respectant les strates de &, donc
respectant les traces sur P% de P"\A, des S pour Se€& etde /.

La fibre au-dessus de A\ (direction du «bon» hyperplan <) est <L*.
L]

Cette proposition rend compte précisément de 1’«isotopie» dont il a éte
question dans P’introduction.

Remarque 3.22. Nous avons dit de cette «isotopie» qu’elle laissait I’axe du pinceau A
globalement invariant et cela est justifié¢ dans la proposition 3.21 par le fait que la fibration
respecte la transformée totale # de Paxe. En fait, cette «isotopie» peut méme Etre
construite de maniére a laisser 1’axe point par point invariant. Pour le justifier, il faut revenir
sur la maniere dont le premier théoréme d’isotopie est établi dans [Ma] et se souvenir qu’il
porte ce nom parce que la fibration localement triviale respectant la stratification y est
démontrée en réalisant une isotopie de la fibre le long des courbes intégrales d’un champ de
vecteurs «controlé» au-dessus d’un champ de vecteurs donné de la base. Comme les strates de
e ﬁi = # X Pi sont de la forme (SN .#) X P,lk pour S € @ ou S = P"(C)\A, ce relé-
vement peut étre fait trivialement sur M, et le champ de vecteurs contrdlé peut ensuite étre
prolongé a 13';\ _# sans avoir a toucher celui sur .#Z N 131 puisque A est fermé et que la
construction sur une strate n’est affectée que par ce qui se passe sur les strates contenues dans
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son adhérence (cf. [Ma] §9). L’isotopie de &¥# correspondant & un tel champ de vecteurs
a alors lieu trivialement sur .# X P}k et lorsqu’on redescend a P”(C) par le morphisme
d’éclatement f, on trouve une «isotopie» de & qui respecte & et P?(C)\ A4 et qui de plus
laisse . /7 fixe point par point.

A partir de maintenant, nous ne nous intéressons plus qu’a ce qui se passe
en dehors de A, ce qui signifie que nous ne considérons dans P que ce qui
se passe hors de A. Nous sommes donc amenés a introduire les notations
simplificatrices suivantes (cf. fig. 3.2), valables pour le temps de la démons-
tration du théoréme 1.3, c’est-a-dire jusqu’a Ia fin du §8:

. 7 M M) 7 7
/ / /)n enléve” 7/ 71 A
on enléve A/ /M7, f/LE, .. LY My /M* M2

P VOV VYV V V.V .V VYV

1 s Vi
).MNV\MI\MN\A!" !
~ ~ T /I I /I
P P Py Iy
> - ~ 17 17
LNLV LT lp\f LVL*Y L? lﬁ\f LivL*V Lfv lp*
PIOL, A A P(C) M A A P' A, A A

on enleve A

(W VLV VTV VLV VTV VY
P"(C)
< L
4 g 17 P L.
PO 4 N PO % e
FIGURE 3.2
P =P"(O)\A
L =%nNnP
(3.23) Li=%nP pour 1<i<s
M= #nP
520 {15 = P"\A4
' M= .4/ nP=MXxPC)
L*= Z%*AP
L,#:g,-#m{) pour 1<i<s
(3.25) M*=L*AM=M x {\}

Msz,.#r\M:Mx{ki} pour 1<i<s

N
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(3.26) p: P> PI(C) restriction de p

37 {]5* —PnPL=P\L¥u..UL?

(3.27) My=MnPy=MM?0U..uM?)=Mx P,
(3.28) Ds: 15* — Pl restriction de py,

induite aussi par p ou p.

On peut définir la transformée stricte d’une partie quelconque E de P*(C)
comme étant égale a f-1(E) n f-1(E\.#), ce qui est cohérent avec la
définition (3.8) concernant les hyperplans de A car ceux-ci sont fermés. Avec
cette définition, L # et les L} sont bien les transformées strictes respectives de
L et des L;. Mais il n’en est pas de méme pour M# et les M/ par rapport
a M et aux M;. Nous avons malgré tout adopté ces notations en raison de
I’analogie entre les relations (3.25) qui les définissent. Notons d’autre part que,
d’apres (3.9) et (3.10), le morphisme d’eclatement f induit les isomorphismes
suivants:

L#* S L

LY 5L, pour 1<i<s
(3.29) M*ES M

M!S M pour 1<i<s.

En relation avec la structure de produit de M, notons aussi que les isomor-
phismes concernant M# et M sont réciproques des identifications cano-
niques de M a M x {A} et M x {A;}. Remarquons enfin que, comme nous
avons écarté le cas trivial ou P = ), la transversalité¢ de .# dans P"*(C) aux
strates de © implique (cf. (9.6.4)) que M donc tous les espaces que nous avons
considérés ci-dessus sont non vides.

Voici alors le corollaire de la proposition 3.21 que nous aurons a
considérer:

COROLLAIRE 3.30. L’application p, est une fibration localement tri-
viale topologique de Py sur Py avec M, = M x P} comme sous-fibré
trivial. Les fibres au-dessus de L sont respectivement L#* et M#*. []

Par sous-fibré nous entendons une partie de I’espace total du fibré ambiant,
qui non seulement est fibrée par la méme projection sur la méme base mais
aussi pour laquelle il existe des trivialisations locales qui s’étendent en des
trivialisations locales du fibré ambiant. Nous qualifierons de simultanées de
telles trivialisations locales du fibré ambiant et du sous-fibré.
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