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L'Enseignement Mathématique, t. 37 (1991), p. 293-402

TOPOLOGIE DU COMPLÉMENTAIRE

D'UN ENSEMBLE ALGÉBRIQUE PROJECTIF

par Denis Chéniot

1. Introduction et énoncé de théorème

Une méthode classique pour étudier la topologie d'un objet de géométrie

algébrique est de considérer ses sections par un pinceau d'hyperplans. Elle est

largement utilisée par Solomon Lefschetz dans son livre L'analysis situs et la

géométrie algébrique (cf. [Lf]). Il aboutit ainsi notamment au théorème

suivant: les groupes d'homologie d'un ensemble algébrique projectif complexe
fermé et lisse de dimension pure d sont donnés jusqu'au rang d — 2 par ceux
d'une section hyperplane générique et au rang d - 1 on en a ainsi tous les

générateurs (cf. [Lf] V.3). On fait maintenant référence à ce genre de

théorèmes sous le nom de théorèmes du type de Lefschetz.
Nous utilisons dans cet article la méthode de Lefschetz pour étudier le

complémentaire P"(C)V4 d'un ensemble algébrique fermé quelconque A
dans l'espace projectif complexe P"(C). Nous démontrons un nouveau
théorème du type de Lefschetz dont voici l'énoncé:

Théorème 1.1. Soit A un ensemble algébrique fermé de codimension
q dans l'espace projectif complexe P"(C), avec n ^ 1 (nous convenons
que q est la plus petite des codimensions des composantes irréductibles de

A; si A 0, alors q n + l). Soit © une stratification de Whitney
de A (cf. [Wh2] et \L-T2\) et soit SA un hyperplan projectif de P"(C)
transverse à toutes les strates de © (nous convenons que si SA ne rencontre
pas une certaine strate, il lui est transverse). Dans ces conditions, l'injection
canonique 5f n (P"(Ç)\A) <+ P*(C)\A induit:

des isomorphismes des groupes d'homologie singulière à coefficients entiers

Hk(SA n (P"(C)\y4)) ^ i/fc(Pw(C)V4) pour k ^ n + q - 3
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et un homomorphisme surjectif

Hk{ßn (P"iC)\A))-*Hk(P"(C)\A) pour k n + q - 2

Le choix de Qj donné par cet énoncé est générique (cf. corollaire 10.18

ci-dessous).

Le théorème 1.1 pousse la comparaison des groupes d'homologie q - 1

rangs plus loin que les meilleurs résultats connus, dus à Helmut A. Hamm et

Düng Trâng Lê ou Mark Goresky et Robert MacPherson (cf. [H-L2], [H-L4],
[G-Ml], [G-M2] et indications historiques ci-dessous). Il présente aussi

F avantage que le critère de généricité pour £? est explicite en termes d'une
stratification de Whitney de A (mais voir aussi, dans [H-L4], le lemme de

l'appendice et, dans [G-M2], la remarque à la fin de la démonstration II.5.1);
cette stratification peut d'ailleurs être choisie comme étant la stratification
de Whitney canonique minimale introduite par Lê et Bernard Teissier

(cf. [L-T1]6.1) et dont Teissier a montré l'existence et même la possibilité
théorique de la construire à partir d'équations de A (cf. [Te] VI.3). En

revanche, la comparaison se limite ici aux groupes d'homologie alors que les

énoncés de Hamm et Lê concernent les types d'homotopie et sont même des

corollaires de résultats plus généraux sur les types topologiques. Notons
toutefois que, dans le cas où notre théorème apporte quelque chose de nouveau

par rapport au théorème 1.1.3 de [H-L2], c'est-à-dire dans le cas où q ^ 2,

il a le corollaire homotopique suivant:

Corollaire 1.2. Les hypothèses et notations étant celles du

théorème '1.1, supposons de plus que q^ 2. Soit e un point base

dans i5f n (P"(C)\/1) (qui n'est pas vide). Alors l'injection canonique

âfn (Pn(C)\A) Pn(C)\A induit:

des bijections

nk(& n (P"(C)Y4), e) ^ nk(Pn(C)\A, e) pour k ^ n + q - 3

et une surjection

71/^^ n (P^(C)\y4), e)-»nk(Pn(C)\A,e) pour k n + q-2.
Le corollaire 1.2 sera aisément déduit du théorème 1.1 au §9 grâce au

théorème de Whitehead. Comme le couple (P"(C)\A, n (P"(C)\.T)) est

triangulable (cf. [Lo] et [Hi]), on pourrait même montrer que Pn(C)\A a le

type d'homotopie d'un espace obtenu en attachant à £?n (P"(C)V4) des

cellules de dimension ^ n + q - 1 (à l'aide de [Sw] 6.13 et [tD-K-P] (7.39) et



COMPLÉMENTAIRE D'UN ENSEMBLE ALGÉBRIQUE 295

(7.43)). Il serait malgré tout plus satisfaisant d'avoir une démonstration

homotopique directe du théorème 1.1 dans le cas général. Nous dirons au § 12

pourquoi il y a bon espoir d'y parvenir (cf. (12.5)).

Avant de donner les grandes lignes de la démonstration du théorème 1.1,

voici quelques indications historiques sur le sujet:

Le livre de Lefschetz cité ci-dessus a représenté une contribution considérable

à l'étude de la topologie des ensembles algébriques. Il contient bien

d'autres résultats que celui que nous avons mentionné, notamment ceux qu'on

nomme maintenant formules de Picard-Lefschetz, second théorème de

Lefschetz et théorème de Lefschetz vache. Des théorèmes sur le groupe
fondamental de PW(C)Y4, dans le cas où A est une hypersurface, ont peu

après été donnés par Oscar Zariski et Egbert van Kampen dans [Za] et [VK]
où ils ont énoncé deux résultats complémentaires. Le théorème de Zariski

affirme que, pour n ^ 3, le groupe fondamental de PW(C)M4 est donné par
celui d'une section hyperplane générique de Pn(C)\A. Le théorème de

van Kampen donne une présentation par générateurs et relations du groupe
fondamental de P"(C)V4 dans le cas où n 2: les générateurs peuvent être

pris dans une droite projective qui coupe A en un nombre fini de points égal

à son degré, comme étant des lacets qui entourent une fois chacun des points
d'intersection; pour avoir les relations autres que la relation évidente de

trivialité du produit de ces générateurs, on considère un pinceau de droites

projectives dont le sommet est situé hors de A : les relations sont alors données

par les monodromies des générateurs autour des droites exceptionnelles du

pinceau, à savoir celles qui sont tangentes à A ou passent par des points
singuliers de A. Les démonstrations de Zariski et van Kampen, de même que
celle de Lefschetz, sont incomplètes.

La première démonstration complète du théorème de Lefschetz cité
ci-dessus remonte à Andrew H. Wallace et utilise la même méthode (cf. [Wa]);
une version plus simple en a été donnée par Klaus Lamotke (cf. [La]). Dans
l'intervalle, une approche différente a été suggérée par René Thom: la théorie
de Morse. Elle a conduit à des démonstrations du théorème de Lefschetz par
Raoul Bott dans [Bt] et Aldo Andreotti et Theodore Frankel dans [A-Fl].

La première démonstration complète du théorème de Zariski a été donnée
à l'aide de la théorie de Morse par Helmut A. Hamm et Düng Trâng Lê qui
ont su voir qu'il s'agissait d'un théorème du type de Lefschetz (cf. [H-Ll]).
Hamm et Lê y poussent d'ailleurs la comparaison des groupes d'homotopie
jusqu'aux rangs n - 2 et n - 1 analoguement au théorème de Lefschetz.
Signalons que leur démonstration passe par un résultat local plus fort.
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Plus récemment, Marc Goresky et Robert MacPherson dans [G-Ml] et

[G-M2] d'un côté, Hamm et Lê dans [H-L2] de l'autre, ont unifié les théorèmes
de Lefschetz et de Zariski en prouvant leur analogue pour une variété quasi-
projective lisse, comme corollaire d'une conjecture de Pierre Deligne qu'ils ont
démontrée (cf. [De] conjecture 1.3); leurs énoncés sont en termes de groupes
d'homotopie ou de types d'homotopie. De plus, Hamm-Lê et Goresky-
MacPherson ont donné, dans [H-L2], [G-Ml] et [G-M2], des généralisations
de ce théorème au cas d'une variété quasi-projective singulière qui fait
intervenir soit sa profondeur homotopique rectifiée, notion introduite par
Alexandre Grothendieck dans [Gr] Exp. XIII, §6, soit le nombre d'équations
nécessaires pour la définir localement; un lien entre ces deux points de vue est

donné par la conjecture B de [Gr] Exp. XIII, §6, démontrée par Hamm et Lê
dans [H-L4]. Signalons enfin l'existence de versions locales des théorèmes du

type de Lefschetz qui sont en fait plus fortes (cf. [H-Ll], [H-L3), [H-L4],
[G-Ml] et [G-M2]). Tous ces articles utilisent la théorie de Morse, classique,
à coins ou stratifiée.

Une démonstration complète du théorème de van Kampen cité ci-dessus a

été donnée dans [Chi] : elle est simultanée avec une démonstration du théorème
de Zariski et reprend la méthode géométrique de Lefschetz, Zariski et van
Kampen en la combinant avec les outils plus modernes que sont les

stratifications de Whitney (cf. [Wh2]) et le premier théorème d'isotopie de

Thom-Mather (cf. [Th2] et [Ma]), ce qui permet d'aboutir à une preuve
complète. Signalons qu'à la même époque A. N. Varchenko a aussi donné une
démonstration du théorème de Zariski en construisant par récurrence les

isotopies qui ne sont pas justifiées dans [Za] (cf. [Va]). Mais la démonstration
de [Chi] pour le théorème de Zariski est en fait valable pour A ensemble

algébrique fermé quelconque de P"(C), bien que cela n'y soit pas énoncé.

Dans le présent article, nous poursuivrons donc dans l'esprit de [Chi] pour
démontrer le théorème 1.1.

Mais auparavant, signalons que cet article a pour précurseur [Ch2]. A
l'époque, [Ch2] avait le mérite de généraliser le théorème de [H-Ll]
concernant le complémentaire d'une hypersurface projective A au cas où A
est un ensemble algébrique fermé quelconque; mais cela était fait seulement

en homologie avec, comme ici, un corollaire homotopique pour codim^4 ^ 2.

Le résultat de [H-Ll] étant valable en homotopie pour une hypersurface, [Ch2]

croyait en déduire qu'il était valable pour A quelconque. C'était omettre le cas

où A est composé d'une hypersurface et d'une autre composante de dimension

inférieure, erreur que Deligne a signalée dans [De]. Depuis, la question a été

réglée par le théorème sur les variétés quasi-projectives lisses dont nous avons
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parlé. D'une manière générale, [Ch2] est d'une écriture aride due à ce que les

faits géométriques n'y sont pas dégagés, ce qui lui fait d'ailleurs manquer
l'amélioration de q - 1 rangs que nous obtenons ici. Il comporte aussi

quelques autres erreurs de détail que nous corrigerons à leur place. Nous

renverrons néanmoins à [Ch2] pour la démonstration de la proposition 6.8

ci-dessous.

Je dois annoncer, pour finir, que Hamm, qui a eu en main la version
préliminaire [Ch3] de ce travail, a trouvé une démonstration, à l'aide de la théorie
de Morse stratifiée, d'une généralisation homotopique du théorème 1.1 (non
encore publiée).

Voici maintenant les grandes lignes de la démonstration du théorème 1.1:

Le théorème est trivial pour q 0 et nous écarterons désormais ce cas.
Pour n 1, on est alors forcément dans la situation où A est vide ou réduit
à un nombre fini de points et on peut alors faire un calcul direct.

Figure 1.1

Pour vi ^ 2, notre méthode de demonstration consiste, à la manière de
Lefschetz, à intégrer S7 dans un pinceau A d'hyperplans dont l'axe J( soit
un (n- 2)-plan projectif transverse dans P"(C) à toutes les strates de <g. Pour
avoir un tel Jt, il suffit de le prendre dans S7 transverse à toutes les strates
de la trace de © sur S7 qui est encore une stratification de Whitney; cela est
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toujours possible pour des raisons de généricité (cf. corollaire 10.18 ci-
dessous). Pour les mêmes raisons, tous les hyperplans d'un tel pinceau sont
transverses à toutes les strates de 0 sauf un nombre fini d'entre eux:

qui ne le sont pas et que nous qualifierons de «mauvais»
(cf. corollaire 10.19). Les autres, ceux qui sont transverses à toutes les strates
de ©, parmi lesquels il y a iZ, seront qualifiés de «bons» (cf. fig. 1.1).

Dans ces conditions, lorsque «Sf se déplace dans le pinceau en évitant
Sfi, âf, on peut le déformer dans une «isotopie» qui respecte J*n(C)\A et

les strates de A, les choses qui sont dans l'axe du pinceau restant dans l'axe.
Cela a été vu par Zariski (à la stratification près) mais il nous faudra mettre
en œuvre au § 3, comme dans [Chi], les stratifications de Whitney et le premier
théorème d'isotopie de Thom-Mather pour en donner une véritable démonstration.

Ce premier point étant acquis, nous regardons aussi la section de

P"(C)V4 par l'axe du pinceau de manière à avoir une récurrence sur la
dimension. Car si l'on a des informations sur la comparaison entre

.//n (P"(C)\,4) et iZn (P"(C)\,4) d'une part, et entre (P"(C)V4) et

les ^ n (P,I(C)\y4) d'autre part, on peut en déduire des informations sur la

comparaison entre S? n (P"(C)\^4) et P"(C)\y4. En effet, si par exemple on
sait que certains cycles de 5fn (P"(C)\,4) et des ^ n (P"(C)\v4) sont

homologues à des cycles de .Jér\ (P"(C)\^4), alors les monodromies autour
des hyperplans mauvais d'une part et les perturbations apportées par ces

hyperplans mauvais eux-mêmes d'autre part peuvent être «poussées» dans

l'axe où elles se trivialisent. C'est là l'idée principale sur laquelle repose ce

travail. Nous préciserons ces assertions aux §§4 et 5 dans lesquels nous
donnerons aussi une description informelle plus détaillée. L'idée de «pousser
les choses dans l'axe» apparaît déjà à la fin de [Za] et joue un rôle clef dans

[Chi] pour l'étude du groupe fondamental de P/I(C)\y4, Ce qu'il y a sans

doute de nouveau ici, c'est l'importance envahissante que prend l'axe du

pinceau.
La manière dont l'information se transmet d'une dimension à l'autre est

précisée par le théorème suivant:

Théorème 1.3. Soit A un ensemble algébrique fermé de P"(C),
avec n ^ 2. Soit 0 une stratification de Whitney de A et soit A un

pinceau d'hyperplans projectifs de P"(C) avec pour axe un (n-2)-plan
projectif .Jé transverse dans PW(C) à toutes les strates de 0 (ce choix
de .J/ est générique: cf. corollaire 10.18 ci-dessous). Soient «Sfi,

les «mauvais» éléments de A, en nombre fini, qui ne sont pas transverses

à toutes les strates de 0 et soit 9? un «bon» élément de A transverse
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à toutes les strates de 0 (cf. fig. 1.1). Nous supposons que s ^ 2, quitte

à considérer éventuellement comme «mauvais» des hyperplans qui en fait sont

«bons». Si l'on considère alors les homomorphismes

mk:Hk(.//n (P"(C)V4)) - Hk(& n (P"(C)V4)),

m'k:Hk(,// n (P"(C)\y4)) ^ Hk(lf n (P"(C)V4)) pour 1 < i < s,

h : Hk(fn (P"(C)\^)) - tf*(P»(CM)

induits entre groupes d'homologie singulière à coefficients entiers par les

injections canoniques

m : Jt n (P"(C)\/1) ^ n (P"(C)V4)

m' : J/n(P"(C)V4)c>5f, n (P"(C)V4)

et

l : n (P"(C)V4) ^ Fn(C)\A

on a, c/? ce qui les concerne, les implications suivantes:

lk est surjectif si

lk est injectif si

mk-i est surjectif
m\_ 2 est surjectif pour tout i

mk- 2 est injectif

mk est surjectif
mlk_x est surjectif pour tout i
mk-1 est injectif
Kerm^-2 n Ker m\_2 n n Kerm^_2 «= {0}

Nous convenons que Hk( 0 pour k < 0.

Ce théorème permettra une récurrence sur la dimension grâce à laquelle
nous en déduirons le théorème 1.1 au §9. Mais le théorème 1.3 valait aussi

en lui-même d'être énoncé pour deux raisons:

— d'une part, il est porteur d'une information plus fine que le théorème

1.1 puisque, pour avoir une conclusion en homologie de rang k, on ne
fait d'hypothèses que sur les homologies de rang k, k - 1 et k - 2, avec une
avance d'un cran pour la surjectivité;

— d'autre part il est susceptible d'être généralisé au cas où PW(C)Y4 est

remplacé par une variété quasi-projective lisse quelconque et peut-être même
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au cas avec singularités moyennant des hypothèses sur la nature de ces

singularités (cf. §§11 et 12); à la différence de cela, le théorème 1.1 n'est
valable que pour un espace ambiant particulier qui permette l'amorce de la
récurrence par laquelle on le déduit du théorème 1.3 (cf. remarques 9.5 et 11.4

et voir (12.2)).
Nous n'avons pas supposé, dans l'énoncé du théorème 1.3, que l'axe du

pinceau était pris dans un «bon» hyperplan «Sf car, sous l'hypothèse de

transversalité de l'axe aux strates de 0, l'existence d'un «bon» dans le

pinceau est assurée par le théorème de Sard (cf. proposition 10.20 ci-dessous).
Par ailleurs, nulle part dans la démonstration du théorème 1.3 nous n'utiliserons

le fait que les hyperplans «mauvais» soient vraiment mauvais et cela

justifie la possibilité de considérer artificiellement comme «mauvais» des

hyperplans «bons». Dans le cas exceptionnel où il n'y a qu'un hyperplan
mauvais, la démonstration reste en fait valable avec s 1 mais se simplifie
et conduit à un énoncé simplifié. Le cas où s 0 s'y ramène grâce à la

remarque précédente et on n'a rien de mieux par un traitement direct. Nous
laisserons au lecteur le soin de faire ces simplifications.

La démonstration du théorème 1.3 occupera les §§3 à 8. Au §2 nous
donnons un plan de cette démonstration et fixons certaines notations valables

au cours de celle-ci. Au §9, nous déduisons le théorème 1.1 du théorème 1.3

et nous démontrons le corollaire 1.2 du théorème 1.1. Nous avons regroupé

au § 10 les énoncés et les justifications de résultats de généricité et même d'algé-
bricité qui interviennent dans l'énoncé même de ces théorèmes et de place en

place dans les démonstrations, notamment au §9. Au § 11, nous donnons une

généralisation du théorème 1.3 au cas où P"(C)\A est remplacé par une

variété quasi-projective lisse quelconque dans P"(C); nous montrons qu'elle

permet de retrouver la version homologique du théorème de Lefschetz pour
une variété quasi-projective lisse dont nous avons parlé. Enfin au § 12, nous

évoquons quelques autres directions de recherche; nous y annonçons en
particulier une généralisation du second théorème de Lefschetz. Nous avons mis

en annexe des indications sur les isomorphismes de Wang et de Leray que nous

utilisons aux §§4 et 5.

Cet article est une version améliorée et condensée de ma thèse (cf. [Ch3]),
à l'exception du théorème 11.1 qui est nouveau. Je tiens à adresser mes

remerciements à Düng Trâng Lê et Bernard Teissier pour leur aide, leurs

critiques et leurs encouragements.
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