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TOPOLOGIE DU COMPLEMENTAIRE
D’UN ENSEMBLE ALGEBRIQUE PROJECTIF

par Denis CHENIOT

1. INTRODUCTION ET ENONCE DE THEOREME

Une méthode classique pour étudier la topologie d’un objet de géométrie
algébrique est de considérer ses sections par un pinceau d’hyperplans. Elle est
largement utilisée par Solomon Lefschetz dans son livre L’analysis situs et la
géométrie algebrique (cf. [Lf]). Il aboutit ainsi notamment au théoreme
suivant: les groupes d’homologie d’un ensemble algébrique projectif complexe
fermé et lisse de dimension pure d sont donnés jusqu’au rang d — 2 par ceux
d’une section hyperplane générique et au rang d — 1 on en a ainsi tous les
génerateurs (cf. [Lf] V.3). On fait maintenant référence a ce genre de
théoremes sous le nom de théorémes du type de Lefschetz.

Nous utilisons dans cet article la méthode de Lefschetz pour étudier le
complémentaire P"(C)\A d’un ensemble algébrique fermé quelconque A
dans I’espace projectif complexe P7(C). Nous démontrons un nouveau
théoreme du type de Lefschetz dont voici 1’énoncé:

THEOREME 1.1. Soit A un ensemble algébrique fermé de codimension
q dans [’espace projectif complexe P"(C), avec n >1 (nous convenons
que q est la plus petite des codimensions des composantes irréductibles de
A; si A=, alors q=n+1). Soit & une stratification de Whitney
de A (cf. [Wh2] et [L-T2]) et soit & un hyperplan projectif de P"(C)
transverse a toutes les strates de & (nous convenons que si < ne rencontre
pas une certaine strate, il lui est transverse). Dans ces conditions, [’injection
canonique < N (P"(C\A) o P"(C)\A induit:

des isomorphismes des groupes d’homologie singuliére & coefficients entiers

H(Z n (P(CN\A)) 5> H(P"(C\A)  pour k<n+gq-3,
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et un homomorphisme surjectif
H(Z N (P (C\A))» H(P"(C\A) pour k=n+q-2.

Le choix de & donné par cet énoncé est générique (cf. corollaire 10.18
ci-dessous).

Le théoréme 1.1 pousse la comparaison des groupes d’homologie g — 1
rangs plus loin que les meilleurs résultats connus, dus a Helmut A. Hamm et
Diing Trang L€ ou Mark Goresky et Robert MacPherson (cf. [H-L2], [H-L4],
[G-Ml], [G-M2] et indications historiques ci-dessous). Il présente aussi
stratification de Whitney de A (mais voir aussi, dans [H-L4], le lemme de
I’appendice et, dans [G-M2], la remarque a la fin de la démonstration I1.5.1);
cette stratification peut d’ailleurs étre choisie comme étant la stratification
de Whitney canonique minimale introduite par L& et Bernard Teissier
(cf. [L-T1]6.1) et dont Teissier a montré I’existence et méme la possibilité
théorique de la construire a partir d’équations de A (cf. [Te] VI.3). En
revanche, la comparaison se limite ici aux groupes d’homologie alors que les
énoncés de Hamm et Lé concernent les types d’homotopie et sont méme des
corollaires de résultats plus généraux sur les types topologiques. Notons
toutefois que, dans le cas ou notre théoreme apporte quelque chose de nouveau
par rapport au théoreme 1.1.3 de [H-L2], c’est-a-dire dans le cas ou q > 2,
il a le corollaire homotopique suivant:

COROLLAIRE 1.2. Les hypothéses et notations étant celles du
théoréeme 1.1, supposons de plus que q > 2. Soit e un point base
dans <L n (P"(C\A) (qui n’est pas vide). Alors l’injection canonique
Z N (P(C\A) & PY(C)\A induit:

des bijections
(Z N (P"(C\A),e) > n,(P"(C\A,e) pour k<n+q-3,
et une surjection

1(Z N (P"(C\A), e) » i, (P"(C\A,e) pour k=n+q-2.

Le corollaire 1.2 sera aisément déduit du théoréme 1.1 au §9 grace au
théoréme de Whitehead. Comme le couple (P*(C)\A, & n (P*(C)\A)) est
triangulable (cf. [Lo] et [Hi]), on pourrait méme montrer que P"(C)\A4 a le
type d’homotopie d’un espace obtenu en attachant a & n (P"(C)\A4) des
cellules de dimension > n + g — 1 (a ’aide de [Sw] 6.13 et [tD-K-P] (7.39) et
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(7.43)). 1l serait malgré tout plus satisfaisant d’avoir une démonstration
homotopique directe du théoréme 1.1 dans le cas général. Nous dirons au §12
pourquoi il y a bon espoir d’y parvenir (cf. (12.5)).

Avant de donner les grandes lignes de la démonstration du théoreme 1.1,
voici quelques indications historiques sur le sujet:

Le livre de Lefschetz cité ci-dessus a représenté une contribution conside-
rable a Iétude de la topologie des ensembles algébriques. Il contient bien
d’autres résultats que celui que nous avons mentionné, notamment ceux qu’on
nomme maintenant formules de Picard-Lefschetz, second théoréme de
Lefschetz et théoréme de Lefschetz vache. Des théorémes sur le groupe
fondamental de P"(C)\ A4, dans le cas ou 4 est une hypersurface, ont peu
aprés été donnés par Oscar Zariski et Egbert van Kampen dans [Za] et [VK]
ou ils ont énoncé deux résultats complémentaires. Le théoréme de Zariski
affirme que, pour n > 3, le groupe fondamental de P*(C)\ A est donné par
celui d’une section hyperplané générique de P7"(C)\A. Le théoreme de
van Kampen donne une présentation par générateurs et relations du groupe
fondamental de P"(C)\A dans le cas ou n = 2: les générateurs peuvent étre
pris dans une droite projective qui coupe A en un nombre fini de points égal
a son degré, comme étant des lacets qui entourent une fois chacun des points
d’intersection; pour avoir les relations autres que la relation évidente de
trivialité du produit de ces générateurs, on considére un pinceau de droites
projectives dont le sommet est situé hors de A: les relations sont alors données
par les monodromies des générateurs autour des droites exceptionnelles du
pinceau, a savoir celles qui sont tangentes a 4 ou passent par des points
singuliers de A. Les démonstrations de Zariski et van Kampen, de méme que
celle de Lefschetz, sont incomplétes.

La premiere démonstration compléte du théoréeme de Lefschetz cité
ci-dessus remonte & Andrew H. Wallace et utilise la méme méthode (cf. [Wa]);
une version plus simple en a été donnée par Klaus Lamotke (cf. [La]). Dans
Pintervalle, une approche différente a été suggérée par René Thom: la théorie
de Morse. Elle a conduit a des démonstrations du théoréme de Lefschetz par
Raoul Bott dans [Bt] et Aldo Andreotti et Theodore Frankel dans [A-F1].

La premiére démonstration compléte du théoréme de Zariski a été donnée
a I’aide de la théorie de Morse par Helmut A. Hamm et Diing Trang L& qui
ont su voir qu’il s’agissait d’un théoréme du type de Lefschetz (cf. [H-L1]).
Hamm et L€ y poussent d’ailleurs la comparaison des groupes d’homotopie
jusqu’aux rangs n — 2 et n — 1 ‘analoguement au théoréme de Lefschetz.
Signalons que leur démonstration passe par un résultat local plus fort.
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Plus récemment, Marc Goresky et Robert MacPherson dans [G-M1] et
[G-M2] d’un c6té, Hamm et Lé dans [H-L2] de I’autre, ont unifié les théorémes
de Lefschetz et de Zariski en prouvant leur analogue pour une variété quasi-
projective lisse, comme corollaire d’une conjecture de Pierre Deligne qu’ils ont
démontrée (cf. [De] conjecture 1.3); leurs énoncés sont en termes de groupes
d’homotopie ou de types d’homotopie. De plus, Hamm-Lé et Goresky-
MacPherson ont donné, dans [H-L2], [G-M1] et [G-M2], des généralisations
de ce théoréme au cas d’une variété quasi-projective singuliere qui fait
intervenir soit sa profondeur homotopique rectifiée, notion introduite par
Alexandre Grothendieck dans [Gr] Exp. XIII, §6, soit le nombre d’équations
nécessaires pour la définir localement; un lien entre ces deux points de vue est
donné par la conjecture B de [Gr] Exp. XIII, §6, démontrée par Hamm et L&
dans [H-L4]. Signalons enfin 1’existence de versions locales des théorémes du
type de Lefschetz qui sont en fait plus fortes (cf. [H-L1], [H-L3), [H-L4],
[G-M1] et [G-M2]). Tous ces articles utilisent la théorie de Morse, classique,
a coins ou stratifiée.

Une démonstration complete du théoréme de van Kampen cité ci-dessus a
¢té donnée dans [Ch1l]: elle est simultanée avec une démonstration du théoréme
de Zariski et reprend la méthode géométrique de Lefschetz, Zariski et van
Kampen en la combinant avec les outils plus modernes que sont les
stratifications de Whitney (cf. [Wh2]) et le premier théoréme d’isotopie de
Thom-Mather (cf. [Th2] et [Ma]), ce qui permet d’aboutir & une preuve
compleéte. Signalons qu’a la méme époque A.N. Varchenko a aussi donné une
démonstration du théoréme de Zariski en construisant par récurrence les
isotopies qui ne sont pas justifiées dans [Za] (cf. [Va]). Mais la démonstration
de [Chl] pour le théoréme de Zariski est en fait valable pour A ensemble
algébrique fermé quelconque de P”(C), bien que cela n’y soit pas énoncé.
Dans le présent article, nous poursuivrons donc dans I’esprit de [Chl] pour
démontrer le théoreme 1.1.

Mais auparavant, signalons que cet article a pour précurseur [Ch2]. A
I’époque, [Ch2] avait le mérite de généraliser le théoréme de [H-L1]
concernant le complémentaire d’une hypersurface projective A au cas ou A
est un ensemble algébrique fermé quelconque; mais cela était fait seulement
en homologie avec, comme ici, un corollaire homotopique pour codim A > 2.
Le résultat de [H-L 1] étant valable en homotopie pour une hypersurface, [Ch2]
croyait en déduire qu’il était valable pour A quelconque. C’¢€tait omettre le cas
ou A est composé d’une hypersurface et d’une autre composante de dimension
inférieure, erreur que Deligne a signalée dans [De]. Depuis, la question a été
réglée par le théoréme sur les variétés quasi-projectives lisses dont nous avons
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parlé. D’une maniére générale, [Ch2] est d’une écriture aride due a ce que les
faits géométriques n’y sont pas dégagés, ce qui lui fait d’ailleurs manquer
I’amélioration de ¢ — 1 rangs que nous obtenons ici. Il comporte aussi
quelques autres erreurs de détail que nous corrigerons a leur place. Nous
renverrons néanmoins a [Ch2] pour la démonstration de la proposition 6.8
ci-dessous.

Je dois annoncer, pour finir, que Hamm, qui a eu en main la version préli-
minaire [Ch3] de ce travail, a trouvé une démonstration, a I’aide de la théorie
de Morse stratifiée, d’une généralisation homotopique du théoréme 1.1 (non
encore publiée).

Voici maintenant les grandes lignes de la démonstration du théoréme 1.1:

Le théoréme est trivial pour ¢ = 0 et nous écarterons désormais ce cas.
Pour n = 1, on est alors forcément dans la situation ou A est vide ou réduit
a un nombre fini de points et on peut alors faire un calcul direct.

FIGURE_ 1.1

Pour n > 2, notre méthode de démonstration consiste, a la maniére de
Lefschetz, a intégrer & dans un pinceau A d’hyperplans dont I’axe .# soit
un (n — 2)-plan projectif transverse dans P"(C) a toutes les strates de &. Pour
avoir un tel .#, il suffit de le prendre dans & transverse a toutes les strates
de la trace de & sur & qui est encore une stratification de Whitney; cela est
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toujours possible pour des raisons de généricité (cf. corollaire 10.18 ci-
dessous). Pour les mémes raisons, tous les hyperplans d’un tel pinceau sont
transverses a toutes les strates de © sauf un nombre fini d’entre eux:
L, ..., Zs qui ne le sont pas et que nous qualifierons de «mauvais»
(cf. corollaire 10.19). Les autres, ceux qui sont transverses a toutes les strates
de ©, parmi lesquels il y a Z, seront qualifiés de «bons» (cf. fig. 1.1).
Dans ces conditions, lorsque & se déplace dans le pinceau en évitant
Xy ..., %, on peut le déformer dans une «isotopie» qui respecte P7(C)\ A et
les strates de A, les choses qui sont dans I’axe du pinceau restant dans 1’axe.
Cela a été vu par Zariski (2 la stratification prés) mais il nous faudra mettre
en ceuvre au § 3, comme dans [Chl], les stratifications de Whitney et le premier
théoréme d’isotopie de Thom-Mather pour en donner une véritable démons-
tration. Ce premier point étant acquis, nous regardons aussi la section de
P"(C)\A par ’axe .# du pinceau de maniére a avoir une récurrence sur la
dimension. Car si ’on a des informations sur la comparaison entre
A (PY(C\A) et Zn (P"(C)\A) d’une part et entre .# N (P"(C)\A) et
les Z; n (P"(C)\A) d’autre part, on peut en déduire des informations sur la
- comparaison entre Z N (P"(C)\A) et P"(C)\A. En effet, si par exemple on
sait que certains cycles de & n (P"(C)\A) et des & n (P"(C)\A) sont
homologues a des cycles de .# n (P"(C)\A), alors les monodromies autour
des hyperplans mauvais d’une part et les perturbations apportées par ces
hyperplans mauvais eux-mémes d’autre part peuvent €tre «poussées» dans
I’axe ou elles se trivialisent. C’est l1a I’idée principale sur laquelle repose ce
travail. Nous préciserons ces assertions aux §§4 et 5 dans lesquels nous
donnerons aussi une description informelle plus détaillée. L’idée de «pousser
les choses dans I’axe» apparait déja a la fin de [Za] et joue un réle clef dans
[Ch1] pour I’étude du groupe fondamental de P7(C)\A. Ce qu’il y a sans
doute de nouveau ici, c’est 'importance envahissante que prend I’axe du
pinceau.

La maniére dont I’information se transmet d’une dimension a ’autre est
précisée par le théoréme suivant:

THEOREME 1.3. Soit A un ensemble algébrique fermé de P"(C),
avec n = 2. Soit © une stratification de Whitney de A et soit A un
pinceau d’hyperplans projectifs de P"(C) avec pour axe un (n—2)-plan
projectif _# transverse dans P"(C) a toutes les strates de & (ce choix
de & est générique: cf. corollaire 10.18 ci-dessous). Soient <, ..., Zs
les «mauvais» éléments de A, en nombre fini, qui ne sont pas transverses
- a toutes les strates de & et soit <& un «bon» élément de A transverse
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o toutes les strates de & (cf. fig. 1.1). Nous supposons que S = 2, quitte
4 considérer éventuellement comme «mauvais» des hyperplans qui en fait sont
«bons». Si I’on considére alors les homomorphismes

my : He(# 0 (PP(C\A)) = H(Z n (P"(C\A)),
mi s Ho(L# 0 (PH(CONA)) = Hi(Z n (P"(CN\A))  pour 1<I<5,
L : H(Zn (Pr(CN\A)) = H(P"(C\A)

induits entre groupes d’homologie singuliére a coefficients entiers par les
injections canoniques

m AN (P”(C)\A) S ZN (P"(C)\A) ,
mi . 4N (P"(C)\A)@ %N (P"(C)\A) ,
et

I :Zn(PHCNA)S P (C\A ,

on a, en ce qui les concerne, les implications suivantes:

m,_, est surjectif
i

I, est surjectif si { m,_, est surjectif pour tout i
my_, est injectif

my est surjectif

m,_, est surjectif pour tout i

my_, est injectif

Kermy_, nKerm, ,n ... Kerm}_, ={0}.

I, est injectif si

Nous convenons que H,(.)=0 pour k<O.

Ce théoréme permettra une récurrence sur la dimension grace a laquelle
nous en déduirons le théoreme 1.1 au §9. Mais le théoreme 1.3 valait aussi
en lui-méme d’€tre énoncé pour deux raisons:

— d’une part, il est porteur d’une information plus fine que le théo-
réme 1.1 puisque, pour avoir une conclusion en homologie de rang &, on ne
fait d’hypotheses que sur les homologies de rang &, kK — 1 et k — 2, avec une
avance d’un cran pour la surjectivité;

— d’autre part il est susceptible d’€tre généralisé au cas ou P"(C)\A est
remplaceé par une variété quasi-projective lisse quelconque et peut-étre méme
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au cas avec singularités moyennant des hypotheses sur la nature de ces
singularités (cf. §§11 et 12); a la différence de cela, le théoréme 1.1 n’est
valable que pour un espace ambiant particulier qui permette ’amorce de la
récurrence par laquelle on le déduit du théoreme 1.3 (cf. remarques 9.5 et 11.4
et voir (12.2)).

Nous n’avons pas supposé, dans I’énoncé du théoréme 1.3, que I’axe du
pinceau était pris dans un «bon» hyperplan & car, sous ’hypothése de
transversalité de ’axe aux strates de &, ’existence d’un «bon» Z dans le
pinceau est assurée par le théoréme de Sard (cf. proposition 10.20 ci-dessous).

Par ailleurs, nulle part dans la démonstration du théoréme 1.3 nous n’utili-
serons le fait que les hyperplans «mauvais» soient vraiment mauvais et cela
justifie la possibilité de considérer artificiellement comme «mauvais» des
hyperplans «bons». Dans le cas exceptionnel ou il n’y a qu’un hyperplan
mauvais, la démonstration reste en fait valable avec s = 1 mais se simplifie
et conduit a un énoncé simplifié. Le cas ou s = 0 s’y raméne grice a la
remarque précédente et on n’a rien de mieux par un traitement direct. Nous
laisserons au lecteur le soin de faire ces simplifications.

La démonstration du théoréme 1.3 occupera les §§3 a 8. Au §2 nous
donnons un plan de cette démonstration et fixons certaines notations valables
au cours de celle-ci. Au §9, nous déduisons le théoréme 1.1 du théoreme 1.3
et nous démontrons le corollaire 1.2 du théoreme 1.1. Nous avons regroupé¢
au § 10 les énoncés et les justifications de résultats de généricité et méme d’algé-
bricité qui interviennent dans 1’énoncé méme de ces théoremes et de place en
place dans les démonstrations, notamment au §9. Au §11, nous donnons une
généralisation du théoreme 1.3 au cas ou P*"(C)\A est remplacé par une
variété quasi-projective lisse quelconque dans P”(C); nous montrons qu’elle
permet de retrouver la version homologique du théoréme de Lefschetz pour
une variété quasi-projective lisse dont nous avons parlé. Enfin au § 12, nous
évoquons quelques autres directions de recherche; nous y annong¢ons en parti-
culier une généralisation du second théoréme de Lefschetz. Nous avons mis
en annexe des indications sur les isomorphismes de Wang et de Leray que nous
utilisons aux §§4 et 5.

Cet article est une version améliorée et condensée de ma these (cf. [Ch3]),
a I’exception du théoreme 11.1 qui est nouveau. Je tiens a adresser mes
remerciements a Diing Trdng Lé et Bernard Teissier pour leur aide, leurs
critiques et leurs encouragements.
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