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§5. TROISIEME DEMONSTRATION DU THEOREME 0 ([6], [3]).

Cette démonstration n’utilise pas les Propositions 2 et 4. En revanche nous
aurons besoin de la Proposition suivante, qui est une conséquence immédiate
des résultats de [7] et du Théoréme 1.

PROPOSITION 7. Soit D wun discriminant tel que N(ep) = — 1, C une
classe ambige primitive dont I’idéal ambige réduit est I de norme D, et

2

dont l’idéal symétrique est S = [R , et soit oeK* tel que

(5.1) S=oal, I <oa<egp.
Alors

+ VD
1 (5.2) €p (%f) =a’D; .

Démonstration. Soit P la période de C. Nous utilisons les notations du
Théoréme 1 et de [7], (5.3) a (5.5), et numérotons les idéaux de P de maniere
que I =Iy={a_,by,a0}, S=1 ={ar_,by,a,} avec a,_, = a,. D’aprés
[7], (6.4) et (5.3) nous avons

(5.3) Ep = Q1. Oa—1020Px+1.-- Py [=2h -1,

ou

b+ VD

keZ) .
2 ( )

Ok =

Comme 1; est un idéal symétrique on a by, =by_p €t A_ 1k = @)1«
- pour tout k € Z si bien que

a) -k

(5.4) Orsk = Or-xk .
- ay— k-1
Utilisant (5.4) pour k=1,...,A — 1 dans (5.3) on trouve, comme
= dy-1s
a

i(5-5) €p = (P1...Qr-1)2Qr— .
a
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a

D’aprés [7], (5.5) et Proposition 8, o = — @, ... @, Vérifie (5.1), si bien
Qo
. . do . Q+VD
que (5.5) s’écrit €p@) = a2—, ce qui, comme @,Q), = ——— €t do = D,
a

prouve (5.2).

Nous considérons maintenant un discriminant D = 1 (mod4) tel que
N(ep) = — 1. On sait que, suivant le cas, €4p = €p OU 83D. D’autre part il
existe un homomorphisme 8 du groupe Cyp sur le groupe Cp ([7], Theorem 1)

qui envoie la classe de I’idéal primitif [a, b + \/I—)], ou ab =1 (mod?2), sur

b+ /D
2

la classe de [a, ] Avec ces notations nous avons

THEOREME 0 ([6], Theorem, [3], Theorem 5). Soit D=1 (mod4) un
discriminant tel que N(ep) = — 1,C une classe ambige primitive de
discriminant 4D. Soit | la longueur de la période de C et |’ celle de
la période de ©(C). Alors

I =1 (mod4), St Bap = 85

I=10'"+2mod4), si ¢ep=c¢p.

Démonstration. Nous considérons une classe primitive ambige C de O,p
et son image 0(C) par I’homomorphisme 6 de C,p sur Cp.

La période de C contient 1’idéal ambige I, = [a, 1/5] ou, d’apres la
Proposition 1, e =1 (mod2), a|D et a < l/l—) Comme I = [a,a + 1/5] la
a+V/D

2
a|Detac< 1/13 L’idéal J, est donc I’idéal ambige réduit de 9(C).

D’autre part la période de C contient I’idéal symétrique I, = [M, N + l/B]
ou D=M?*+ N? avec M=1 (mod2) et (M,N)=1. On voit que
L, = [M,(M+ N) + VIS] et, comme M+ N=1 (mod2), [Iidéal

M+N+VD
2

D - (M+N)> M?+ N?>— (M+ N)? N

aM AM 2

classe 6(C) contient 1’idéal J, = |a, , qui est ambige et réduit car

J=|M, est un idéal de 6(C). Or on a
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Donc, d’apres [7], Corollary 2,

[ )y D)

Mais, comme 6(C) est une classe ambige, J ~ , donc I’idéal

N M+ VD
27 2

IN M+VD . -
- ,—2— est I’idéal symétrique J, de 6(C).

Posant I, = al, avec 1 < a < &gqp et J, =PBJy .avec 1 <P < gp nous
trouvons d’apres (5.2)

(N + /D) = a?a?p? .

€p€ap

)

Notant que £,p = €p OU €3, et que

(5.6)

[£212) - (222202

nous obtenons, en prenant la racine carrée de nombres réels positifs,

) (M+N+ I/B) , 3
€h s, S &p =Ep,
2
aap = (M+ N+ I/B) |
€p ,  SL &p =E€p
2
M+N+VD\ MN ,
Comme la norme N 5 = —2—— > 0 et N(ep) = — 1 on voit que

N(op) > 0, c’est-a-dire A = p (mod 2), si, et seulement si, €4p = 8;)_, ce qui
'démontre le Théoréme 0.

Remarque. Ce qui, dans cette démonstration, joue le rdle de la
Proposition 4 est 1’égalité (5.6).

On peut démontrer de mani€re analogue (4.1) a partir de (3.7) et (5.2), sans
utiliser (3.5), apres avoir montré que S’ est principal de la maniere suivante:

Nous supposons D = 0 (mod 4), le cas D = 1 (mod 4) est analogue. Avec
les notations de la Proposition 4 et du Théoréme 2 on écrit (5.2) pour la
classe C et pour la classe principale respectivement.

SD(N‘l‘ ]/B) = ale
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et ep(n + \/B) = ag .

Multipliant et tenant compte de (3.7) on obtient
(5.7) el — = ala;D, .

Comme tous les nombres intervenant dans (5.7) sont positifs, on a
epyY = 00D,

ce qui, au vu de (3.6), donne (4.1) en comparant les signes des normes des deux
membres.
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