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§5. Troisième démonstration du Théorème 0 ([6], [3]).

Cette démonstration n'utilise pas les Propositions 2 et 4. En revanche nous

aurons besoin de la Proposition suivante, qui est une conséquence immédiate
des résultats de [7] et du Théorème 1.

Proposition 7. Soit D un discriminant tel que N{ed) -1,C une
classe ambige primitive dont l'idéal ambige réduit est I de norme Dx et

q
idont l'idéal symétrique est S R,

2

(5.1) S a1, 1 < a ^ ed

Alors

q + Vd

et soit a e Kx tel que

(5.2) Ed -J a2

Démonstration. Soit P la période de C. Nous utilisons les notations du

Théorème 1 et de [7], (5.3) à (5.5), et numérotons les idéaux de P de manière

que I - h{a-i,ôo,a0}, S Ix {ax-x,bx,ax} avec D'après
[7], (6.4) et (5.3) nous avons

(5.3) £ß <Pi... (P*-i<Px<PX+i (P/» / 2X 1

OÙ

bk + 1/~~D

(p£ — (ke Z).
2ak

Comme Ix est un idéal symétrique on a bx + k bk~k et aX- \~k ax + k

pour tout k e Z si bien que

,C AX a^-k
(5.4) (Px + Ä- — tyx-k •

a\-k-\
Utilisant (5.4) pour k — 1,...,X- 1 dans (5.3) on trouve, comme

ax ax-1,

(5.5) ed (cpi... (Px, - i) (Px
a0
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D'après [7], (5.5) et Proposition 8, a — <pi cp* vérifie (5.1), si bien
a0

o ao •
Ö + V~D

_que (5.5) s'écrit s^cpx a2— ce qui, comme axtyx et ao - D\
ax 2

prouve (5.2).
Nous considérons maintenant un discriminant D 1 (mod 4) tel que

N(zD) - 1. On sait que, suivant le cas, s4£> £d ou e3d. D'autre part il
existe un homomorphisme 0 du groupe C4D sur le groupe CD ([7], Theorem 1)

qui envoie la classe de l'idéal primitif [a, b + Vd], où ab 1 (mod 2), sur

b +Vd\
a

a, Avec ces notations nous avonsla classe de

Théorème 0 ([6], Theorem, [3], Theorem 5). Soit D 1 (mod4) un

discriminant tel que N(zD) - 1,C une classe ambige primitive de

discriminant AD. Soit l la longueur de la période de C et l' celle de

la période de 0(C). Alors

l /' (mod 4) si s4D z3D

/ /' + 2 (mod 4) si e4D zD

Démonstration. Nous considérons une classe primitive ambige C de 04D

et son image 0(C) par l'homomorphisme 0 de C4D sur CD.

La période de C contient l'idéal ambige 70 [a, 1/~D\ où, d'après la

Proposition 1, a 1 (mod 2), a | D et a < Vd. Comme I0 [a, a + Vd\ la

a + VD]
classe 0(C) contient l'idéal J0 a, qui est ambige et réduit car

2

a | D et a < Vd. L'idéal J0 est donc l'idéal ambige réduit de 0(C).
D'autre part la période de C contient l'idéal symétrique Ix [M,N + 1fî>\

où D M2 + N2 avec M 1 (mod 2) et (M, AO 1. On voit que

Ix [M, (M + AO + Vd] et, comme M + N 1 (mod 2), l'idéal

M + N + VD]
est un idéal de 0(C). Or on aJ M,

2

D-(M+A02 M2 + Af2 - (M+AO2 N
4M 4M Y '
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Donc, d'après [7], Corollary 2,

N -M-N+VD
2 '

2
J

N -M+VD
2 ' 2

N M+ VD

2 ' 2

est l'idéal symétrique <7^ de 0(C).

Mais, comme 0(C) est une classe ambige, J ~ — — donc l'idéal

NM+VD\
2

'
2 J

Posant Ix aI0 avec 1 < a ^ 84p et ß/0 avec 1 < ß ^ 8p nous

trouvons d'après (5.2)

m + Vd\

(5.6)

SpS4p

Notant que s4jD zD ou et que

M+Vd

j (N+ Vd) a2ß2

IM + VD\ ./- /M+7V+1/D\
—r+yS)" _i_

nous obtenons, en prenant la racine carrée de nombres réels positifs,

'M+N+ Vb\

a aß

Comme la norme N

IM + N + VD\

\ 2
'

|M+^
+ l/Ôj

M + N + l/5\ MTV

SI S4£> — ZD

SI 84— 8p

> 0 et N{8p) - 1 on voit que
2

77(aß) > 0, c'est-à-dire X p (mod 2), si, et seulement si, s4p Sp, ce qui
démontre le Théorème 0.

Remarque. Ce qui, dans cette démonstration, joue le rôle de la

Proposition 4 est l'égalité (5.6).
On peut démontrer de manière analogue (4.1) à partir de (3.7) et (5.2), sans

utiliser (3.5), après avoir montré que S' est principal de la manière suivante:

Nous supposons D 0 (mod 4), le cas D 1 (mod 4) est analogue. Avec
les notations de la Proposition 4 et du Théorème 2 on écrit (5.2) pour la

classe C et pour la classe principale respectivement.

ed(N + VD)



CLASSES AMBIGES D'IDÉAUX 291

et sD(n + Vd) a20

Multipliant et tenant compte de (3.7) on obtient

Y
2

(5.7) ej, — a2a^£>,

Comme tous les nombres intervenant dans (5.7) sont positifs, on a

sDy aa0D]

ce qui, au vu de (3.6), donne (4.1) en comparant les signes des normes des deux

membres.
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