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§4. CLASSES AMBIGES

Définition 5. Une classe C d'idéaux de Od est ambige si elle est égale à

sa conjuguée C, c'est-à-dire si tout idéal I de C est équivalent à son

conjugué I.

Proposition 5. Les classes ambiges primitives sont les éléments

d'ordre 2 du groupe CD des classes primitives d'idéaux de Od

Démonstration. D'après [7] (Proposition 2, Définitions 3 et 4) toute
classe C du groupe CD des classes primitives vérifie CC - 1, donc C2 1 si,

et seulement si, C C, ce qu'il fallait démontrer.

Proposition 6. Une classe d'idéaux C de Od est ambige si, et
seulement si, sa période est formée de couples d'idéaux I {c, b, a} et

I {a, b,c}.

b + VB
Démonstration. Soit / a,

([7], Corollary 2) que a,
b+Vd

D-2un ideal, c — On sait
4a

Cy

b + Vd

est ambige si, et seulement si, a,
b + Vd

Donc la classe de /
b + ]/d1

c, La Proposition

6 s'obtient en considérant les idéaux réduits de C.

Proposition 7. La classe d'un idéal symétrique est ambige.

b +Démonstration. Soit S a, un idéal symétrique où b

est choisi de façon que a — c. D'après [7], Corollaire 2, on voit que
— by ]/D]

ce qui prouve la Proposition 7.a,

Théorème 1. Soit C une classe ambige primitive de Od dont la
période contient l idéaux réduits primitifs.

Si N(ed) - 1 le nombre l est impair et la période de C contient
un idéal ambige et un idéal symétrique. La numérotation des idéaux de la
période de C peut être choisie de façon que ces idéaux soient respectivement
Iq (ambige) et 7/+1 (symétrique).
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Si N(sD) 1 le nombre I est pair et la période de C contient soit
deux idéaux ambiges, soit deux idéaux symétriques. La numérotation des

idéaux de la période de C peut être choisie de façon que ces deux idéaux
soient I0 et 7/.

Démonstration. Nous considérons une classe ambige dont la période a

pour longueur /, contenant les idéaux 70 {c,b,a} et In {a,b,c). Nous

distinguons le cas a) où n est impair (n 2m + 1) et le cas ß) où n est pair
(n 2m).

a) On a I0{c,b,a}, I2m+l {a,b,c}.
Tenant compte de (1.5) et (1.6) on trouve que

Im {C,B,A},

B + 1

A, est un idéal ambige.ce qui prouve que A \ B et que Im

D'autre part

h Ia {c,b,a}

Donc, pour tout 0

h-k - {^Ô^} hm+l+k S {R, Q, Pj

Si l est impair, l'équation / — k 2m + 1 + k admet pour solution

k - --m, et on voit que l'idéal It-k - I i+\ {P,Q,P) est
9 m +Z 2

symétrique. Changeant la numérotation on voit que I0 est ambige et Il+l
2

symétrique.

Si l est pair, l'équation l - k 2m + 1 + k + 1 admet pour solution

; k =3
L - m - 1, donc I2m + k+\ I i est un idéal ambige. Donc, changeant
9 m + -

2

| la numérotation, I0 et 7/ sont des idéaux ambiges.
2

ß) On a

I0 {c,b,a}, I2m {a,b,c}.

Tenant compte de (1.5) et (1.6) on voit que Im est un idéal symétrique.
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En outre

IQ I,s{c,b,a},
donc, pour tout k ^ 0,

h-k {P,Q,R} > hm+k iR,Q,P) •

Si l est impair, l'équation l — k 2m + k + 1 admet pour solution

k - - m ce qui montre que l'idéal 7 /_ i est ambige.
9 m +^ 2

Changeant la numérotation on voit que 70 est ambige et 7/+i symétrique.
2

/
Si l estpair, l'équation / - k 2m + k admet pour solution k - - m,

donc l'idéal 7 / est symétrique. Donc, changeant la numérotation, on voit
m + -

2

que 70 et 7/ sont symétriques.
2

En résumé nous voyons que l'on peut choisir la numérotation dans la

période pour que:

Si / est impair, 70 est ambige, 7/+1 symétrique,
2

Si / est pair, 70 et 7/ sont ambiges, ou bien symétriques.
2

Il reste à montrer que la période de C ne contient pas d'autre idéal ambige
ou symétrique que ceux que nous venons de trouver.

Si I0 {c, ka, a} et Ix {C, KA, A } (0 <x<l) sont ambiges, on a

Ix+ Ï {A,KA, C) et, d'après (1.5) et (1.6), on a 70 I2x, donc x -
2

Si 70 {c,ka, a} est ambige et Ix {A,B,A}^(0 <x < l) est symétrique,
on voit que Ix„k 7x + yt (fc^O), donc 70 72x, donc Ix - 70 I2x et

/+ 1

70 72x _ i, donc x
2

Si I0 {A,B,A} et 7X {C,D, C) sont symétriques (0<x</), on voit
/

que 70 I2x donc x -
2

Pour achever la démonstration du Théorème 1 il suffit de remarquer que
N(eDî <-!)'.
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Corollaire 3. a) Il existe des classes ambiges ne contenant pas d'idéal
ambige si, et seulement si, N(ed) + 1 et D est somme de deux carrés

premiers entre eux.

b) Le nombre de ces classes est égal à celui des classes ambiges contenant
deux idéaux ambiges.

Démonstration. Le Corollaire 3 est une conséquence immédiate du

Théorème 1, de la Proposition 7 et du Lemme 4, c) et d).

Remarque. La méthode que nous avons utilisée pour établir le

Théorème 1 est celle que Gauss utilise pour étudier les classes ambiges de

formes quadratiques binaires ([1], § 187) et, dans le cas où D 4p, p
premier 1 (mod 4), montrer que la période de la classe principale permet de

décomposer p en somme de deux carrés car elle contient les formes symétriques

± ax1 + 2bxy + ay2 où p a2 + b2 avec a 1 (mod 2) ([1], § 165).

Le Théorème 1 lui-même, exprimé dans le langage des formes quadratiques
binaires, se trouve dans [4] (Théorème 1, p. 172).

Dans le cas où D n'a pas de diviseur carré, le Corollaire 3 a) est établi d'une
autre manière dans [5] (Corollaire 1), et est équivalent au Satz 107 du Bericht
de Hilbert ([2]).

Nous pouvons maintenant comparer modulo 4 la longueur de la période
d'une classe ambige non principale avec la longueur de la période de la classe

principale, en combinant le Théorème 1 avec les Propositions 2 et 4. Nous

commençons par le cas où N(yD) - 1.

Théorème 2. Soit D un discriminant tel que N(eD) - l,/0 la

longueur de la période la classe principale. Soit C une classe ambige

primitive non principale d'idéal ambige I de norme Dx tel que

D DXD2, et d'idéal symétrique S associé à la représentation {M, N)
de D. Soient a, b, c, d les entiers positifs et S' l'idéal symétrique

définis à partir de Du M et N comme dans la Proposition 4, et soit l la

longueur de la période de C.

Alors l'idéal S' est principal, et

(4.1) {
/ /0 (mod 4) si cdDx - abD2 > 0

/ /0 + 2 (mod 4) si cdDx - abD2 < 0

Démonstration. Comme les idéaux / et S sont équivalents, (3.5) montre

que l'idéal S' est principal.
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Plus précisément, posant S al avec 1 < a ^ sd, on v°it Que

S' |^—| D'autre part soit a0 tel que S' (a0) avec 1 < a0 ^ &D. Le

[aDj
Lemme 3 montre que, en fait,

Vd - 1 < a0 ^ Sd :

Comme l'idéal ambige / est réduit et non principal onaKDj < A
(Proposition 1), ce qui entraîne l/A < Vd - 1 si D 1 (mod 4) et 2 l/A
< ]/d - 1 si D 0 (mod4). Les définitions (3.10) et (3.15) de y montrent

que, comme A < A, on a

1 < — < l/A si D 1 (mod 4)
A

1 < — < 2l/A si D 0 (mod 4)
A

ce qui montre, comme 1 < a ^ s^, que

— < —— < VD - 1 < a0 ^ sd -

&D a Dx

y y£d
Comme a0 (modx 8^) on voit que a0 et, comme

aA a^i
N(zD) - 1,

sgn(7V(a)) - sgn (2V(a0)) sgn (N(y))

ce qui, tenant compte de (1.7), (3.6) et du Théorème 1, prouve (4.1) et achève

la démonstration du Théorème 2.

Nous considérons maintenant le cas où N(ßD +1, et nous
commençons par traiter le cas où T ^ 0 (mod 32).

Théorème 3. Soit D un discriminant tel que D ^ 0 (mod 32) et

N(8z>) + 1.

a) Soit C une classe ambige non principale primitive contenant deux
idéaux ambiges I0 et Ix de normes réduites respectives D0 et A et
soient d, d0 et dx les nombres bien déterminés tels que

A ddQ A ddx (d0,dx) 1
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Alors

(4.2)
/ /0(mod4) si d0d{ < ]/d
l /0 + 2 (mod 4) si d0d{ > ]/ö

b) Soit I l'idéal ambige réduit principal et ^ (1), de norme D\, et

D
soit D2 — Soit C une classe ambige non principale contenant les

deux idéaux symétriques S et S'. Alors S' s'obtient à partir de S

et I par (3.4). De plus

(4.3)
l Iq (mod 4) si cdD\ - abD'2 > 0

/ l0 + 2 (mod 4) si cdD\ - abD2 < 0

Démonstration.

a) Nous appliquons la Proposition 2. Comme I0 4=- I\ et I0 ~ Iu on voit
que l'idéal J est 4=- (1) et principal.

Posant J (a0) et I{ aI0, on trouve l'égalité d'idéaux:
'

(raN(I0)) si d0dx < Vö

_
(raN(I0)) l/ö si d0d\ > 1fï)

ce qui, compte tenu de ce que 7V(l/ö) — D et N(zD) + 1, prouve (4.2).

b) Posant / (a0) et N{S) la relation (3.5) implique

y - y
S clqS — a0 ß S

D[s D[s2

(a0)

— M + V D .r=
où, d'après [7] Corollary 2, ß — ouß - N + y D suivant que

2

D 1 ou D 0 (mod 4), et donc Mß) < 0. Ceci, compte tenu de ce que
N(ed) + 1 et de (3.6), prouve (4.3) et achève la démonstration du

Théorème 3.

Nous pouvons maintenant donner le résultat dont l'observation a été le

point de départ de ce travail.

Corollaire 4. Soit D $q, où q ps avec p premier
1 (mod 4) et s ^ 1. Il y a deux classes ambiges, la classe principale C0

et une autre C, et les longueurs de leurs périodes vérifient

(4.4) / Iq + 2 (mod 4)
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Démonstration. Les idéaux ambiges primitifs réduits sont (1) et [2,]/2<7]

donc, avec les notations du Théorème 1 si N{zD) - 1 et du Théorème 2 si

N(ed) + 1, on a A - 2 12 + 12 et D2 q c2 + d2 où c et d > 0 sont

bien définis par c 1 (mod 2), si bien que ici

cdDx - abD2 2cd - (c2 + d2) - (c - d)2 < 0

ce qui, tenant compte de (4.1) si N(eD) — 1 et de (4.3) si N(ed) - + 1

prouve (4.4).
Maintenant nous étudions le cas où D 0 (mod 32).

Théorème 4. Soit D un discriminant tel que D 0 (mod 32). Soit
C une classe ambige non principale primitive contenant deux idéaux ambiges
70 et Ix de normes réduites respectives D0 et Dx et soient d, d0 et dx

les nombres bien déterminés tels que

D0 dd0 Dx ddi (d0,di) 1

Alors les classes modulo 4 de l et l0 vérifient

Types de I0 et I{

(Corollaire 2)
l lo (mod 4) / /0 T 2 (mod 4)

du même type

1 et 2, 3 et 4

2 et 3, 1 et 4

1 et 3, 2 et 4

d0dx < VJ5

2'd0di<Vd

< Vd

2d<} di Vd

d0di > ]/ö
2'd(,d\>Vf)

2'~id0dl > Vd
2d0di > Vf

Démonstration. La démonstration du Théorème 4 est semblable à la
démonstration du Théorème 3, a).

Corollaire 5. Soit D 2t + 2q avec t ^ 3, q ps,p premier
impair, s ^ 1. Il y a deux classes ambiges, la classe principale C0 et une
autre C. On a

(4.5) / /o (mod 4) si q < V~2 ou si q > V

(4.6) / /0 + 2 (mod4) si V~2 < q < V

Démonstration. Le Corollaire 2 montre qu'il y a trois idéaux ambiges
primitifs réduits non principaux.
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Si V~2 < q <V le Corollaire 2 montre que ces idéaux sont [q,Vn\,

[4,2 + 1/3] et [2', 2'-1 +1/3]. Pour toute combinaison de deux de ces

idéaux on vérifie facilement que c'est la condition pour que / /0 + 2 (mod 4)

du Théorème 4 qui est vérifiée, ce qui prouve (4.6). La démonstration de (4.5)
est analogue.

Remarque. Si D 32q (t 3), (4.5) est vrai pour q > 8 et (4.6) pour
q — 3,5,7.

Exemple 1 (Corollaire 4).

D 40 - 8 x 5

D 136 8 x 17

TVfo) - 1 /0 1 / 3

Nfo) + 1 /o 4, 1 6.

Pour terminer cette section nous donnons deux exemples numériques, l'un
du Théorème 2 où AÙT^) - 1 et l'autre du Théorème 3 où N(zD) + 1.

Exemple 2 (Théorème 2).

D 12325 25 x 17 x 29 N(ED) - 1

Il y a quatre classes ambiges, C0 (principale), C,, C2 et C3 et nous
donnons pour chacune l'idéal ambige réduit, l'idéal symétrique et la longueur,
obtenus par réduction ([7], §5).

Co

C,

C2

c3

V

17,

25,

29,

m +1/3

85 + 1/3

75 + 1/3

2

87 + 1/3

1,
ni +1/3

27,

2

97 + l3>

53,:

2

33 + 1/3

39,

2

79 + l/3

la 1
•

h 5

h 7

/, 5

Nous vérifions le Théorème 2 pour la classe C2

Z>! 25 32 + 42 Z>2 17.29 132 + 182 32 + 222

On trouve que 33 4.18 — 3.13. Donc 3, 4, c 13, a? 18.

Ensuite, changeant le signe, on trouve 4.18 + 3.13 111, ce qui montre

111 + l/3l
que S' 1,- e Cq Enfin
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cdDx - abD2 13.18.25 - 3.4.17.29 - 66 < 0

donc h h + 2 (mod 4), ce qui est vrai.

Exemple 3 (Théorème 3):

D 5525 25.13.17 N(eD) + 1

Les quatre idéaux ambiges réduits se répartissent dans les deux classes Co

(principale) et Ci ainsi

Co :

Ci :

1,

13,

73 + ]/d
2

65 + ]/D

25,
25 + ]/D

17,

2

51 + Vd

/o 4.

/, 6

Vérifions le Théorème 3a) pour On a 13, D\ 17, donc

d0 13, di 17 et c?0di > 1f~D donc + 2 (mod 4), ce qui est vrai.
Vérifions le Théorème 3 b). On a

D[=2532 + 42 £>2 13.17 112 + 102 52 + 142

D412 + 622 732 + 142 712 + 222 72 + 742

et on trouve deux classes ambiges contenant les idéaux symétriques:

C2

C3 :

37,

31,

7 + VD

2

4i + Vd

7,

11,

73 + VD
2

71 + VD

h 4

h 6

On a donc a 3, b 4.

Pour la classe C2, 7 4.10 - 3.11 et 73 4.10 + 3.11, donc c 11,

d 10 et

cd£>; - 11.10.25 - 3.4.13.17 98 > 0

donc l2 h (mod 4), ce qui est vrai.
Pour la classe C3, 41=4.14-3.5, 71-4.14 + 3.5, donc c 5,

d — 14 et

cdD\ - abD'2 5.14.25 - 3.4.13.17 - 902 < 0

donc /3 l0 + 2 (mod 4), ce qui est vrai.
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