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§4. CLASSES AMBIGES

Définition 5. Une classe C d’idéaux de Op est ambige si elle est égale a
sa conjuguée C, c’est-a-dire si tout idéal I de C est équivalent a son
conjugué 1.

PROPOSITION 5. Les classes ambiges primitives sont les éléments
d’ordre 2 du groupe Cp des classes primitives d’idéaux de Op.

Démonstration. D’apres [7] (Proposition 2, Déiiinitions 3 et 4) toute
. classe C du groupe Cp des classes primitives vérifie CC = 1, donc C? = 1 si,
et seulement si, C = C, ce qu’il fallait démontrer.

PROPOSITION 6. Une classe d’idéaux C de Op est ambige si, et
seulement si, sa période est formée de couples d’idéaux I = {c,b,a} et
I ={a,b,c}.

b+VD1 D — b2
—| un idéal, ¢ =
2 da

Démonstration. Soit I = [a, . On sait

2

([7], Corollary 2) que [a,

2
18], 5208)

est ambige si, et seulement si, [a, La Propo-

sition 6 s’obtient en considérant les idéaux réduits de C.

PROPOSITION 7. La classe d’un idéal symétrique est ambige.

, . | b+ VD > "
Démonstration. Soit S = a,—z— un idéal symétrique ou b

est choisi de facon que @ = c¢. D’aprés [7], Corollaire 2, on voit que

~b+ /D | y
S~ |a, —2— , C€ qu1 prouve la Proposition 7.

THEOREME 1. Soit C une classe ambige primitive de Op dont la
période contient | idéaux réduits primitifs.

Si N(ep) = — 1 le nombre | est impair et la période de C contient
un idéal ambige et un idéal symétrique. La numérotation des idéaux de la
période de C peut étre choisie de facon que ces idéaux soient respectivement
Iy (ambige) et I,., (symétrigue).

2
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Si N(ep) =1 le nombre | est pair et la période de C contient soit
deux idéaux ambiges, soit deux idéaux symétriques. La numérotation des
| idéaux de la période de C peut étre choisie de facon que ces deux idéaux
' soient I, et I,.

2

Démonstration. Nous considérons une classe ambige dont la période a
pour longueur /, contenant les idéaux I, = {c,b,a} et I, = {a,b,c}. Nous
distinguons le cas a) ou » est impair (n =2m + 1) et le cas ) ou n est pair
(n=2m).

(1) On a IO = {Cab;a}’12m+l = {a,b,C}.
Tenant compte de (1.5) et (1.6) on trouve que

I' I/’HE{C9B9A}3 [m+IE{AaB,C}

est un idéal ambige.

2

ce qui prouve que A |B et que I, = [A
D’autre part
I, =1, ={c,b,a}, Ly ={ab,c}.
Donc, pour tout k> 0

Il—kE{PaQ’R}a I2m+l+kE{R)Q;P}~

Si | est impair, I’équation [ — k = 2m + 1 + k admet pour solution
/-1
sz— m, et on voit que lidéal I,_, =1 ,,,={P,0O,P} est
m+ ——
‘ 2
symétrique. Changeant la numérotation on voit que I, est ambige et [,
' EY

symétrique.

Si [ est pair, ’équation [ — k =2m + 1 + kK + 1 admet pour solution

: [ .1, )
k= 5 —m —1,donc I, . ,k+1 =1 , est un idéal ambige. Donc, changeant

m+ -
2

la numérotation, I, et I, sont des idéaux ambiges.
g

i

B) On a
IOE{Cyb’a}a Isz{a,b,C} *

|
!
i
i

iTenant compte de (1.5) et (1.6) on voit que I, est un idéal symétrique.
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En outre
Iy=1={c,b,a}, L,={ab,c}
donc, pour tout k > 0,
I« ={P,0Q,R}, Lk ={R,Q,P}.

Si | est impair, ’équation / — k = 2m + k + 1 admet pour solution
[ —1 .
k = —— — m ce qui montre que ’idéal I ,_; est ambige.
"t
Changeant la numérotation on voit que I, est ambige et /;,; symétrique.
2

Si [ est pair, ’équation / — k = 2m + k admet pour solution &k = 5 m,

donc l’idéal I , est symétrique. Donc, changeant la numérotation, on voit
m+—
2

que I, et I, sont symétriques.
2
En résumé nous voyons que I’on peut choisir la numérotation dans la
période pour que:

Si [ est impair, I, est ambige, I;,; symétrique,
2
Si /[ est pair, I, et I, sont ambiges, ou bien symétriques.
2
Il reste @ montrer que la période de C ne contient pas d’autre idéal ambige
ou symeétrique que ceux que nous venons de trouver.

Si Iy ={c,ka,a} et I,={C,KA,A} (0<x</) sont ambiges, on a

[
I, ={A,KA,C} et, d’aprés (1.5) et (1.6), on a I, = I,,, donc x = 5

Si Iy = {c,ka,a} est ambige et I, = {A, B, A} 0<x<]) est symetrlque
on voit que I, , = Ix+k (k>0), donc [, = sz, donc I, = IO—sz et

[+1
IOZIZX—ls dOHCX:T.

Si Iy={A,B,A} et I, = {C,D,C} sont symétriques (0 <x</), on voit

que Iy = I,, donc x = 5

Pour achever la démonstration du Théoréme 1 il suffit de remarquer que
N(ep) = (- 1)".
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COROLLAIRE 3. a) [/ existe des classes ambiges ne contenant pas d’idéal
ambige si, et seulement si, N(sp) = + 1 et D est somme de deux carrés
premiers entre eux.

b) Le nombre de ces classes est égal a celui des classes ambiges contenant
deux idéaux ambiges.

Démonstration. Le Corollaire 3 est une conséquence immédiate du
Théoreme 1, de la Proposition 7 et du Lemme 4, c¢) et d).

Remarque. La méthode que nous avons utilisée pour établir le
Théoréme 1 est celle que Gauss utilise pour étudier les classes ambiges de
formes quadratiques binaires ([1],§187) et, dans le cas ou D =4p,p
premier = 1 (mod 4), montrer que la période de la classe principale permet de
décomposer p en somme de deux carrés car elle contient les formes symétriques
+ ax? + 2bxy ¥ ay? ou p = a* + b? avec a = 1 (mod 2) ([1], §165).

Le Théoréeme 1 lui-méme, exprimé dans le langage des formes quadratiques
binaires, se trouve dans [4] (Théoréeme 1, p. 172).

Dans le cas ou D n’a pas de diviseur carré, le Corollaire 3 a) est établi d’une
autre maniére dans [5] (Corollaire 1), et est équivalent au Satz 107 du Bericht
de Hilbert ([2]).

Nous pouvons maintenant comparer modulo 4 la longueur de la période
d’une classe ambige non principale avec la longueur de la période de la classe
principale, en combinant le Théoreme 1 avec les Propositions 2 et 4. Nous
commencons par le cas ou N(gp) = — 1.

THEOREME 2. Soit D un discriminant tel que N(ep) = — 1,1y la
longueur de la période la classe principale. Soit C une classe ambige
primitive non principale d’idéal ambige I de norme D, tel que
D = D,D,, et d’idéal symétrique S associé a la représentation (M, N)
de D. Soient a,b,c,d les entiers positifs et S’ 1’idéal symétrique
- définis a partirde D,,M et N comme dans la Proposition 4, et soit | la
longueur de la période de C.

Alors I’idéal S’ est principal, et

{ [ =1, (mod4), si cdD, — abD, > 0

(4.1
1) l=1y+2 (mod4), si cdD —abD,<0.

~ Démonstration. Comme les idéaux I et'S sont équivalents, (3.5) montre
~que I’idéal S’ est principal.
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Plus précisément, posant S = al avec l1<a<egp, on voit que
S’ = (—Y—) . D’autre part soit a, tel que S’ = (a,) avec 1 < 0y < €p. Le
(lDl

Lemme 3 montre que, en fait,

1/5—1<0v0<8D:

Comme 1’idéal ambige I est réduit et non principal on a 1 < D, <D,
(Proposition 1), ce qui entraine \/Bz < 1/5 —1si D=1 (mod4) et 2|/ D,

<1V/D - 15si D=0 (mod4). Les définitions (3.10) et (3.15) de y montrent
que, comme D; < D,, on a

(
1< <VD, . si D=1 (mod4),
D,

1<Dl<2|/Dz, si D=0 (mod4),
\ 1

ce qui montre, comme 1 < a < €p, que

1
— < U <VD-1<ay<¢gp.
ep oD,
Y . ‘ YEp
Comme 0oy = (mod*ep) on voit que oyp=-—— e€t, comme
(XDl OLD1

N(ep) = — 1,

sgn(N(0)) = — sgn (N(a)) sgn (N(y))

ce qui, tenant compte de (1.7), (3.6) et du Théoreme 1, prouve (4.1) et acheve
la démonstration du Théoréme 2.

Nous considérons maintenant le cas ou N(p ) = + 1, et nous com-
mencons par traiter le cas ou D £ 0 (mod 32).

THEOREME 3. Soit D wun discriminant tel que D % 0 (mod32) et
N(SD) = + 1.

a) Soit C wune classe ambige non principale primitive contenant deux
idéaux ambiges I, et I, de normes réduites respectives D, et D, et
soient d,d, et d, les nombres bien déterminés tels que

Do = ddo s Dl = ddl s (dOsdl) =1.
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Alors

w2 {1 = J,(mod 4) , si dod, < VD,

I=1Iy+2(modd), si dd>VD.
b) Soit I [’idéal ambige réduit principal et + (1), de norme Dj, et

: D .
soit D;=-— . Soit C une classe ambige non principale contenant les
1
deux idéaux symétriques S et S’. Alors S’ s’obtient a partir de S

et I par (3.4). De plus

4.3) [ =1l (mod4) , si  c¢dD]—abD;> 0,
' I=1,+2(mod4), si cdD,—abD,<0.
Démonstration.

a) Nous appliquons la Proposition 2. Comme I, # I, et I, ~ I;, on voit
que I’idéal J est # (1) et principal.
Posant J = (0p) et I} = al,, on trouve I’égalité d’idéaux:
(%) (raN(ly)) , si dyd, < l/B ,
0p) = = -
° (f'(IN(]O))I/B ) si d()dl > ‘/—5 5
ce qui, compte tenu de ce que N(l/B) = — Det N(ep) = + 1, prouve (4.2).
b) Posant I = (0p) et N(S) = s, la relation (3.5) implique

S' = — oS = —— aypS
Dis Dis?
. - M+ VD =
ou, d’aprés [7] Corollary 2, B = 5 ouPp=-N+ \/B suivant que

D=1 ou D=0 (mod4), et donc N(B) < 0. Ceci, compte tenu de ce que
N(p) = + 1 et de (3.6), prouve (4.3) et acheve la démonstration du
Théoreme 3.

Nous pouvons maintenant donner le résultat dont 1’observation a été le
point de départ de ce travail.

COROLLAIRE 4. Soit D=8q, ou q=pS avec p premier
=1 (mod4) et s> 1. Ilyadeux classes ambiges, la classe principale C,
et une autre C, et les longueurs de leurs périodes vérifient

(4.49) [ =1, + 2 (mod4) .
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Démonstration. Les idéaux ambiges primitifs réduits sont (1) et [2, 1/2 q]
donc, avec les notations du Théoréme 1 si N(gp) = — 1 et du Théoréme 2 si
NEp) = +1,onaD =2=12+12et D, =g =c*+ d*oucetd>0sont
bien définis par ¢ = 1 (mod 2), si bien que ici

cdD, — abD, = 2¢d — (¢*+d?*) = — (c—d)* <0
ce qui, tenant compte de (4.1) si N(ep) = — 1 et de (4.3) si N(ep) = + 1

prouve (4.4).
Maintenant nous étudions le cas ou D = 0 (mod 32).

THEOREME 4. Soit D un discriminant tel que D = 0 (mod 32). Soit
C une classe ambige non principale primitive contenant deux idéaux ambiges
I, et I, de normes réduites respectives D, et D, et soient d,d, et d,
les nombres bien déterminés tels que

DO':dd09 Dlzddla (d05d1): 1.

Alors les classes modulo 4 de | et [, vérifient

Types de I, et I,

(Corollaire 2)

[ = [y (mod4)

=1y + 2 (mod4)

du méme type

dod, < I/B

dod, > VD

1et2, 3etd 2'dyd, < VD 2dod, > /D
2et3, 1etd 20-1dyd, < VD 20-1dod, > /D
1 et3,2etd 2dyd, < /D 2ded, > VD

Démonstration. La démonstration du Théoréme 4 est semblable a la

démonstration du Théoréme 3, a).

COROLLAIRE 5.

autre C. On a

(4.5) [ =1y, (mod4),

D = 2t+2q

si g<2'7?

(4.6) [=1ly+ 2 (mod4), si

Démonstration. Le Corollaire 2 montre qu’il y a trois idéaux ambiges

primitifs réduits non principaux.

avec

t>23,q =ps,p premier
impair, s = 1. Il y a deux classes ambiges, la classe principale C, et une

ousi q>2".

2072 < g <28,
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Si 272 < g < 2! le Corollaire 2 montre que ces idéaux sont [q, VB],

4,2 + 1/5] et [24,2-1 4+ VB]. Pour toute combinaison de deux de ces
idéaux on vérifie facilement que c’est la condition pour que / = /, + 2 (mod 4)
du Théoreme 4 qui est vérifiée, ce qui prouve (4.6). La démonstration de (4.5)
est analogue.

Remarque. Si D = 32q (t=3), (4.5) est vrai pour q > 8 et (4.6) pour
q=3,5,7.
Exemple 1 (Coroliaire 4).
D=40=8 x5, NEp)=-1, =1, [=3
D=136=8x17, N(p)=+1, =4, [=6.
Pour terminer cette section nous donnons deux exemples numeériques, I’un
du Théoréme 2 ou N(ep) = — 1 et Pautre du Théoreme 3 ou N(gp) = + 1.
Exemple 2 (Théoreme 2).
D = 12325 =25 x 17 %x 29, N(p)=-—-1.
I v a quatre classes ambiges, C, (principale), C,, C, et C; et nous

donnons pour chacune I’idéal ambige réduit, I’idéal symétrique et la longueur,
obtenus par réduction ([7], §5).

111+ VD1 111+ VD]
Co: |1, — X2 ~ [, =2 =1
| 2 ] | 2
85+ 1V/D1 [ 97+ VD]
Cl . 17,—‘"“/—" o~ 27,—V s 11 =35
2] | 2
75+ YD1 [ 33+ VD
G, : 25,———£ ~ |53, —\|; L=7
| 2] | 2
87+ V/D1 [ 79+ VD]
C3 . 29, —2£ ~ 39,—7—1/‘_“ > 13 =35

Nous vérifions le Théoréeme 2 pour la classe C,.
D =25=32+42, D,=1729 =132+ 182=13%24 222,

- On trouve que 33 =4.18 — 3.13. Donc a=3, b=4, c =13, d = 18.
Ensuite, changeant le signe, on trouve 4.18 + 3.13 = 111, ce qui montre

111+l/5]
2

e Cp. Enfin %

[

Eque S’ = [1,



CLASSES AMBIGES D’IDEAUX 287

cdD, — abD, = 13.18.25 — 3.4.17.29 = — 66 <0

donc I, = [y + 2 (mod 4), ce qui est vrai.

Exemple 3 (Théoréme 3):
D = 5525 =25.13.17, N(p)=+1.

Les quatre idéaux ambiges réduits se répartissent dans les deux classes Co
(principale) et C; ainsi

[ 73+ [/ D] [ 25+ V D]
Co : 1,——£— ~ 25,———[ ;0 =4
2 | 2]
[ 65+ VD [ 51+VD

Vérifions le Théoréme 3a) pour C;,. On a Dy, = 13, D; =17, donc

dy =13, dy =17 et dyd, > /D donc [, = [, + 2 (mod4), ce qui est vrai.
Vérifions le Théoréme 3b). On a

DI =25=32442, Dj=13.17 = 112 + 102 = 52 + 142,
D = 41% + 622 = 732 + 142 = 712 4 222 = 72 4 742,

et on trouve deux classes ambiges contenant les idéaux symétriques:

[ 7+ VD] [ 73+ VD]

G 37,——1/——_— ~ 7,_____1/- : I, =4
| 2 | 2
[ 41 + |/ D] 71+ VD]

C; . 31,—1/' ~ 11,————1/_ i L3 =6
L 2 | 2

On a donc a = 3, b = 4.
Pour la classe C,, 7 =4.10 — 3.11 et 73 = 4.10 + 3.11, donc ¢ = 11,
d=10 et

cdD; — abD; = 11.10.25 — 3.4.13.17 =98 > 0

donc /, = [y (mod 4), ce qui est vrai.

Pour la classe C;, 41 =4.14 — 3.5, 71 =4.14 + 3.5, donc c = 5§,
d= 14 et

cdD{ — abD; = 5.14.25 — 3.4.13.17= — 902 < 0

donc /3 = /[y + 2 (mod 4), ce qui est vrai.
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