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entre eux deux a deux, tels que
Azddodldl, D():ddo, Dl :ddl ,

et un nombre rationnel r dépendantde I, et I, tel que l’idéal J défini
ci-dessous soit un idéal ambige primitif réduit.

Types de I, et I, J = rLl ' rlfloll
(Corollaire 2)

du méme type dod, < l/B dod, > 1/5

let2,3etd 20dyd, < /D 2idyd, > VD

2et3, 1et4d 20-1dyd, < VD 20-1dyd, > /D

let3,2et4 2dod, < VD 2dyd, > VD

L’idéal J est égal a (1) si, et seulement si, I, = 1I;.

Démonstration. La Proposition 2’ se démontre comme la Proposition 2.
On calcule les produits d’idéaux primitifs ambiges réduits des dix différentes
combinaisons de types en fonction des nombres d, et d;. Si le produit obtenu

n’est pas reéduit, on le multiplie par 1’idéal «complémentaire» pour obtenir un
idéal réduit.

§3. IDEAUX SYMETRIQUES

b+l/13 2
2

un idéal et ¢ =

Définition 3. Soit I = [a, . L’idéal 7

4a
est symétrique si ’on peut choisir b > 0 dans sa classe modulo 2a de facon
que a = c.

Définition 4. a) Une représentation de D comme somme de deux carrés

est un couple (M, N) d’entiers > 0 tels que (M,N) = 1,M? + N2 =D et
= 1 (mod 2).

b) Soit D = M? + N? une représentation de D. 1’idéal symétrique
primitif
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N M+VD
[—,—— , si D=1 (mod4),
S = 2 2
[IM,N+VD], si D=0 (mod4),

est dit associé a la représentation (M, N) de D.

PROPOSITION 3. 1) Tout idéal symétrique est réduit.
11) Les idéaux symétriques primitifs sont les idéaux associés aux repré-

sentations de D.

Démonstration. 1) On voit facilement que les relations D = b? + 4a?,
a > 0, b > 0 impliquent (1.2).

-2

ii) Soit I = |a, 5 un idéal symétrique. On a donc D = b? + 4a?,

b > 0, et I est primitif si, et seulement si, (a, b) = 1.

_ o N M+VD]
Si D=1 (mod4), b est impair donc I = —2—,——2— ou N = 2a,

M = bet (N,M) = (2a,b) = 1. Inversement, si D = M? + N?,(M,N) =1 et
N M+VD
272

M =1 (mod2), alors ] est un idéal symétrique et primitif.

D
Si D=0 (mod4), b est pair, donc @ impair et 7 = M? + N? avec
b = ' b
M=a=1 (mod2)N=E, et I = [M,N + /D] avec (M, N) = a,E = ].

D ,
Inversement si 7 =M?+ N? avec (M,N)=1, M =1 (mod2) alors

[M, N + VB] est un idéal symétrique, et primitif car 2N, M) = (N, M) = 1.
Nous allons étudier les représentations de D dans les Lemmes 4 et 5 puis

en déduire une propriété importante des idéaux symétriques associés.
LEMME 4. a) Les discriminants D tels que [’anneau Op contienne

des idéaux symétriques primitifs sont les nombres D tels que

' (3.1) D=2pS'..px, s=0oul, p; premier =1 (mod4) .

b) Soit | le nombre des diviseurs premiers distincts de D. Le nombre
des représentations de D comme somme de deux carrés est 2'-!.

c) Le nombre des idéaux primitifs symétriques est 2!-1.
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d) Le nombre des idéaux ambiges primitifs réduits est 2'~1, et la norme
de tout tel idéal divise D.

Démonstration. D’aprés la Proposition 3 les nombres D sont les nombres
tels que D est somme de deux carrés premiers entre eux, ce qui prouve (3.1).
D’aprés [9], Satz 52, le nombre des décompositions de D en somme de deux
carrés premiers entre eux est 2%-1; chaque' décomposition donne une
représentation si s = 0 et deux représentations si s = 1, ce qui prouve b), et
c) résulte de la Proposition 3, ii).

Comme D = 1 (mod4) ou D = 4 (mod 16) ou D = 8 (mod 32), le tableau
de la Proposition 1 montre d).

LEMME 5. Soit ‘D un discriminant tel que D  soit représentable
comme somme de deux carrés. Soit, d’une part, D = M? + N* une repré-
sentation de D et, d’autre part, une décomposition D = D\D, en deux
facteurs D, >0 et D, >0 premiers entre eux. Alors il existe un couple
unique de représentations D, =a:+ b>,D,=a,+ b, et un signe
0= x1 tels que

M=|a1a2-9b1b2], N:|a1b2+9a2b1].

Démonstration. Nous supposerons D, impair. Soient /; et /;, le nombre
des diviseurs premiers de D, et D, respectivement. D’apres le Lemme 4 le
nombre des représentations de D, est 2/1—1 celui de D, est 22- 1. Prenant un
couple de représentations D, = a; + b}, D, = a2 + b} et un signe 6 = + 1
nous obtenons ‘

(3.2) ' DZ |alaz—6b1b2}2+ [azbl +6a1b2{2

de 20i-1+L=1+1 = 2/-1 maniéres différentes.

Pour démontrer le Lemme 5 il suffit de montrer que nous obtenons ainsi
les 2/-! représentations de D, c’est-a-dire que nous avons bien des repre-
sentations de D au sens de la Définition 4 et qu’elles sont distinctes.

Comme @ =a,=1 (mod2) et que b =0 (mod2) on voit que
a,a, — 0b, b, est impair.

D’autre part, dans ’anneau Z[i], on a

(33) (al + lb]) (02 + lez) = (a1a2 - eblbz) + i(a2b1 + Oalbz) .

Comme ni a; + ib;, ni a, + ib, n’a de diviseur rationnel et que
(ai+bi,a5+b3) = 1 on voit que (a1a, — 0b,b,, a, b, + 0a,b,) = 1, et donc
que M = |aja, — 0b,b, |, N = | a,b, + 0a,b, | est une représentation de D. Ii
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reste a démontrer que les 2/~! représentations ainsi obtenues sont distinctes.
Supposons donc que I’on ait

|aya, — 0b, by | = |aja} — 0'b]b;

. |ab + 0aby| = |ab| + 0'alb;

ou (a;, b)) et (a;,b}) sont des représentations de D, et D, respectivement.
Ceci signifie que 'une des quatre égalités suivantes est vraie:

(a;+ib}) (a,+1i06'b)

— (a;+1ib)) (a5 +i0'b))

(a; —iby) (a;—i07Dy)

— (a;— b)) (a,—187D3)

(Cll + lbl) ((lz + lebz) =

Les troisieme et quatrieme égalités ne peuvent pas étre vérifiées car les deux
membres n’ont pas les mémes facteurs irréductibles dans Z[i]. On voit donc
que a, +ib, et a; + ib] sont associés et, tenant compte des parités et
des signes de a;,b,,a;,b], on a a +iby=a;+ib] d’ou a, + i0D,
= % (a,+19'b;) ce qui, tenant compte des signes de a,, by, a;, b;, montre
que 6 =0" et a, +i0b, = a; + i0b;, et acheve la démonstration du
- Lemme 5.

Gréce a ce Lemme 5 nous pouvons obtenir le résultat le plus profond de
ce travail: ‘

PROPOSITION 4. Soit D un discriminant tel que [’anneau Op
contienne des idéaux primitifs symétriques. Soit D = M? + N? une repré-
sentation de D et D = D,D, une décomposition de D en deux facteurs
premiers entre eux.

Soient D, = a* + b?,D, =c*+d?> et 6 = =1 lesreprésentations de
D, et D, et le nombre 0 bien déterminés par le Lemme 5 tels que
M =|ac —0bd|,N = |ad + 0bc|. Alors m =|ac + 0bd|,n = |ad — 0bc|
est une représentation de D, et posant

D, + VD
2

b

N M
s [___VB] o
2 2

n m+l/5
2’

- [o. :

I=[D,V/Dl, S=MN+VDl, S =[mn+VD],
\ si D=0 (mod4)

L on a
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Y
3.5 SS'=|—1|1
G- (Dl)
ol vy est un nombre de Op qui vérifie
(3.6) sgn N(y) = sgn(abD, — cd D) ,
( D D 2
M+ VD) (m+)/D - Y s D=1 (@mod4),
2 2 D,
(3.7) { .2
(N+l/f))(n+l/5)=l—)—, si D=0 (mod4) .
\ 1

Démonstration. Supposons D = 1 (mod 4). Alors on voit que

[ad + be, ac — bd + /D] [ad — be, ac + bd + VD] |, si ac > bd,

(3.8) 4S8S’'=
{[ad+bc,bd—ac+ﬁ] [ad—bc,ac+bd+l/5] , Sl ac < bd .

Considérant d’abord le cas ou ac > bd on trouve

488" = (ad? - bc?,(ad + be) (ac + bd + /D) ,

(3.9)
(ad — bc) (ac — bd + /D), a*c? — b2d? + D + 2ac)/ D> .

Posons

_ch+a\/5 ”_Dla’+bVl_)

(3.10) v’
2 Y 2

, Y,y " €O0p.

On vérifie par un calcul aisé que

4_N ! rs
(3.11) b2c? — a?d? = (V), a2d2_b262:4N(Y )

D, D,

b

4yl2
a’c? — b2d* + D + 2acl/— _—
D

4Y’,2

b

D,

b

(3.12)

b2d® — a*c? + D + 2bd)/D =

4 4 77
(ad + be) (ac + bd + /D) = 2

(3.13) £y

4 r —rrs
(ad — be) (ac — bd + /Dy = 2

1
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st bien que 'on a

(3.14) SS’ = (Y—) VT
D

1

Siac < bd il suffit de changer le role des paires (a, ¢) et (b, d) et ’on trouve

4 ’Yl’ r .7 rr __rrs
D,
Considérons maintenant 1’idéal entier ambige sans diviseur rationnel
J: <’Y’,'Y,,”?,,’?,I>.
La définition (3.10) de vy’ et v montre que tout nombre de J s’écrit

xD; + yl/B L . .

5 ou x, y € Z avec x = y (mod 2), donc tout entier rationnel de J
est multiple de D,. D’autre part v + vy =cD; et v + v"" = dD, appar-
tiennent a J et aussi D;, donc N(J) = D,. Mais, d’aprés le Lemme 1, I est
le seul idéal ambige sans diviseur rationnel de norme D,, donc J = I.

On obtient (3.5) en posant vy = v’ si ac > bd,y = v’ si ac < bd. Mais,
d’apres (3.11), on voit que

sgn(bc—ad), si ac—bd>0,

sgn N(y) =
en V() {sgn(ad—bc), si ac—bd <0,

ce qui signifie que
sgn N(y) = sgn[(ac — bd) (bc — ad)] = sgn (abDé —cd D)

ce qui est (3.6), et (3.7) se voit en comparant (3.8) et (3.12), ce qui acheve la
démonstration quand D = 1 (mod 4).

Considérons maintenant le cas ou D = 0 (mod 4). La démonstration de
(3.14) et (3.15) est semblable, il suffit de supprimer le facteur 4 dans (3.8), de
permuter ¢ et d, de supprimer les facteurs 2 des dénominateurs de (3.10), et
de remplacer D par D si bien que (3.14) et (3.15) sont vraies avec

(3.16) v ' =Dd+a/D, v"=Dec+bl/D.

Ici aussi il faut montrer que J = {vy’,v",v ,y"" ) est égal a I. On voit,
- comme plus haut, que tout entier rationnel de J est multiple de D,, et aussi
que 2c¢Dy,2dD, et (bd—ac)D, sont dans J, ce qui, comme (c,d) = 1,
a=c=1 (mod 2) et bd = 0 (mod 2) prouve que N(J) = D,, et, d’aprés la
- Proposition 1, prouve que J = I. La démonstration de (3.6) et (3.7) est la méme
| que celle pour le cas D =1 (mod4) ce qui achéve la démonstration de la
. Proposition 4.
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