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Dans tout ce travail nous poserons

si D= 1(mod4),

D,
f ~_ D
(.5} D S+ s D=0(mod4).

§2. IDEAUX AMBIGES, IDEAUX AMBIGES PRIMITIFS REDUITS
Définition 1. Un idéal ambige est un idéal égal a son conjugué.

LEMME 1. 1) Les idéaux ambiges sont les Z-modules de I’'un des types
suivants:

/D
A =d a,~2——] avec 4a|D,

a+l/5]

2

avec 4a|D — a* .

A2= d[a,

iil) Si D=1(@mod4) il n’y a pas d’idéal ambige de type A,.

b+ﬁ

2

Démonstration. Dire que I =d [a, est ambige signifie que

457 [

donc que b =0(moda), et I est du

type A; ou A, suivant que — est pair ou impair, ce qui démontre i), et ii)
a

est clair.
On prouve alors le résultat suivant (cf. Gauss [1], §257-259):

; PROPOSITION 1. Les idéaux ambiges primitifs et ambiges primitifs réduits
- sont donnés par le tableau suivant, ou D est défini par (1.8):

i
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Discriminant Idéaux primitifs ambiges + réduits
a+ 1/15 D
D = 1(mod4) a— ],aID, (a,—)zl a< /D
a
D = 4 (mod 16)

a,l/B , a D, a,
D = 8, 16, 24 (mod 32) | 1l \

):1 a<VD

[a,l/B] ,al|lD, |a,
D = 12 (mod 16) a< /D

[2a,a+[/5],a|l_), (a,g) =1
a

[a,l/B],aID,(a,l-z)zl a<VD

D = 0 (mod 32)

_ D D |/ D

[4a,2a+1/1—)],a|2,(a,4—)=1 a< —
a

Démonstration. Nous cherchons d’abord les idéaux primitifs ambiges.

Soit 7 un tel idéal.
a+ /D
2

Si D=1(mod4), I= [a, ] ol a=1(mod2), 4a|D — a? et

D — a? D D
a, =1. Alors a|D et |a,——a] = |a,—] = 1. Inversement
4a a a

D
si a=1(@mod2), a|D et (a,—):l, on voit que 4a|D — a? et

a
D — q?
a, = 1.
dq

Si D = 0 (mod 4), tous les Z-modules [

1/13] D ( D)
a,— | aveca|—et a,—| =1
2 4 4a

a+ /D

2

conviennent. Cherchons si il y en a du type 4, = |aq,

] . Alors a est
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pair et I’entier positif a’

a

— doit vérifier
2

(2.1 2a’

) D_a?
D - a'?, 2a’,

| 2a’

i ce qui entraine a’ | D.

Si D=1 (mod2), alors a’ = 1 (mod 2) et la deuxiéme relation ne peut
€tre vérifiée que pour D = 3 (mod 4), c’est-a-dire D = 12 (mod 16). Alors
2a’

D-a’sa|D

et s1 cecl est vrai

D—a’? D
2a’, =1e |2,
2a’

Ceci nous donne la liste des idéaux primitifs ambiges pour D = 4 et
" 12 (mod 16).

Il reste donc a étudier les cas ou D = 0 (mod 8). Alors (2.1) implique
a’ =2a" d’ou D = 4D" et s’écrit donc ici

77 I12 rs DII - a,’2
D" —a"? 4a",———| =1
a

rs

a

qui équivaut a

2.2)

77

a

DII
DII, 4all’__all s 1 .
aII
Mais (2.2) implique que —$ a”’ (mod2), donc D” =0 (mod?2), soit
a
D = 0 (mod 32), et alors (2.2) équivaut a

DII
DII’ all, . 1 ,
all

al’

ce qui achéve la démonstration de la liste des idéaux primitifs ambiges
. Pour trouver ceux qui sont réduits nous utilisons le

LEMME 2. L’idéal I = all,y] est réduit si,

et seulement si,
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Démonstration. On peut remplacer y par ¢ =y + [—y] qui vérifie
0< —y — [—-W¥] <1, c’est-a-dire — 1 < ¢ <0, donc I’idéal I est réduit si,
et seulement si, ¢ = vy + [—y] > 1, ce qu’il fallait démontrer.

Ceci étant, on voit que

/D . VBV[VB /D
a, — | est réduit & + >1e
[ 2 ] 2a 2a

a < —
2

et que

est réduit &
2 2a

VD VD 1

& — 4+ | — — -
2a | 2a 2

[Qa+VD' V5+a+ VD—a]>1

2a

RN DR~

2 2a 2

ce qui achéve de démontrer la Proposition 1.

COROLLAIRE 1. Si D = 0 (mod 32), un idéal ambige primitif est déter-
miné par sa norme.

Démonstration. Dans la deuxi€éme colonne du tableau de la Propo-
sition 1 a des normes distinctes correspondent des idéaux distincts.

COROLLAIRE 2. Si D =0 (mod32), soient t>=3 et A les entiers
définis par
D=2A, A=1(mod2).

Les idéaux primitifs ambiges et primitifs ambiges réduits sont donnés par
le tableau suivant, ot a désigne un entier tel que

A
a>0, alA, (a,—)zl.
a

Type ldéaux ambiges primitifs + réduits
1 la, )/ D] a<|/D
2 [2¢a, )/ D] 2t < /D

3 [4a, 2a + 1/5] 2a < 1/5

4 [2fa,2f‘la+1/f3] 2"1a<l/lt)




270 F. HALTER-KOCH, P. KAPLAN, K. S. WILLIAMS ET Y. YAMAMOTO

Démonstration. Le Corollaire 2 est une conséquence immeédiate de la
Proposition 1, cas ou D = 0 (mod 32).
Nous aurons aussi besoin du résultat suivant:

= {a_,,kay,ay} un idéal ambige

kao + I/.E]
2

LEMME 3. Soit [, = [ao,

primitif réduit, I, [l’idéal suivant I, dans sa période. Alors I, = p.I,
avec

:k00+ﬁ 1/5_ 1/1—3

1<p1<——.

(2.3) o)
_ 2ay 75 do

Si Iy=(1) alors VD-1<p, <V/D.

a, kay+ VD  kao+ VD
Démonstration. D’apres (1.7) I, = — —i—[ Ih=—— "I, e,
ao 2a, 24,

kay — |/ D kay + VV D
comme l’idéal I, est réduit, — 1 < J <0, donc p; = ——0———[

2ao 200
. l/B L kao — 1/5

ap 200
le Lemme 3 il suffit-de noter que ao = 1 si [, = (1).

vérifie les inégalités (2.3). Pour achever de démontrer

Définition 2. La norme réduite N’'(I) d’un idéal ambige primitif 7 est le
nombre a du tableau de la Proposition 1 si D £ 0 (mod 32) et du tableau du
Corollaire 2 si D = 0 (mod 32).

PROPOSITION 2. Soit D = 0 (mod 32). Soient I, et I, deux idéaux
ambiges primitifs de normes réduites D, et D, respectivement.

1l existe quatre entiers positifs d, dy,d,,d’ premiers entre eux deux a
deux tels que

D =ddyd\d’, D,=dd,, D =dd,
et un nombre rationnel | r dépendant de 1, et I, tel que l’idéal
L (il N'(J) = dody, si dody<VD,
{rVBIOII . N =dd, si dod>VD),

- soit un idéal ambige primitif réduit.
L’idéal J est égal a (1) si, et seulement si, I, = 1,.
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Démonstration. D’aprés la Proposition 1 et la Définition 2 on a

D = DyD, = D,D; avec (D;,Dp) = (Di,Dy)=1.

Définissons d, d, et d; par
Do:ddo, Dlzddla (d03d1): 1.

On voit qu’il existe d’ tel que D| = dod” d’ou Dy = d,d’ et donc
D = dd,d;d’ avec (ddy,d\d’) = (dd,,dyd’) =1
ce qui prouve que les nombres d, dy, d;,d sont premiers entre eux deux a

deux.

Dy + /D
Supposons d’abord D=1 (mod4). Alors I, = Do,—z—— ,

et, effectuant le produit, on trouve

d+d\ (do+d,
od; + /D
Ll ddyd, + d\V/' D ddydy + do)/ D 2 2
7 = ddodl ’ 5 ’ 2 ’ 2 :

D, +V/D
I - [Dl,%ﬁ]

do+d, d+d’ , 1,1
Comme (dy,d;) =1 et 5 = 5 (mod 2) on voit que —d— est un

. . . . 1ol
idéal ambige entier sans diviseur rationnel, et, comme tout nombre de —

s’écrit

kdyd, +1V/D Il
0 12 ou /, k € Z, on voit que tout entier rationnel de L

est multiple de dyd,.

d—d’ ) s Iy I,
D’autre part dd,d,; et ” dod, appartiennent a 7 , donc N —d—

= dyd,, ce qui, comme (dyd,,dd’) = 1, prouve par la Proposition 1 que

I, dod, +V/D D1, g .
—— ——F | et que —d— est ambige et primitif.

d()dl ’

. Iyl : o
Si dod, < VB, id—l est réduit donc on satisfait a la Proposition 2 en posant
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- Si dyd, > 1/5 on trouve par le méme calcul

dod D !
[dodl,_o%[] [dd,,d_d—;_ﬁ] _ [D) QZ_VB] VD

IyI
Multipliant par I’idéal primitif % on obtient
dd’ + 1/13] VDI,

2 " ddyd,
1

[a’a”,

dd'+ VD
2

ce qui démontre la Proposition 2 avec r = s J = [dd',

ddyd,

I Le cas ou D = 0 (mod 4), quand les idéaux [, et I; sont du type A,, est
analogue, en plus simple, et on trouve le méme résultat.

Si D = 12 (mod 16) on trouve, par un calcul analogue, quand au moins un
des idéaux Iy, I; est du type A,,

1 - — -
= [2Dy, D, + VD] 2Dy, D, + VD] = [dod;, VD],

1 _ _
d’ourzzi,Jz[dodl,VB], si dod, <VD, et

1 - — -
~ 2Dy, Dy + VD [D,,VD] = [2dvd;,dod, + VD],

1 _ _
donr=—, J = 2dod,, dod, + VD], si  dod, < VD .

J=dd"VD

" Puis, si dyd; > /D, on obtient respectivement r = ,
2ddyd,

. J=[2dd",dd’ + VD] .

et r=
o]
Ces calculs montrent que J = (1) si, et seulement si, dy = d; = 1 et si les

- idéaux I, et I, sont de méme type, donc si [y = I;. Ceci achéve de prouver la
' Proposition 2.

| PROPOSITION 2°. Soit D = 0 (mod 32), et soient t et A les entiers
- définis au Corollaire 2.

Soient 1, et I, deux idéaux ambiges primitifs de normes réduites D,
{ et D, respectivement. Il existe quatre entiers positifs d, dy, d,, d’, premiers
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entre eux deux a deux, tels que
Azddodldl, D():ddo, Dl :ddl ,

et un nombre rationnel r dépendantde I, et I, tel que l’idéal J défini
ci-dessous soit un idéal ambige primitif réduit.

Types de I, et I, J = rLl ' rlfloll
(Corollaire 2)

du méme type dod, < l/B dod, > 1/5

let2,3etd 20dyd, < /D 2idyd, > VD

2et3, 1et4d 20-1dyd, < VD 20-1dyd, > /D

let3,2et4 2dod, < VD 2dyd, > VD

L’idéal J est égal a (1) si, et seulement si, I, = 1I;.

Démonstration. La Proposition 2’ se démontre comme la Proposition 2.
On calcule les produits d’idéaux primitifs ambiges réduits des dix différentes
combinaisons de types en fonction des nombres d, et d;. Si le produit obtenu

n’est pas reéduit, on le multiplie par 1’idéal «complémentaire» pour obtenir un
idéal réduit.

§3. IDEAUX SYMETRIQUES

b+l/13 2
2

un idéal et ¢ =

Définition 3. Soit I = [a, . L’idéal 7

4a
est symétrique si ’on peut choisir b > 0 dans sa classe modulo 2a de facon
que a = c.

Définition 4. a) Une représentation de D comme somme de deux carrés

est un couple (M, N) d’entiers > 0 tels que (M,N) = 1,M? + N2 =D et
= 1 (mod 2).

b) Soit D = M? + N? une représentation de D. 1’idéal symétrique
primitif
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