Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1991)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: INFRASTRUCTURE DES CLASSES AMBIGES D'IDÉAUX DES

ORDRES DES CORPS QUADRATIQUES RÉELS

Autor: Halter-Koch, Franz / Kaplan, Pierre / Williams, Kenneth S. / Yamamoto,

Yoshihiko

Kapitel: §1. Introduction

DOI: https://doi.org/10.5169/seals-58743

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INFRASTRUCTURE DES CLASSES AMBIGES D'IDÉAUX DES ORDRES DES CORPS QUADRATIQUES RÉELS

par Franz Halter-Koch, Pierre Kaplan, Kenneth S. Williams 1) et Yoshihiko Yamamoto

§1. INTRODUCTION

Soit O_D un ordre d'un corps quadratique réel K, de discriminant D. Le nombre D est un entier rationnel positif non carré congru à 1 ou 0 modulo 4. Chaque classe primitive d'idéaux C de O_D contient un nombre fini l = l(C) d'idéaux réduits primitifs, et ces idéaux peuvent être rangés en une période. Le but de ce travail est d'étudier la structure, ce que D. Shanks appelle «l'infrastructure» ([8]), de cette période dans le cas où la classe C est une classe ambige, c'est-à-dire égale à sa conjuguée \bar{C} . Les notions évoquées ci-dessus sont soit définies dans notre précédent travail [7], auquel nous renvoyons le lecteur pour les détails et les démonstrations des faits exposés dans l'introduction, soit seront définies plus bas.

Après avoir rappelé au §2 les résultats classiques concernant les idéaux ambiges primitifs réduits, résultats connus depuis Gauss ([1]) dans le langage des formes quadratiques binaires, puis déterminé le produit de deux idéaux ambiges réduits (Proposition 2), nous introduisons au §3 une notion nouvelle, celle d'idéal symétrique, idéal nécessairement réduit, associé à certaines décompositions de D en somme de deux carrés. Ensuite nous déterminons le produit de deux idéaux symétriques (Proposition 4). Ceci fait, au §4, après avoir montré qu'une classe ambige contient un idéal ambige réduit et un idéal symétrique quand $N(\varepsilon_D) = -1$, soit deux idéaux ambiges réduits ou deux idéaux symétriques quand $N(\varepsilon_D) = +1$ (Théorème 1), nous pouvons comparer modulo 4 la longueur l de la période d'une classe ambige C avec la longueur l_0 de la période de la classe principale.

Nous montrons aussi comment cette méthode permet d'obtenir une troisième démonstration du résultat de [6] qui dit que les longueurs

¹) Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

modulo 4 des périodes des classes principales de discriminants D et 4D pour $D \equiv 1 \pmod{4}$ sont égales si, et seulement si, $\varepsilon_{4D} = \varepsilon_D^3$ (Théorème 0). Mais le résultat le plus élégant de ce travail nous semble être le fait, inclus dans les Théorèmes 2 et 3, qu'un certain idéal symétrique S' construit d'une manière simple à partir d'un idéal symétrique donné S est toujours principal quand $N(\varepsilon_D) = -1$, toujours équivalent à S quand $N(\varepsilon_D) = +1$.

Nous indiquons maintenant les notations et résultats que nous allons utiliser. Si $a_1, a_2, ..., a_k$ sont des nombres entiers rationnels, nous désignerons par $(a_1, ..., a_k)$ le plus grand diviseur commun de ces nombres. Si A est un anneau commutatif unitaire et $\alpha_1, ..., \alpha_m$ des éléments de A, nous désignons respectivement sur $[\alpha_1, ..., \alpha_m]$ $(m \ge 2)$ le **Z**-module et par $\langle \alpha_1, ..., \alpha_m \rangle$ $(m \ge 1)$ l'idéal (A-module) engendré par $\alpha_1, ..., \alpha_m$. Si φ est un nombre réel, $[\varphi]$ désigne la partie entière de φ . Le produit des idéaux $I = \langle \alpha_1, ..., \alpha_m \rangle$ et $J = \langle \beta_1, ..., \beta_n \rangle$ est l'idéal $J = \langle \alpha_1 \beta_1, ..., \alpha_i \beta_j, ..., \alpha_m \beta_n \rangle$. Enfin $a \mid b$ (respectivement $a \nmid b$) signifie que l'entier rationnel a divise (respectivement ne divise pas) l'entier rationnel b.

D'après [7], Proposition 1, les idéaux non nuls de O_D sont les **Z**-modules

$$d\left[a, \frac{b+\sqrt{D}}{2}\right]$$
 où $4a \mid D-b^2$, et l'idéal I est déterminé par $|d|$, $|a|$

et $b \pmod{2a}$. Le nombre $|d^2a|$ est la norme de l'idéal I et sera noté N(I). Sauf mention explicite du contraire, nous supposerons toujours d et a > 0

dans l'écriture
$$I = d \left[a, \frac{b + \sqrt{D}}{2} \right]$$
.

L'idéal I est primitif si $d = \left(a, b, \frac{D - b^2}{4a}\right) = 1$. Si l'idéal I est primitif,

son conjugué \bar{I} est primitif et $I\bar{I} = N(I)$.

Deux idéaux I et J de O_D sont équivalents (noté $I \sim J$), si il existe deux nombres α et β non nuls de O_D tels que $\alpha I = \beta J$. Parmi les classes définies par cette relation d'équivalence, celles contenant des idéaux primitifs forment un groupe fini que nous noterons C_D .

Considérons maintenant les idéaux primitifs réduits. Soit $I = \left[a, \frac{b + \sqrt{D}}{2}\right]$

un idéal primitif. Posons $\frac{D-b^2}{4a}=c$. On peut aussi écrire $I=a[1,\varphi]$ avec

$$\varphi = \frac{b + \sqrt{D}}{2a}$$
, et φ est déterminé modulo 1. L'idéal I est $réduit$ si l'on peut

choisir b modulo 2a, ou φ modulo 1, de manière que les trois conditions équivalentes suivantes soient réalisées

(1.1)
$$\varphi > 1$$
, $-1 < \bar{\varphi} < 0$,

$$(1.2) 0 < \sqrt{D} - b < 2a < \sqrt{D} + b ,$$

$$(1.3) 0 < \sqrt{D} - b < 2c < \sqrt{D} + b.$$

Si l'idéal I est réduit et b choisi de façon à satisfaire (1.1), et donc (1.2) et (1.3), nous écrirons

$$(1.4) I \equiv \{c, b, a\}.$$

L'idéal
$$\tilde{I}$$
 est l'idéal $\tilde{I} = \left[c, \frac{b + \sqrt{D}}{2}\right] \equiv \{a, b, c\}.$

L'ensemble fini des idéaux primitifs réduits d'une classe C primitive a l=l(C) éléments qui peuvent être rangés dans une suite périodique de la manière suivante:

Si $I \equiv \{c, b, a\}$, l'idéal suivant I est $I' \equiv \{a, b', c'\}$ où

(1.5)
$$q = \left[\frac{b + \sqrt{D}}{2a} \right], \quad b + b' = 2aq, \quad c' = \frac{D - b'^2}{4a}.$$

Comme
$$I$$
 est réduit, $q = \left[q + \frac{-b + \sqrt{D}}{2a}\right] = \left[\frac{b' + \sqrt{D}}{2a}\right]$ si bien que

l'idéal I précédant I' est défini à partir de I' symétriquement par

(1.6)
$$q = \left[\frac{b' + \sqrt{D}}{2a}\right], \quad b + b' = 2aq, \quad c = \frac{D - b^2}{4a}.$$

Partant d'un idéal primitif réduit $I_0 = \left[a_0, \frac{b_0 + \sqrt{D}}{2}\right] \equiv \{a_{-1}, b_0, a_0\}$ le

n-ème itéré par le procédé (1.5) de I_0 sera noté $I_n = \left[a_n, \frac{b_n + \sqrt{D}}{2}\right]$

 $\equiv \{a_{n-1}, b_n, a_n\}$, de telle sorte que la période de I_0 est formée des idéaux $I_0, I_1, ..., I_{l-1}$ et que, pour tout $k \in \mathbb{Z}$, $I_{n+kl} = I_n$. De plus, pour tout n on a d'après (1.1), (1.2), (1.3) et [7:(2.12) et (5.5)]

est clair.

(1.7)
$$I_n = \frac{a_n}{a_0} \left(\prod_{i=1}^n \varphi_i \right) I_0 , \quad \operatorname{sgn} \left(N \left(\prod_{i=1}^n \varphi_i \right) \right) = (-1)^n ,$$

$$\varphi_n > 1 , \quad \frac{a_n}{a_{n-1}} \varphi_n > 1 .$$

Dans tout ce travail nous poserons

(1.8)
$$\bar{D} = \begin{cases} D, & \text{si } D \equiv 1 \pmod{4}, \\ \frac{D}{4}, & \text{si } D \equiv 0 \pmod{4}. \end{cases}$$

§2. IDÉAUX AMBIGES, IDÉAUX AMBIGES PRIMITIFS RÉDUITS

Définition 1. Un idéal ambige est un idéal égal à son conjugué.

LEMME 1. i) Les idéaux ambiges sont les **Z**-modules de l'un des types suivants:

$$A_1 = d\left[a, \frac{\sqrt{D}}{2}\right]$$
 avec $4a \mid D$,

$$A_2 = d \left[a, \frac{a + \sqrt{D}}{2} \right] \quad avec \quad 4a \mid D - a^2.$$

ii) $Si \ D \equiv 1 \pmod{4}$ il n'y a pas d'idéal ambige de type A_1 .

Démonstration. Dire que $I = d\left[a, \frac{b + \sqrt{D}}{2}\right]$ est ambige signifie que $\left[a, \frac{b + \sqrt{D}}{2}\right] = \left[a, \frac{-b + \sqrt{D}}{2}\right]$, donc que $b \equiv 0 \pmod{a}$, et I est du type A_1 ou A_2 suivant que $\frac{b}{a}$ est pair ou impair, ce qui démontre i), et ii)

On prouve alors le résultat suivant (cf. Gauss [1], §257-259):

PROPOSITION 1. Les idéaux ambiges primitifs et ambiges primitifs réduits sont donnés par le tableau suivant, où \bar{D} est défini par (1.8):