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INFRASTRUCTURE DES CLASSES AMBIGES
D’IDEAUX DES ORDRES
DES CORPS QUADRATIQUES REELS

par Franz HALTER-KOCH, Pierre KAPLAN, Kenneth S. WILLIAMS ')
et Yoshihiko YAMAMOTO

§1. INTRODUCTION

Soit Op un ordre d’un corps quadratique réel K, de discriminant D. Le
nombre D est un entier rationnel positif non carré congru a 1 ou 0 modulo 4.
Chaque classe primitive d’idéaux C de Op contient un nombre fini / = /(C)
d’idéaux réduits primitifs, et ces idéaux peuvent &étre rangés en une période.
Le but de ce travail est d’étudier la structure, ce que D. Shanks appelle
«Pinfrastructure» ([8]), de cette période dans le cas ou la classe C est une classe
ambige, c’est-a-dire égale a sa conjuguée C. Les notions évoquées ci-dessus
sont soit définies dans notre précédent travail [7], auquel nous renvoyons le
lecteur pour les détails et les démonstrations des faits exposés dans l’intro-
duction, soit seront définies plus bas. '

Apres avoir rappelé au §2 les résultats classiques concernant les idéaux
ambiges primitifs réduits, résultats connus depuis Gauss ([1]) dans le langage
des formes quadratiques binaires, puis déterminé le produit de deux idéaux
ambiges réduits (Proposition 2), nous introduisons au § 3 une notion nouvelle,
celle d’idéal symétrique, idéal nécessairement réduit, associé a certaines
décompositions de D en somme de deux carrés. Ensuite nous déterminons le
produit de deux idéaux symétriques (Proposition 4). Ceci fait, au §4, aprés
avoir montré qu’une classe ambige contient un idéal ambige réduit et un idéal
symétrique quand N(gp) = — 1, soit deux idéaux ambiges réduits ou deux
idéaux symétriques quand N(ep) = + 1 (Théoréme 1), nous pouvons
comparer modulo 4 la longueur / de la période d’une classe ambige C avec la
longueur /, de la période de la classe principale.

Nous montrons aussi comment cette méthode permet d’obtenir
une troisieme démonstration du résultat de [6] qui dit que les longueurs

1) Research supported by Natural Sciences and Engineering Research Council of Canada
Grant A-7233.
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modulo 4 des périodes des classes principales de discriminants D et 4D pour
D =1 (mod 4) sont égales si, et seulement si, &,p = 83D (Théoréme 0). Mais
le résultat le plus élégant de ce travail nous semble étre le fait, inclus dans les
Theorémes 2 et 3, qu’un certain idéal symétrique S’ construit d’une maniére
simple a partir d’un idéal symétrique donné S est toujours principal quand
N(ep) = — 1, toujours équivalent a S quand N(ep) = + 1.

Nous indiquons maintenant les notations et résultats que nous allons
utiliser. Si a;, a,, ..., a, sont des nombres entiers rationnels, nous désignerons
par (a;,...,a;) le plus grand diviseur commun de ces nombres. Si A est.un
anneau commutatif unitaire et o, ..., o, des éléments de A, nous désignons
respectivement sur [o,,...,d,] (m>=2) le Z-module et par {a,..., 0,
(m = 1) I'idéal {A-module) engendré par a,, ..., 0.,,. Si ¢ est un nombre réel,
[@] désigne la partie entiere de ¢. Le produit des idéaux I = (a;,..., 0, » et
J={Bi,....,B.y est lidéal IJ= (0Bi,..., 0B, ...,0,B,>. Enfin a|b
(respectivement a } b) signifie que I’entier rationnel a divise (respectivement
ne divise pas) ’entier rationnel b.

D’apres [7], Proposition 1, les idéaux non nuls de Op sont les Z-modules

[

.

ou 4a|D — b?, et lidéal I est déterminé par |d|, |a|

et b (mod 2a). Le nombre | d?a | est la norme de I’idéal I et sera noté N(I).
Sauf mention explicite du contraire, nous supposerons toujours d et a > 0

2

dans D’écriture I = d [a,

D — b?

4a

L’idéal I est primitif si d = (a, b, ) = 1. Si I’idéal I est primitif,
son conjugué I.est primitif et I = N().

Deux idéaux I et J de Op sont équivalents (noté I~ J), si il existe deux
nombres o et B non nuls de Op tels que af = BJ. Parmi les classes définies
par cette relation d’équivalence, celles contenant des idéaux primitifs forment
un groupe fini que nous noterons Cp.

abH/B]
)

Considérons maintenant les idéaux primitifs réduits. Soit I = [

D — b? L
un idéal primitif. Posons —— = ¢. On peut aussi éecrire I = a[l, ¢] avec

4a
| b+ VD e 2a o o
¢ = ——l/_, et ¢ est déterminé modulo 1. L’idéal I est réduit si I’on peut

2a
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choisir » modulo 2@, ou ¢ modulo 1, de maniére que les trois conditions
équivalentes suivantes soient réalisées

(1.1) p>1, —-1<o0<0,
(1.2) 0<VD-b<2a<VD+b,
(1.3) 0<V5—b<2c<VB+b.

Si I’idéal I est réduit et b choisi de fagon a satisfaire (1.1), et donc (1.2)
et (1.3), nous écrirons

(1.4) I={c¢cb,a}.

b+l/13
2

1ﬁ%dieﬁFM@Lf:[q ]s{macy

L’ensemble fini des idéaux primitifs réduits d’une classe C primitive a

[ = [(C) ¢éléments qui peuvent étre rangés dans une suite périodique de la
maniere suivante:

Si I ={c, b,a}, ’idéal suivant I est I’ = {a, b’,c’} ou

b+ VD

2a

D —b'?
4a '
b+ VD

2a

(1.5) q =

], b+b' =2aq, ¢ =

Comme [ est réduit, g =

q

—b+l/1_)]
+——
2a

] si bien que

’idéal I précédant I” est défini a partir de I’ symétriquement par

(1.6) g =

b'+ /D

2a

D — b?
4a

], b+b =2aq, c=

bo+l/13

Partant d’un idéal primitif réduit I, = [ao,
2

] = {a—lybOaGO} le

n-eme itéré par le procédé (1.5) de I, sera noté I, = [an

b, + 1/5
)
={a,_1,b,,a,}, de telle sorte que la période de I, est formée des idéaux

Iy, I, ..., I,_, et que, pour tout k € Z, I, .+, = I,. De plus, pour tout n on a
d’apres (1.1), (1.2), (1.3) et [7:(2.12) et (5.5)]
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n

I, = @(H qn) Iy, Sgn(N(inI1 (p,')) =(-n",

| ay
(1.7)

Dans tout ce travail nous poserons

si D= 1(mod4),

D,
f ~_ D
(.5} D S+ s D=0(mod4).

§2. IDEAUX AMBIGES, IDEAUX AMBIGES PRIMITIFS REDUITS
Définition 1. Un idéal ambige est un idéal égal a son conjugué.

LEMME 1. 1) Les idéaux ambiges sont les Z-modules de I’'un des types
suivants:

/D
A =d a,~2——] avec 4a|D,

a+l/5]

2

avec 4a|D — a* .

A2= d[a,

iil) Si D=1(@mod4) il n’y a pas d’idéal ambige de type A,.

b+ﬁ

2

Démonstration. Dire que I =d [a, est ambige signifie que

457 [

donc que b =0(moda), et I est du

type A; ou A, suivant que — est pair ou impair, ce qui démontre i), et ii)
a

est clair.
On prouve alors le résultat suivant (cf. Gauss [1], §257-259):

; PROPOSITION 1. Les idéaux ambiges primitifs et ambiges primitifs réduits
- sont donnés par le tableau suivant, ou D est défini par (1.8):

i
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Discriminant Idéaux primitifs ambiges + réduits
a+ 1/15 D
D = 1(mod4) a— ],aID, (a,—)zl a< /D
a
D = 4 (mod 16)

a,l/B , a D, a,
D = 8, 16, 24 (mod 32) | 1l \

):1 a<VD

[a,l/B] ,al|lD, |a,
D = 12 (mod 16) a< /D

[2a,a+[/5],a|l_), (a,g) =1
a

[a,l/B],aID,(a,l-z)zl a<VD

D = 0 (mod 32)

_ D D |/ D

[4a,2a+1/1—)],a|2,(a,4—)=1 a< —
a

Démonstration. Nous cherchons d’abord les idéaux primitifs ambiges.

Soit 7 un tel idéal.
a+ /D
2

Si D=1(mod4), I= [a, ] ol a=1(mod2), 4a|D — a? et

D — a? D D
a, =1. Alors a|D et |a,——a] = |a,—] = 1. Inversement
4a a a

D
si a=1(@mod2), a|D et (a,—):l, on voit que 4a|D — a? et

a
D — q?
a, = 1.
dq

Si D = 0 (mod 4), tous les Z-modules [

1/13] D ( D)
a,— | aveca|—et a,—| =1
2 4 4a

a+ /D

2

conviennent. Cherchons si il y en a du type 4, = |aq,

] . Alors a est
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pair et I’entier positif a’

a

— doit vérifier
2

(2.1 2a’

) D_a?
D - a'?, 2a’,

| 2a’

i ce qui entraine a’ | D.

Si D=1 (mod2), alors a’ = 1 (mod 2) et la deuxiéme relation ne peut
€tre vérifiée que pour D = 3 (mod 4), c’est-a-dire D = 12 (mod 16). Alors
2a’

D-a’sa|D

et s1 cecl est vrai

D—a’? D
2a’, =1e |2,
2a’

Ceci nous donne la liste des idéaux primitifs ambiges pour D = 4 et
" 12 (mod 16).

Il reste donc a étudier les cas ou D = 0 (mod 8). Alors (2.1) implique
a’ =2a" d’ou D = 4D" et s’écrit donc ici

77 I12 rs DII - a,’2
D" —a"? 4a",———| =1
a

rs

a

qui équivaut a

2.2)

77

a

DII
DII, 4all’__all s 1 .
aII
Mais (2.2) implique que —$ a”’ (mod2), donc D” =0 (mod?2), soit
a
D = 0 (mod 32), et alors (2.2) équivaut a

DII
DII’ all, . 1 ,
all

al’

ce qui achéve la démonstration de la liste des idéaux primitifs ambiges
. Pour trouver ceux qui sont réduits nous utilisons le

LEMME 2. L’idéal I = all,y] est réduit si,

et seulement si,
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Démonstration. On peut remplacer y par ¢ =y + [—y] qui vérifie
0< —y — [—-W¥] <1, c’est-a-dire — 1 < ¢ <0, donc I’idéal I est réduit si,
et seulement si, ¢ = vy + [—y] > 1, ce qu’il fallait démontrer.

Ceci étant, on voit que

/D . VBV[VB /D
a, — | est réduit & + >1e
[ 2 ] 2a 2a

a < —
2

et que

est réduit &
2 2a

VD VD 1

& — 4+ | — — -
2a | 2a 2

[Qa+VD' V5+a+ VD—a]>1

2a

RN DR~

2 2a 2

ce qui achéve de démontrer la Proposition 1.

COROLLAIRE 1. Si D = 0 (mod 32), un idéal ambige primitif est déter-
miné par sa norme.

Démonstration. Dans la deuxi€éme colonne du tableau de la Propo-
sition 1 a des normes distinctes correspondent des idéaux distincts.

COROLLAIRE 2. Si D =0 (mod32), soient t>=3 et A les entiers
définis par
D=2A, A=1(mod2).

Les idéaux primitifs ambiges et primitifs ambiges réduits sont donnés par
le tableau suivant, ot a désigne un entier tel que

A
a>0, alA, (a,—)zl.
a

Type ldéaux ambiges primitifs + réduits
1 la, )/ D] a<|/D
2 [2¢a, )/ D] 2t < /D

3 [4a, 2a + 1/5] 2a < 1/5

4 [2fa,2f‘la+1/f3] 2"1a<l/lt)
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Démonstration. Le Corollaire 2 est une conséquence immeédiate de la
Proposition 1, cas ou D = 0 (mod 32).
Nous aurons aussi besoin du résultat suivant:

= {a_,,kay,ay} un idéal ambige

kao + I/.E]
2

LEMME 3. Soit [, = [ao,

primitif réduit, I, [l’idéal suivant I, dans sa période. Alors I, = p.I,
avec

:k00+ﬁ 1/5_ 1/1—3

1<p1<——.

(2.3) o)
_ 2ay 75 do

Si Iy=(1) alors VD-1<p, <V/D.

a, kay+ VD  kao+ VD
Démonstration. D’apres (1.7) I, = — —i—[ Ih=—— "I, e,
ao 2a, 24,

kay — |/ D kay + VV D
comme l’idéal I, est réduit, — 1 < J <0, donc p; = ——0———[

2ao 200
. l/B L kao — 1/5

ap 200
le Lemme 3 il suffit-de noter que ao = 1 si [, = (1).

vérifie les inégalités (2.3). Pour achever de démontrer

Définition 2. La norme réduite N’'(I) d’un idéal ambige primitif 7 est le
nombre a du tableau de la Proposition 1 si D £ 0 (mod 32) et du tableau du
Corollaire 2 si D = 0 (mod 32).

PROPOSITION 2. Soit D = 0 (mod 32). Soient I, et I, deux idéaux
ambiges primitifs de normes réduites D, et D, respectivement.

1l existe quatre entiers positifs d, dy,d,,d’ premiers entre eux deux a
deux tels que

D =ddyd\d’, D,=dd,, D =dd,
et un nombre rationnel | r dépendant de 1, et I, tel que l’idéal
L (il N'(J) = dody, si dody<VD,
{rVBIOII . N =dd, si dod>VD),

- soit un idéal ambige primitif réduit.
L’idéal J est égal a (1) si, et seulement si, I, = 1,.
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Démonstration. D’aprés la Proposition 1 et la Définition 2 on a

D = DyD, = D,D; avec (D;,Dp) = (Di,Dy)=1.

Définissons d, d, et d; par
Do:ddo, Dlzddla (d03d1): 1.

On voit qu’il existe d’ tel que D| = dod” d’ou Dy = d,d’ et donc
D = dd,d;d’ avec (ddy,d\d’) = (dd,,dyd’) =1
ce qui prouve que les nombres d, dy, d;,d sont premiers entre eux deux a

deux.

Dy + /D
Supposons d’abord D=1 (mod4). Alors I, = Do,—z—— ,

et, effectuant le produit, on trouve

d+d\ (do+d,
od; + /D
Ll ddyd, + d\V/' D ddydy + do)/ D 2 2
7 = ddodl ’ 5 ’ 2 ’ 2 :

D, +V/D
I - [Dl,%ﬁ]

do+d, d+d’ , 1,1
Comme (dy,d;) =1 et 5 = 5 (mod 2) on voit que —d— est un

. . . . 1ol
idéal ambige entier sans diviseur rationnel, et, comme tout nombre de —

s’écrit

kdyd, +1V/D Il
0 12 ou /, k € Z, on voit que tout entier rationnel de L

est multiple de dyd,.

d—d’ ) s Iy I,
D’autre part dd,d,; et ” dod, appartiennent a 7 , donc N —d—

= dyd,, ce qui, comme (dyd,,dd’) = 1, prouve par la Proposition 1 que

I, dod, +V/D D1, g .
—— ——F | et que —d— est ambige et primitif.

d()dl ’

. Iyl : o
Si dod, < VB, id—l est réduit donc on satisfait a la Proposition 2 en posant
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- Si dyd, > 1/5 on trouve par le méme calcul

dod D !
[dodl,_o%[] [dd,,d_d—;_ﬁ] _ [D) QZ_VB] VD

IyI
Multipliant par I’idéal primitif % on obtient
dd’ + 1/13] VDI,

2 " ddyd,
1

[a’a”,

dd'+ VD
2

ce qui démontre la Proposition 2 avec r = s J = [dd',

ddyd,

I Le cas ou D = 0 (mod 4), quand les idéaux [, et I; sont du type A,, est
analogue, en plus simple, et on trouve le méme résultat.

Si D = 12 (mod 16) on trouve, par un calcul analogue, quand au moins un
des idéaux Iy, I; est du type A,,

1 - — -
= [2Dy, D, + VD] 2Dy, D, + VD] = [dod;, VD],

1 _ _
d’ourzzi,Jz[dodl,VB], si dod, <VD, et

1 - — -
~ 2Dy, Dy + VD [D,,VD] = [2dvd;,dod, + VD],

1 _ _
donr=—, J = 2dod,, dod, + VD], si  dod, < VD .

J=dd"VD

" Puis, si dyd; > /D, on obtient respectivement r = ,
2ddyd,

. J=[2dd",dd’ + VD] .

et r=
o]
Ces calculs montrent que J = (1) si, et seulement si, dy = d; = 1 et si les

- idéaux I, et I, sont de méme type, donc si [y = I;. Ceci achéve de prouver la
' Proposition 2.

| PROPOSITION 2°. Soit D = 0 (mod 32), et soient t et A les entiers
- définis au Corollaire 2.

Soient 1, et I, deux idéaux ambiges primitifs de normes réduites D,
{ et D, respectivement. Il existe quatre entiers positifs d, dy, d,, d’, premiers
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entre eux deux a deux, tels que
Azddodldl, D():ddo, Dl :ddl ,

et un nombre rationnel r dépendantde I, et I, tel que l’idéal J défini
ci-dessous soit un idéal ambige primitif réduit.

Types de I, et I, J = rLl ' rlfloll
(Corollaire 2)

du méme type dod, < l/B dod, > 1/5

let2,3etd 20dyd, < /D 2idyd, > VD

2et3, 1et4d 20-1dyd, < VD 20-1dyd, > /D

let3,2et4 2dod, < VD 2dyd, > VD

L’idéal J est égal a (1) si, et seulement si, I, = 1I;.

Démonstration. La Proposition 2’ se démontre comme la Proposition 2.
On calcule les produits d’idéaux primitifs ambiges réduits des dix différentes
combinaisons de types en fonction des nombres d, et d;. Si le produit obtenu

n’est pas reéduit, on le multiplie par 1’idéal «complémentaire» pour obtenir un
idéal réduit.

§3. IDEAUX SYMETRIQUES

b+l/13 2
2

un idéal et ¢ =

Définition 3. Soit I = [a, . L’idéal 7

4a
est symétrique si ’on peut choisir b > 0 dans sa classe modulo 2a de facon
que a = c.

Définition 4. a) Une représentation de D comme somme de deux carrés

est un couple (M, N) d’entiers > 0 tels que (M,N) = 1,M? + N2 =D et
= 1 (mod 2).

b) Soit D = M? + N? une représentation de D. 1’idéal symétrique
primitif
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N M+VD
[—,—— , si D=1 (mod4),
S = 2 2
[IM,N+VD], si D=0 (mod4),

est dit associé a la représentation (M, N) de D.

PROPOSITION 3. 1) Tout idéal symétrique est réduit.
11) Les idéaux symétriques primitifs sont les idéaux associés aux repré-

sentations de D.

Démonstration. 1) On voit facilement que les relations D = b? + 4a?,
a > 0, b > 0 impliquent (1.2).

-2

ii) Soit I = |a, 5 un idéal symétrique. On a donc D = b? + 4a?,

b > 0, et I est primitif si, et seulement si, (a, b) = 1.

_ o N M+VD]
Si D=1 (mod4), b est impair donc I = —2—,——2— ou N = 2a,

M = bet (N,M) = (2a,b) = 1. Inversement, si D = M? + N?,(M,N) =1 et
N M+VD
272

M =1 (mod2), alors ] est un idéal symétrique et primitif.

D
Si D=0 (mod4), b est pair, donc @ impair et 7 = M? + N? avec
b = ' b
M=a=1 (mod2)N=E, et I = [M,N + /D] avec (M, N) = a,E = ].

D ,
Inversement si 7 =M?+ N? avec (M,N)=1, M =1 (mod2) alors

[M, N + VB] est un idéal symétrique, et primitif car 2N, M) = (N, M) = 1.
Nous allons étudier les représentations de D dans les Lemmes 4 et 5 puis

en déduire une propriété importante des idéaux symétriques associés.
LEMME 4. a) Les discriminants D tels que [’anneau Op contienne

des idéaux symétriques primitifs sont les nombres D tels que

' (3.1) D=2pS'..px, s=0oul, p; premier =1 (mod4) .

b) Soit | le nombre des diviseurs premiers distincts de D. Le nombre
des représentations de D comme somme de deux carrés est 2'-!.

c) Le nombre des idéaux primitifs symétriques est 2!-1.
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d) Le nombre des idéaux ambiges primitifs réduits est 2'~1, et la norme
de tout tel idéal divise D.

Démonstration. D’aprés la Proposition 3 les nombres D sont les nombres
tels que D est somme de deux carrés premiers entre eux, ce qui prouve (3.1).
D’aprés [9], Satz 52, le nombre des décompositions de D en somme de deux
carrés premiers entre eux est 2%-1; chaque' décomposition donne une
représentation si s = 0 et deux représentations si s = 1, ce qui prouve b), et
c) résulte de la Proposition 3, ii).

Comme D = 1 (mod4) ou D = 4 (mod 16) ou D = 8 (mod 32), le tableau
de la Proposition 1 montre d).

LEMME 5. Soit ‘D un discriminant tel que D  soit représentable
comme somme de deux carrés. Soit, d’une part, D = M? + N* une repré-
sentation de D et, d’autre part, une décomposition D = D\D, en deux
facteurs D, >0 et D, >0 premiers entre eux. Alors il existe un couple
unique de représentations D, =a:+ b>,D,=a,+ b, et un signe
0= x1 tels que

M=|a1a2-9b1b2], N:|a1b2+9a2b1].

Démonstration. Nous supposerons D, impair. Soient /; et /;, le nombre
des diviseurs premiers de D, et D, respectivement. D’apres le Lemme 4 le
nombre des représentations de D, est 2/1—1 celui de D, est 22- 1. Prenant un
couple de représentations D, = a; + b}, D, = a2 + b} et un signe 6 = + 1
nous obtenons ‘

(3.2) ' DZ |alaz—6b1b2}2+ [azbl +6a1b2{2

de 20i-1+L=1+1 = 2/-1 maniéres différentes.

Pour démontrer le Lemme 5 il suffit de montrer que nous obtenons ainsi
les 2/-! représentations de D, c’est-a-dire que nous avons bien des repre-
sentations de D au sens de la Définition 4 et qu’elles sont distinctes.

Comme @ =a,=1 (mod2) et que b =0 (mod2) on voit que
a,a, — 0b, b, est impair.

D’autre part, dans ’anneau Z[i], on a

(33) (al + lb]) (02 + lez) = (a1a2 - eblbz) + i(a2b1 + Oalbz) .

Comme ni a; + ib;, ni a, + ib, n’a de diviseur rationnel et que
(ai+bi,a5+b3) = 1 on voit que (a1a, — 0b,b,, a, b, + 0a,b,) = 1, et donc
que M = |aja, — 0b,b, |, N = | a,b, + 0a,b, | est une représentation de D. Ii
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reste a démontrer que les 2/~! représentations ainsi obtenues sont distinctes.
Supposons donc que I’on ait

|aya, — 0b, by | = |aja} — 0'b]b;

. |ab + 0aby| = |ab| + 0'alb;

ou (a;, b)) et (a;,b}) sont des représentations de D, et D, respectivement.
Ceci signifie que 'une des quatre égalités suivantes est vraie:

(a;+ib}) (a,+1i06'b)

— (a;+1ib)) (a5 +i0'b))

(a; —iby) (a;—i07Dy)

— (a;— b)) (a,—187D3)

(Cll + lbl) ((lz + lebz) =

Les troisieme et quatrieme égalités ne peuvent pas étre vérifiées car les deux
membres n’ont pas les mémes facteurs irréductibles dans Z[i]. On voit donc
que a, +ib, et a; + ib] sont associés et, tenant compte des parités et
des signes de a;,b,,a;,b], on a a +iby=a;+ib] d’ou a, + i0D,
= % (a,+19'b;) ce qui, tenant compte des signes de a,, by, a;, b;, montre
que 6 =0" et a, +i0b, = a; + i0b;, et acheve la démonstration du
- Lemme 5.

Gréce a ce Lemme 5 nous pouvons obtenir le résultat le plus profond de
ce travail: ‘

PROPOSITION 4. Soit D un discriminant tel que [’anneau Op
contienne des idéaux primitifs symétriques. Soit D = M? + N? une repré-
sentation de D et D = D,D, une décomposition de D en deux facteurs
premiers entre eux.

Soient D, = a* + b?,D, =c*+d?> et 6 = =1 lesreprésentations de
D, et D, et le nombre 0 bien déterminés par le Lemme 5 tels que
M =|ac —0bd|,N = |ad + 0bc|. Alors m =|ac + 0bd|,n = |ad — 0bc|
est une représentation de D, et posant

D, + VD
2

b

N M
s [___VB] o
2 2

n m+l/5
2’

- [o. :

I=[D,V/Dl, S=MN+VDl, S =[mn+VD],
\ si D=0 (mod4)

L on a
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Y
3.5 SS'=|—1|1
G- (Dl)
ol vy est un nombre de Op qui vérifie
(3.6) sgn N(y) = sgn(abD, — cd D) ,
( D D 2
M+ VD) (m+)/D - Y s D=1 (@mod4),
2 2 D,
(3.7) { .2
(N+l/f))(n+l/5)=l—)—, si D=0 (mod4) .
\ 1

Démonstration. Supposons D = 1 (mod 4). Alors on voit que

[ad + be, ac — bd + /D] [ad — be, ac + bd + VD] |, si ac > bd,

(3.8) 4S8S’'=
{[ad+bc,bd—ac+ﬁ] [ad—bc,ac+bd+l/5] , Sl ac < bd .

Considérant d’abord le cas ou ac > bd on trouve

488" = (ad? - bc?,(ad + be) (ac + bd + /D) ,

(3.9)
(ad — bc) (ac — bd + /D), a*c? — b2d? + D + 2ac)/ D> .

Posons

_ch+a\/5 ”_Dla’+bVl_)

(3.10) v’
2 Y 2

, Y,y " €O0p.

On vérifie par un calcul aisé que

4_N ! rs
(3.11) b2c? — a?d? = (V), a2d2_b262:4N(Y )

D, D,

b

4yl2
a’c? — b2d* + D + 2acl/— _—
D

4Y’,2

b

D,

b

(3.12)

b2d® — a*c? + D + 2bd)/D =

4 4 77
(ad + be) (ac + bd + /D) = 2

(3.13) £y

4 r —rrs
(ad — be) (ac — bd + /Dy = 2

1
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st bien que 'on a

(3.14) SS’ = (Y—) VT
D

1

Siac < bd il suffit de changer le role des paires (a, ¢) et (b, d) et ’on trouve

4 ’Yl’ r .7 rr __rrs
D,
Considérons maintenant 1’idéal entier ambige sans diviseur rationnel
J: <’Y’,'Y,,”?,,’?,I>.
La définition (3.10) de vy’ et v montre que tout nombre de J s’écrit

xD; + yl/B L . .

5 ou x, y € Z avec x = y (mod 2), donc tout entier rationnel de J
est multiple de D,. D’autre part v + vy =cD; et v + v"" = dD, appar-
tiennent a J et aussi D;, donc N(J) = D,. Mais, d’aprés le Lemme 1, I est
le seul idéal ambige sans diviseur rationnel de norme D,, donc J = I.

On obtient (3.5) en posant vy = v’ si ac > bd,y = v’ si ac < bd. Mais,
d’apres (3.11), on voit que

sgn(bc—ad), si ac—bd>0,

sgn N(y) =
en V() {sgn(ad—bc), si ac—bd <0,

ce qui signifie que
sgn N(y) = sgn[(ac — bd) (bc — ad)] = sgn (abDé —cd D)

ce qui est (3.6), et (3.7) se voit en comparant (3.8) et (3.12), ce qui acheve la
démonstration quand D = 1 (mod 4).

Considérons maintenant le cas ou D = 0 (mod 4). La démonstration de
(3.14) et (3.15) est semblable, il suffit de supprimer le facteur 4 dans (3.8), de
permuter ¢ et d, de supprimer les facteurs 2 des dénominateurs de (3.10), et
de remplacer D par D si bien que (3.14) et (3.15) sont vraies avec

(3.16) v ' =Dd+a/D, v"=Dec+bl/D.

Ici aussi il faut montrer que J = {vy’,v",v ,y"" ) est égal a I. On voit,
- comme plus haut, que tout entier rationnel de J est multiple de D,, et aussi
que 2c¢Dy,2dD, et (bd—ac)D, sont dans J, ce qui, comme (c,d) = 1,
a=c=1 (mod 2) et bd = 0 (mod 2) prouve que N(J) = D,, et, d’aprés la
- Proposition 1, prouve que J = I. La démonstration de (3.6) et (3.7) est la méme
| que celle pour le cas D =1 (mod4) ce qui achéve la démonstration de la
. Proposition 4.
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§4. CLASSES AMBIGES

Définition 5. Une classe C d’idéaux de Op est ambige si elle est égale a
sa conjuguée C, c’est-a-dire si tout idéal I de C est équivalent a son
conjugué 1.

PROPOSITION 5. Les classes ambiges primitives sont les éléments
d’ordre 2 du groupe Cp des classes primitives d’idéaux de Op.

Démonstration. D’apres [7] (Proposition 2, Déiiinitions 3 et 4) toute
. classe C du groupe Cp des classes primitives vérifie CC = 1, donc C? = 1 si,
et seulement si, C = C, ce qu’il fallait démontrer.

PROPOSITION 6. Une classe d’idéaux C de Op est ambige si, et
seulement si, sa période est formée de couples d’idéaux I = {c,b,a} et
I ={a,b,c}.

b+VD1 D — b2
—| un idéal, ¢ =
2 da

Démonstration. Soit I = [a, . On sait

2

([7], Corollary 2) que [a,

2
18], 5208)

est ambige si, et seulement si, [a, La Propo-

sition 6 s’obtient en considérant les idéaux réduits de C.

PROPOSITION 7. La classe d’un idéal symétrique est ambige.

, . | b+ VD > "
Démonstration. Soit S = a,—z— un idéal symétrique ou b

est choisi de facon que @ = c¢. D’aprés [7], Corollaire 2, on voit que

~b+ /D | y
S~ |a, —2— , C€ qu1 prouve la Proposition 7.

THEOREME 1. Soit C une classe ambige primitive de Op dont la
période contient | idéaux réduits primitifs.

Si N(ep) = — 1 le nombre | est impair et la période de C contient
un idéal ambige et un idéal symétrique. La numérotation des idéaux de la
période de C peut étre choisie de facon que ces idéaux soient respectivement
Iy (ambige) et I,., (symétrigue).

2
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Si N(ep) =1 le nombre | est pair et la période de C contient soit
deux idéaux ambiges, soit deux idéaux symétriques. La numérotation des
| idéaux de la période de C peut étre choisie de facon que ces deux idéaux
' soient I, et I,.

2

Démonstration. Nous considérons une classe ambige dont la période a
pour longueur /, contenant les idéaux I, = {c,b,a} et I, = {a,b,c}. Nous
distinguons le cas a) ou » est impair (n =2m + 1) et le cas ) ou n est pair
(n=2m).

(1) On a IO = {Cab;a}’12m+l = {a,b,C}.
Tenant compte de (1.5) et (1.6) on trouve que

I' I/’HE{C9B9A}3 [m+IE{AaB,C}

est un idéal ambige.

2

ce qui prouve que A |B et que I, = [A
D’autre part
I, =1, ={c,b,a}, Ly ={ab,c}.
Donc, pour tout k> 0

Il—kE{PaQ’R}a I2m+l+kE{R)Q;P}~

Si | est impair, I’équation [ — k = 2m + 1 + k admet pour solution
/-1
sz— m, et on voit que lidéal I,_, =1 ,,,={P,0O,P} est
m+ ——
‘ 2
symétrique. Changeant la numérotation on voit que I, est ambige et [,
' EY

symétrique.

Si [ est pair, ’équation [ — k =2m + 1 + kK + 1 admet pour solution

: [ .1, )
k= 5 —m —1,donc I, . ,k+1 =1 , est un idéal ambige. Donc, changeant

m+ -
2

la numérotation, I, et I, sont des idéaux ambiges.
g

i

B) On a
IOE{Cyb’a}a Isz{a,b,C} *

|
!
i
i

iTenant compte de (1.5) et (1.6) on voit que I, est un idéal symétrique.
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En outre
Iy=1={c,b,a}, L,={ab,c}
donc, pour tout k > 0,
I« ={P,0Q,R}, Lk ={R,Q,P}.

Si | est impair, ’équation / — k = 2m + k + 1 admet pour solution
[ —1 .
k = —— — m ce qui montre que ’idéal I ,_; est ambige.
"t
Changeant la numérotation on voit que I, est ambige et /;,; symétrique.
2

Si [ est pair, ’équation / — k = 2m + k admet pour solution &k = 5 m,

donc l’idéal I , est symétrique. Donc, changeant la numérotation, on voit
m+—
2

que I, et I, sont symétriques.
2
En résumé nous voyons que I’on peut choisir la numérotation dans la
période pour que:

Si [ est impair, I, est ambige, I;,; symétrique,
2
Si /[ est pair, I, et I, sont ambiges, ou bien symétriques.
2
Il reste @ montrer que la période de C ne contient pas d’autre idéal ambige
ou symeétrique que ceux que nous venons de trouver.

Si Iy ={c,ka,a} et I,={C,KA,A} (0<x</) sont ambiges, on a

[
I, ={A,KA,C} et, d’aprés (1.5) et (1.6), on a I, = I,,, donc x = 5

Si Iy = {c,ka,a} est ambige et I, = {A, B, A} 0<x<]) est symetrlque
on voit que I, , = Ix+k (k>0), donc [, = sz, donc I, = IO—sz et

[+1
IOZIZX—ls dOHCX:T.

Si Iy={A,B,A} et I, = {C,D,C} sont symétriques (0 <x</), on voit

que Iy = I,, donc x = 5

Pour achever la démonstration du Théoréme 1 il suffit de remarquer que
N(ep) = (- 1)".
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COROLLAIRE 3. a) [/ existe des classes ambiges ne contenant pas d’idéal
ambige si, et seulement si, N(sp) = + 1 et D est somme de deux carrés
premiers entre eux.

b) Le nombre de ces classes est égal a celui des classes ambiges contenant
deux idéaux ambiges.

Démonstration. Le Corollaire 3 est une conséquence immédiate du
Théoreme 1, de la Proposition 7 et du Lemme 4, c¢) et d).

Remarque. La méthode que nous avons utilisée pour établir le
Théoréme 1 est celle que Gauss utilise pour étudier les classes ambiges de
formes quadratiques binaires ([1],§187) et, dans le cas ou D =4p,p
premier = 1 (mod 4), montrer que la période de la classe principale permet de
décomposer p en somme de deux carrés car elle contient les formes symétriques
+ ax? + 2bxy ¥ ay? ou p = a* + b? avec a = 1 (mod 2) ([1], §165).

Le Théoréeme 1 lui-méme, exprimé dans le langage des formes quadratiques
binaires, se trouve dans [4] (Théoréeme 1, p. 172).

Dans le cas ou D n’a pas de diviseur carré, le Corollaire 3 a) est établi d’une
autre maniére dans [5] (Corollaire 1), et est équivalent au Satz 107 du Bericht
de Hilbert ([2]).

Nous pouvons maintenant comparer modulo 4 la longueur de la période
d’une classe ambige non principale avec la longueur de la période de la classe
principale, en combinant le Théoreme 1 avec les Propositions 2 et 4. Nous
commencons par le cas ou N(gp) = — 1.

THEOREME 2. Soit D un discriminant tel que N(ep) = — 1,1y la
longueur de la période la classe principale. Soit C une classe ambige
primitive non principale d’idéal ambige I de norme D, tel que
D = D,D,, et d’idéal symétrique S associé a la représentation (M, N)
de D. Soient a,b,c,d les entiers positifs et S’ 1’idéal symétrique
- définis a partirde D,,M et N comme dans la Proposition 4, et soit | la
longueur de la période de C.

Alors I’idéal S’ est principal, et

{ [ =1, (mod4), si cdD, — abD, > 0

(4.1
1) l=1y+2 (mod4), si cdD —abD,<0.

~ Démonstration. Comme les idéaux I et'S sont équivalents, (3.5) montre
~que I’idéal S’ est principal.
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Plus précisément, posant S = al avec l1<a<egp, on voit que
S’ = (—Y—) . D’autre part soit a, tel que S’ = (a,) avec 1 < 0y < €p. Le
(lDl

Lemme 3 montre que, en fait,

1/5—1<0v0<8D:

Comme 1’idéal ambige I est réduit et non principal on a 1 < D, <D,
(Proposition 1), ce qui entraine \/Bz < 1/5 —1si D=1 (mod4) et 2|/ D,

<1V/D - 15si D=0 (mod4). Les définitions (3.10) et (3.15) de y montrent
que, comme D; < D,, on a

(
1< <VD, . si D=1 (mod4),
D,

1<Dl<2|/Dz, si D=0 (mod4),
\ 1

ce qui montre, comme 1 < a < €p, que

1
— < U <VD-1<ay<¢gp.
ep oD,
Y . ‘ YEp
Comme 0oy = (mod*ep) on voit que oyp=-—— e€t, comme
(XDl OLD1

N(ep) = — 1,

sgn(N(0)) = — sgn (N(a)) sgn (N(y))

ce qui, tenant compte de (1.7), (3.6) et du Théoreme 1, prouve (4.1) et acheve
la démonstration du Théoréme 2.

Nous considérons maintenant le cas ou N(p ) = + 1, et nous com-
mencons par traiter le cas ou D £ 0 (mod 32).

THEOREME 3. Soit D wun discriminant tel que D % 0 (mod32) et
N(SD) = + 1.

a) Soit C wune classe ambige non principale primitive contenant deux
idéaux ambiges I, et I, de normes réduites respectives D, et D, et
soient d,d, et d, les nombres bien déterminés tels que

Do = ddo s Dl = ddl s (dOsdl) =1.
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Alors

w2 {1 = J,(mod 4) , si dod, < VD,

I=1Iy+2(modd), si dd>VD.
b) Soit I [’idéal ambige réduit principal et + (1), de norme Dj, et

: D .
soit D;=-— . Soit C une classe ambige non principale contenant les
1
deux idéaux symétriques S et S’. Alors S’ s’obtient a partir de S

et I par (3.4). De plus

4.3) [ =1l (mod4) , si  c¢dD]—abD;> 0,
' I=1,+2(mod4), si cdD,—abD,<0.
Démonstration.

a) Nous appliquons la Proposition 2. Comme I, # I, et I, ~ I;, on voit
que I’idéal J est # (1) et principal.
Posant J = (0p) et I} = al,, on trouve I’égalité d’idéaux:
(%) (raN(ly)) , si dyd, < l/B ,
0p) = = -
° (f'(IN(]O))I/B ) si d()dl > ‘/—5 5
ce qui, compte tenu de ce que N(l/B) = — Det N(ep) = + 1, prouve (4.2).
b) Posant I = (0p) et N(S) = s, la relation (3.5) implique

S' = — oS = —— aypS
Dis Dis?
. - M+ VD =
ou, d’aprés [7] Corollary 2, B = 5 ouPp=-N+ \/B suivant que

D=1 ou D=0 (mod4), et donc N(B) < 0. Ceci, compte tenu de ce que
N(p) = + 1 et de (3.6), prouve (4.3) et acheve la démonstration du
Théoreme 3.

Nous pouvons maintenant donner le résultat dont 1’observation a été le
point de départ de ce travail.

COROLLAIRE 4. Soit D=8q, ou q=pS avec p premier
=1 (mod4) et s> 1. Ilyadeux classes ambiges, la classe principale C,
et une autre C, et les longueurs de leurs périodes vérifient

(4.49) [ =1, + 2 (mod4) .
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Démonstration. Les idéaux ambiges primitifs réduits sont (1) et [2, 1/2 q]
donc, avec les notations du Théoréme 1 si N(gp) = — 1 et du Théoréme 2 si
NEp) = +1,onaD =2=12+12et D, =g =c*+ d*oucetd>0sont
bien définis par ¢ = 1 (mod 2), si bien que ici

cdD, — abD, = 2¢d — (¢*+d?*) = — (c—d)* <0
ce qui, tenant compte de (4.1) si N(ep) = — 1 et de (4.3) si N(ep) = + 1

prouve (4.4).
Maintenant nous étudions le cas ou D = 0 (mod 32).

THEOREME 4. Soit D un discriminant tel que D = 0 (mod 32). Soit
C une classe ambige non principale primitive contenant deux idéaux ambiges
I, et I, de normes réduites respectives D, et D, et soient d,d, et d,
les nombres bien déterminés tels que

DO':dd09 Dlzddla (d05d1): 1.

Alors les classes modulo 4 de | et [, vérifient

Types de I, et I,

(Corollaire 2)

[ = [y (mod4)

=1y + 2 (mod4)

du méme type

dod, < I/B

dod, > VD

1et2, 3etd 2'dyd, < VD 2dod, > /D
2et3, 1etd 20-1dyd, < VD 20-1dod, > /D
1 et3,2etd 2dyd, < /D 2ded, > VD

Démonstration. La démonstration du Théoréme 4 est semblable a la

démonstration du Théoréme 3, a).

COROLLAIRE 5.

autre C. On a

(4.5) [ =1y, (mod4),

D = 2t+2q

si g<2'7?

(4.6) [=1ly+ 2 (mod4), si

Démonstration. Le Corollaire 2 montre qu’il y a trois idéaux ambiges

primitifs réduits non principaux.

avec

t>23,q =ps,p premier
impair, s = 1. Il y a deux classes ambiges, la classe principale C, et une

ousi q>2".

2072 < g <28,
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Si 272 < g < 2! le Corollaire 2 montre que ces idéaux sont [q, VB],

4,2 + 1/5] et [24,2-1 4+ VB]. Pour toute combinaison de deux de ces
idéaux on vérifie facilement que c’est la condition pour que / = /, + 2 (mod 4)
du Théoreme 4 qui est vérifiée, ce qui prouve (4.6). La démonstration de (4.5)
est analogue.

Remarque. Si D = 32q (t=3), (4.5) est vrai pour q > 8 et (4.6) pour
q=3,5,7.
Exemple 1 (Coroliaire 4).
D=40=8 x5, NEp)=-1, =1, [=3
D=136=8x17, N(p)=+1, =4, [=6.
Pour terminer cette section nous donnons deux exemples numeériques, I’un
du Théoréme 2 ou N(ep) = — 1 et Pautre du Théoreme 3 ou N(gp) = + 1.
Exemple 2 (Théoreme 2).
D = 12325 =25 x 17 %x 29, N(p)=-—-1.
I v a quatre classes ambiges, C, (principale), C,, C, et C; et nous

donnons pour chacune I’idéal ambige réduit, I’idéal symétrique et la longueur,
obtenus par réduction ([7], §5).

111+ VD1 111+ VD]
Co: |1, — X2 ~ [, =2 =1
| 2 ] | 2
85+ 1V/D1 [ 97+ VD]
Cl . 17,—‘"“/—" o~ 27,—V s 11 =35
2] | 2
75+ YD1 [ 33+ VD
G, : 25,———£ ~ |53, —\|; L=7
| 2] | 2
87+ V/D1 [ 79+ VD]
C3 . 29, —2£ ~ 39,—7—1/‘_“ > 13 =35

Nous vérifions le Théoréeme 2 pour la classe C,.
D =25=32+42, D,=1729 =132+ 182=13%24 222,

- On trouve que 33 =4.18 — 3.13. Donc a=3, b=4, c =13, d = 18.
Ensuite, changeant le signe, on trouve 4.18 + 3.13 = 111, ce qui montre

111+l/5]
2

e Cp. Enfin %

[

Eque S’ = [1,
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cdD, — abD, = 13.18.25 — 3.4.17.29 = — 66 <0

donc I, = [y + 2 (mod 4), ce qui est vrai.

Exemple 3 (Théoréme 3):
D = 5525 =25.13.17, N(p)=+1.

Les quatre idéaux ambiges réduits se répartissent dans les deux classes Co
(principale) et C; ainsi

[ 73+ [/ D] [ 25+ V D]
Co : 1,——£— ~ 25,———[ ;0 =4
2 | 2]
[ 65+ VD [ 51+VD

Vérifions le Théoréme 3a) pour C;,. On a Dy, = 13, D; =17, donc

dy =13, dy =17 et dyd, > /D donc [, = [, + 2 (mod4), ce qui est vrai.
Vérifions le Théoréme 3b). On a

DI =25=32442, Dj=13.17 = 112 + 102 = 52 + 142,
D = 41% + 622 = 732 + 142 = 712 4 222 = 72 4 742,

et on trouve deux classes ambiges contenant les idéaux symétriques:

[ 7+ VD] [ 73+ VD]

G 37,——1/——_— ~ 7,_____1/- : I, =4
| 2 | 2
[ 41 + |/ D] 71+ VD]

C; . 31,—1/' ~ 11,————1/_ i L3 =6
L 2 | 2

On a donc a = 3, b = 4.
Pour la classe C,, 7 =4.10 — 3.11 et 73 = 4.10 + 3.11, donc ¢ = 11,
d=10 et

cdD; — abD; = 11.10.25 — 3.4.13.17 =98 > 0

donc /, = [y (mod 4), ce qui est vrai.

Pour la classe C;, 41 =4.14 — 3.5, 71 =4.14 + 3.5, donc c = 5§,
d= 14 et

cdD{ — abD; = 5.14.25 — 3.4.13.17= — 902 < 0

donc /3 = /[y + 2 (mod 4), ce qui est vrai.
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§5. TROISIEME DEMONSTRATION DU THEOREME 0 ([6], [3]).

Cette démonstration n’utilise pas les Propositions 2 et 4. En revanche nous
aurons besoin de la Proposition suivante, qui est une conséquence immédiate
des résultats de [7] et du Théoréme 1.

PROPOSITION 7. Soit D wun discriminant tel que N(ep) = — 1, C une
classe ambige primitive dont I’idéal ambige réduit est I de norme D, et

2

dont l’idéal symétrique est S = [R , et soit oeK* tel que

(5.1) S=oal, I <oa<egp.
Alors

+ VD
1 (5.2) €p (%f) =a’D; .

Démonstration. Soit P la période de C. Nous utilisons les notations du
Théoréme 1 et de [7], (5.3) a (5.5), et numérotons les idéaux de P de maniere
que I =Iy={a_,by,a0}, S=1 ={ar_,by,a,} avec a,_, = a,. D’aprés
[7], (6.4) et (5.3) nous avons

(5.3) Ep = Q1. Oa—1020Px+1.-- Py [=2h -1,

ou

b+ VD

keZ) .
2 ( )

Ok =

Comme 1; est un idéal symétrique on a by, =by_p €t A_ 1k = @)1«
- pour tout k € Z si bien que

a) -k

(5.4) Orsk = Or-xk .
- ay— k-1
Utilisant (5.4) pour k=1,...,A — 1 dans (5.3) on trouve, comme
= dy-1s
a

i(5-5) €p = (P1...Qr-1)2Qr— .
a
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a

D’aprés [7], (5.5) et Proposition 8, o = — @, ... @, Vérifie (5.1), si bien
Qo
. . do . Q+VD
que (5.5) s’écrit €p@) = a2—, ce qui, comme @,Q), = ——— €t do = D,
a

prouve (5.2).

Nous considérons maintenant un discriminant D = 1 (mod4) tel que
N(ep) = — 1. On sait que, suivant le cas, €4p = €p OU 83D. D’autre part il
existe un homomorphisme 8 du groupe Cyp sur le groupe Cp ([7], Theorem 1)

qui envoie la classe de I’idéal primitif [a, b + \/I—)], ou ab =1 (mod?2), sur

b+ /D
2

la classe de [a, ] Avec ces notations nous avons

THEOREME 0 ([6], Theorem, [3], Theorem 5). Soit D=1 (mod4) un
discriminant tel que N(ep) = — 1,C une classe ambige primitive de
discriminant 4D. Soit | la longueur de la période de C et |’ celle de
la période de ©(C). Alors

I =1 (mod4), St Bap = 85

I=10'"+2mod4), si ¢ep=c¢p.

Démonstration. Nous considérons une classe primitive ambige C de O,p
et son image 0(C) par I’homomorphisme 6 de C,p sur Cp.

La période de C contient 1’idéal ambige I, = [a, 1/5] ou, d’apres la
Proposition 1, e =1 (mod2), a|D et a < l/l—) Comme I = [a,a + 1/5] la
a+V/D

2
a|Detac< 1/13 L’idéal J, est donc I’idéal ambige réduit de 9(C).

D’autre part la période de C contient I’idéal symétrique I, = [M, N + l/B]
ou D=M?*+ N? avec M=1 (mod2) et (M,N)=1. On voit que
L, = [M,(M+ N) + VIS] et, comme M+ N=1 (mod2), [Iidéal

M+N+VD
2

D - (M+N)> M?+ N?>— (M+ N)? N

aM AM 2

classe 6(C) contient 1’idéal J, = |a, , qui est ambige et réduit car

J=|M, est un idéal de 6(C). Or on a




290 F. HALTER-KOCH, P. KAPLAN, K. S. WILLIAMS ET Y. YAMAMOTO

Donc, d’apres [7], Corollary 2,

[ )y D)

Mais, comme 6(C) est une classe ambige, J ~ , donc I’idéal

N M+ VD
27 2

IN M+VD . -
- ,—2— est I’idéal symétrique J, de 6(C).

Posant I, = al, avec 1 < a < &gqp et J, =PBJy .avec 1 <P < gp nous
trouvons d’apres (5.2)

(N + /D) = a?a?p? .

€p€ap

)

Notant que £,p = €p OU €3, et que

(5.6)

[£212) - (222202

nous obtenons, en prenant la racine carrée de nombres réels positifs,

) (M+N+ I/B) , 3
€h s, S &p =Ep,
2
aap = (M+ N+ I/B) |
€p ,  SL &p =E€p
2
M+N+VD\ MN ,
Comme la norme N 5 = —2—— > 0 et N(ep) = — 1 on voit que

N(op) > 0, c’est-a-dire A = p (mod 2), si, et seulement si, €4p = 8;)_, ce qui
'démontre le Théoréme 0.

Remarque. Ce qui, dans cette démonstration, joue le rdle de la
Proposition 4 est 1’égalité (5.6).

On peut démontrer de mani€re analogue (4.1) a partir de (3.7) et (5.2), sans
utiliser (3.5), apres avoir montré que S’ est principal de la maniere suivante:

Nous supposons D = 0 (mod 4), le cas D = 1 (mod 4) est analogue. Avec
les notations de la Proposition 4 et du Théoréme 2 on écrit (5.2) pour la
classe C et pour la classe principale respectivement.

SD(N‘l‘ ]/B) = ale
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et ep(n + \/B) = ag .

Multipliant et tenant compte de (3.7) on obtient
(5.7) el — = ala;D, .

Comme tous les nombres intervenant dans (5.7) sont positifs, on a
epyY = 00D,

ce qui, au vu de (3.6), donne (4.1) en comparant les signes des normes des deux
membres.
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