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VEnseignement Mathématique, t. 37 (1991), p. 263-292

INFRASTRUCTURE DES CLASSES AMBIGES
D'IDÉAUX DES ORDRES

DES CORPS QUADRATIQUES RÉELS

par Franz Halter-Koch, Pierre Kaplan, Kenneth S. Williams1)
et Yoshihiko Yamamoto

§ 1. Introduction

Soit Od un ordre d'un corps quadratique réel K, de discriminant D. Le

nombre D est un entier rationnel positif non carré congru à 1 ou 0 modulo 4.

Chaque classe primitive d'idéaux C de Od contient un nombre fini / 1(C)

d'idéaux réduits primitifs, et ces idéaux peuvent être rangés en une période.

Le but de ce travail est d'étudier la structure, ce que D. Shanks appelle

«l'infrastructure» ([8]), de cette période dans le cas où la classe C est une classe

ambige, c'est-à-dire égale à sa conjuguée C. Les notions évoquées ci-dessus

sont soit définies dans notre précédent travail [7], auquel nous renvoyons le

lecteur pour les détails et les démonstrations des faits exposés dans

l'introduction, soit seront définies plus bas.

Après avoir rappelé au §2 les résultats classiques concernant les idéaux

ambiges primitifs réduits, résultats connus depuis Gauss ([1]) dans le langage
des formes quadratiques binaires, puis déterminé le produit de deux idéaux

ambiges réduits (Proposition 2), nous introduisons au §3 une notion nouvelle,
celle d'idéal symétrique, idéal nécessairement réduit, associé à certaines

décompositions de D en somme de deux carrés. Ensuite nous déterminons le

produit de deux idéaux symétriques (Proposition 4). Ceci fait, au §4, après
avoir montré qu'une classe ambige contient un idéal ambige réduit et un idéal
symétrique quand N(sD) - 1, soit deux idéaux ambiges réduits ou deux
idéaux symétriques quand N(zD) + 1 (Théorème 1), nous pouvons
comparer modulo 4 la longueur / de la période d'une classe ambige C avec la
longueur l0 de la période de la classe principale.

Nous montrons aussi comment cette méthode permet d'obtenir
une troisième démonstration du résultat de [6] qui dit que les longueurs

*) Research supported by Natural Sciences and Engineering Research Council of Canada
Grant A-7233.
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modulo 4 des périodes des classes principales de discriminants D et 4D pour
D 1 (mod 4) sont égales si, et seulement si, e4D z3D (Théorème 0). Mais
le résultat le plus élégant de ce travail nous semble être le fait, inclus dans les

Théorèmes 2 et 3, qu'un certain idéal symétrique S' construit d'une manière

simple à partir d'un idéal symétrique donné S est toujours principal quand

- 1, toujours équivalent à S quand N(sD) + 1.

Nous indiquons maintenant les notations et résultats que nous allons
utiliser. Si aÏ7 a2i ...,ak sont des nombres entiers rationnels, nous désignerons

par (a{,...,ak) le plus grand diviseur commun de ces nombres. Si A est.un
anneau commutatif unitaire et ai, am des éléments de A, nous désignons

respectivement sur [al5...,aw] (m ^2) le Z-module et par < ai,..., a,„ >

(m ^ 1) l'idéal (^4-module) engendré par aj am. Si (p est un nombre réel,
[cp] désigne la partie entière de (p. Le produit des idéaux I < aj,..., am > et

J < ßi,..., ß„ > est l'idéal IJ =* < ajßi,..., a/ßy,..., am% }. Enfin a \ b

(respectivement a Jf b) signifie que l'entier rationnel a divise (respectivement
ne divise pas) l'entier rationnel b.

D'après [7], Proposition 1, les idéaux non nuls de Od sont les Z-modules

b + Vd]
2

et b (mod 2a). Le nombre | d2a \ est la norme de l'idéal / et sera noté N(I).
Sauf mention explicite du contraire, nous supposerons toujours d et a > 0

b + 1/51

d a, où 4a\D - b2, et l'idéal / est déterminé par \d\

dans l'écriture I d a,

/ D - b2\
L'idéal / est primitif si d a,b, 1. Si l'idéal / est primitif,

\ j
son conjugué Lest primitif et II N(I).

Deux idéaux / et J de Od sont équivalents (noté /—/), si il existe deux

nombres a et ß non nuls de Od tels que aI ß/. Parmi les classes définies

par cette relation d'équivalence, celles contenant des idéaux primitifs forment
un groupe fini que nous noterons CD.

r b + VD
Considérons maintenant les idéaux primitifs réduits. Soit I a,

D - b2
un idéal primitif. Posons c. On peut aussi écrire / a[l,(p] avec

4a

(p

^ +
et (p est déterminé modulo 1. L'idéal / est réduit si l'on peut

la
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choisir b modulo 2a, ou (p modulo 1, de manière que les trois conditions

équivalentes suivantes soient réalisées

(1.1)

(1.2)

(1.3)

(p > 1 - 1 < (p < 0

0 < Vd — b < 2a < V~D +

0 < Vd — b < 2c < ]/d +

Si l'idéal I est réduit et b choisi de façon à satisfaire (1.1), et donc (1.2)

et (1.3), nous écrirons

(1.4)

L'idéal / est l'idéal / c,

I {cy b, a)

b + Vô
{a, b, c}.

L'ensemble fini des idéaux primitifs réduits d'une classe C primitive a

/ 1(C) éléments qui peuvent être rangés dans une suite périodique de la
manière suivante:

Si I {c,b,a}, l'idéal suivant / est /' [a, b', c'} où

(1.5) Q
b + Vü

2a

Comme / est réduit, q q +

+ b' 2aq c'

-b + ]/D
2a

D -
4a

'b' + VD-

2a
si bien que

l'idéal / précédant F est défini à partir de F symétriquement par

(1.6)
'b' + V

2a
+ b' 2aq c

D - b2

4a

Partant d'un idéal primitif réduit I0 tfo,"
bo + ]/l3

rz-ème itéré par le procédé (1.5) de I0 sera noté In

{a_i,Z?o,«o} le

bn + |/~~D

{an-x,bn,an}, de telle sorte que la période de I0 est formée des idéaux
I0,IU et que, pour tout k e Z,In + kï In. De plus, pour tout nona
d'après (1.1), (1.2), (1.3) et [7: (2.12) et (5.5)]
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(-1)"
(1.7)

i» ^ n <p< 7°. sgn 1^1 n (p/jj

cp„ > 1 (p„ > 1

an -1

Dans tout ce travail nous poserons

(1.8) D

D si D 1 (mod 4)

D
— si D 0 (mod 4)
4

§2. Idéaux ambiges, idéaux ambiges primitifs réduits

Définition 1. Un idéal ambige est un idéal égal à son conjugué.

Lemme 1. i) Les idéaux ambiges sont les Z-modules de lyun des types
suivants:

Al d a,
Vd

A2 d ay

2

a + ]/d

avec 4a \ D

avec 4a\D - a2

ii) Si D 1 (mod4) il n'y a pas d'idéal ambige de type A{.

b + i
Démonstration. Dire que I d

-b + VÔ

a, est ambige signifie que

b -F VD 1

a. II a.
2

donc que £ 0(modtf), et / est du

type A\ ou A2 suivant que - est pair ou impair, ce qui démontre i), et ii)
a

est clair.
On prouve alors le résultat suivant (cf. Gauss [1], §257-259):

Proposition 1. Les idéaux ambiges primitifs et ambiges primitifs réduits

sont donnés par le tableau suivant, où D est défini par (1.8):
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Discriminant Idéaux primitifs ambiges + réduits

D 1 (mod 4)
\ a+ VD]
["' 2 J,0l° '1 1 1 a<Vi

D 4 (mod 16)

D 8, 16, 24 (mod 32)
[a, Vi], a\D |(* i- 1 a < Vi

D 12 (mod 16)

[a, Vi]a| D,| i- 1

a < ]/i
[2a,a + Vi] | f) 1

D 0 (mod 32)

[a, Vi] |

D>

h 1 a < Vi

[4a, 2a + Vi] |~ |
4a)- vi

a <
2

Démonstration. Nous cherchons d'abord les idéaux primitifs ambiges.
Soit / un tel idéal. a+ 1/D1

Si D 1 (mod 4), / a, où a 1 (mod 2), 4a | £) - a2 et

D-a2\ I D \ I D\
as I 1. Alors a \ D et \a, a \ \ a, — \ 1. Inversement

\ 4a \
si a=l(mod2), a \ Det la,—1 1, on voit que 4a\D-a2 et

D-a-
4a

1.

Si D 0 (mod 4), tous les Z-modules a,
Vi

conviennent. Cherchons si il y en a du type

DID\
avec a— et [a, —

4 \
a + Vd]

a, Alors a est
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a
pair et 1 entier positif a' - doit vérifier

2

- 2 (* D-a,2\
22 - a 12a, 1 1.

I 2a'
(2.1) 2a

ce qui entraîne a' \ 22.

Si 22 1 (mod 2), alors a' 1 (mod 2) et la deuxième relation ne peut
être vérifiée que pour 22 3 (mod 4), c'est-à-dire D 12 (mod 16). Alors

la' I 22 - a'2 a' I 22

et si ceci est vrai

,2I D - a \ D \
2a', 1 <£ 2a', a'l 2a' \ a'

2 & | a', a' | 1

a'

1

Ceci nous donne la liste des idéaux primitifs ambiges pour D 4 et

12 (mod 16).

Il reste donc à étudier les cas où 22 0 (mod 8). Alors (2.1) implique
a' - 2a" d'où D 422" et s'écrit donc ici

a" | D" —a",14a",1

qui équivaut à

(2.2) \D", (4«",£-

22"
Mais (2.2) implique que —^ a" (mod 2), donc 22" 0 (mod 2), soit

a"
22 0 (mod 32), et alors (2.2) équivaut à

1'"io" (*"£)
ce qui achève la démonstration de la liste des idéaux primitifs ambiges.

Pour trouver ceux qui sont réduits nous utilisons le

Lemme 2. L'idéal 2=a[l,\|/] est réduit si, et seulement si,

\|/ 4- [— \j>] > 1.
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Démonstration. On peut remplacer 14/ par (p ip + [ — ij/] Qui vérifie

0< — \j/ — [ — \fr] < 1, c'est-à-dire — 1 < (p < 0, donc l'idéal / est réduit si,

et seulement si, cp \p + [ — \j/] > 1, ce qu'il fallait démontrer.

Ceci étant, on voit que

a,
\T

et que

a,

2

a + Vd

est réduit & +
2a

Vb
2a

> 1 & a <

2

Vb

est réduit h
2a

Vb-
2a

D

> 1

Vb 1

la 2

ce qui achève de démontrer la Proposition 1.

& +
2a

1 1/~D 1 /—> - > - & a < V D
2 2a 2

Corollaire 1. Si D ^ 0 (mod 32), un idéal ambige primitif est déterminé

par sa norme.

Démonstration. Dans la deuxième colonne du tableau de la Proposition

1 à des normes distinctes correspondent des idéaux distincts.

Corollaire 2. Si D 0 (mod 32), soient t ^ 3 et A les entiers

définis par
D 2'A A 1 (mod 2)

Les idéaux primitifs ambiges et primitifs ambiges réduits sont donnés par
le tableau suivant, où a désigne un entier tel que

a > 0 a I A *7) 1

Type Idéaux ambiges primitifs + réduits

1 [a, Vd\ a < l/ö

2 [l'a, VD] l'a<Vb

3 [4a,la+ Vb] la < Vb

4 [l'a, l'~la+ ]/ö] l'~xa < Vb
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Démonstration. Le Corollaire 2 est une conséquence immédiate de la

Proposition 1, cas où D 0 (mod 32).

Nous aurons aussi besoin du résultat suivant:

Lemme 3. Soit /o
ka0 + Vd

(*o, {a_ i, ka0, a0} un idéal ambige
2

primitif réduit, Ix l'idéal suivant 70 dans sa période. Alors Ix pXI0

avec

ka0 + Vd
(2.3) p, i < p, < —.2aQ aQ a0

Si 70 (1) alors Vd - 1 < pj < 1Vd.

ax kaQ + ]/d kaQ + ]/5
Démonstration. D'après (1.7) Ix 70 70 et,

a0 2ax 2a0

ka0 - Vd kaQ + ]/5
comme l'idéal 70 est réduit, - 1 < < 0, donc pi

2a0 2a0

Vd ka0- Vd
^ vérifie les inégalités (2.3). Pour achever de démontrer

a0 2a0

le Lemme 3 il suffit-de noter que a0 1 si 70 (1).

Définition 2. La norme réduite TV'(7) d'un idéal ambige primitif 7 est le

nombre a du tableau de la Proposition 1 si D sj= 0 (mod 32) et du tableau du

Corollaire 2 si D 0 (mod 32).

Proposition 2. Soit D ^ 0 (mod 32). Soient 70 et Ix deux idéaux

ambiges primitifs de normes réduites D0 et Dx respectivement.

Il existe quatre entiers positifs d, d0,dx, d' premiers entre eux deux à

deux tels que

D ddQdxd', Dq dd0 Dx ddx

et un nombre rationnel r dépendant de 70 et Ix tel que l'idéal

(rhlx% N'{J) dç>dx si

\rVöl01\,N'(J)dd', si

soit un idéal ambige primitif réduit.

L'idéal J est égal à (1) si, et seulement si} I0 Ix.

d0di < Vd

d0di > Vô
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Démonstration. D'après la Proposition 1 et la Définition 2 on a

DDoD'o DXD\avec (D0,D'0) 1

Définissons d,d0 et d\ par

D0 dd0,A ddi,)-l.
On voit qu'il existe d'tel que D\ dod' d'où D'0 did' et donc

D ddç>did'avec (dd0,d1

ce qui prouve que les nombres d, d0,dx,d' sont premiers entre eux deux à

deux.

Do + VÔ

/,

Supposons d'abord D= 1 (mod 4). Alors I0

A + 1/A

Au

A, et, effectuant le produit, on trouve

(do + ûA
_ r- ^ tfndi I I +

Ioh
d d [dJrd'\

ddod\ + d\\/D) ddod\ ~f~ dç^/D) \ 2 J
D

/=r»rf" 2
•

2 2 I

do + d\ d + d hh
Comme (d0,d{) — 1 et (mod2) on voit que est un

2 2 d

Ioh
idéal ambige entier sans diviseur rationnel, et, comme tout nombre de

d
kdodi + 1]/D IoI\

s'écrit où l, k e Z, on voit que tout entier rationnel de
2 d

est multiple de dQd\.

(d- d
D'autre part dd0d\ et |—-— | d0d\

^ /o/l ^ ^/7°Mappartiennent a -j- donc NI —I
dQdu ce qui, comme (d0dudd') 1, prouve par la Proposition 1 que

hh
d

dodx + 1Z~D

dodx,
Ioh

et que est ambige et primitif.
d

Si dod\<1 - est réduit donc on satisfait à la Proposition 2 en posant
d

J
hh

r l
d

'
d
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Si d0 di > Vd on trouve par le même calcul

dQdx
d0di + 1f~D

dd',
dd + j/~D

D,
d + Vd

1

loi1

Multipliant par l'idéal primitif on obtient
d

dd',

ce qui démontre la Proposition 2 avec r —

dd' + VD] I/d/q/j
dd0dx

1

ddodi
J dd', -

dd -r y D

Le cas où D 0 (mod 4), quand les idéaux I0 et I{ sont du type est

analogue, en plus simple, et on trouve le même résultat.
Si D 12 (mod 16) on trouve, par un calcul analogue, quand au moins un

des idéaux I0, Ix est du type A2,

2- [2 Do ,D0+VB) [22),, D, + V Ö] Vd]
2d

d'où r — J [d0dx, ]/ö] si d0dx < \fî) et
2d

\ [2D0,£>0 + l/Ö] [2),, V5] [2d0dx ,d0dx + Vö],
d

1

d'où r - J [2d0di, d0dx + ]/5] si d0dx < ]/d
d

Puis, si d0dx > ]/d, on obtient respectivement r J [dd', Vö]
2dd0dx

et r —

1

J [2c?rf'; + Vï)}
ddçdi

Ces calculs montrent que J (1) si, et seulement si, d0 dx 1 et si les

idéaux I0 et Ix sont de même type, donc si I0 Ix. Ceci achève de prouver la

Proposition 2.

Proposition 2'. Soit D 0 (mod 32), et soient t et A les entiers

définis au Corollaire 2.

Soient I0 et Ix deux idéaux ambiges primitifs de normes réduites D0

et Di respectivement. Il existe quatre entiers positifs d, d0,dx, d', premiers
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entre eux deux à deux, tels que

A ddodid', D0 <^o > A dd\

et un nombre rationnel r dépendant de Iq et f tel que l'idéal J défini
ci-dessous soit un idéal ambige primitif réduit.

Types de I0 et I{

(Corollaire 2)
J - riof J rVbloh

du même type

1 et 2, 3 et 4

2 et 3, 1 et 4

1 et 3, 2 et 4

dodi < \/~D

2'dodi < Vb

2,~ld(,d\<Vb

2d0 d[ < Vb

d0di >

2'd0dx > 1

2'~ld0dl > Vb

2d0di>Vb

L'idéal J est égal à (1) si, et seulement si, I0 I\.
Démonstration. La Proposition 2' se démontre comme la Proposition 2.

On calcule les produits d'idéaux primitifs ambiges réduits des dix différentes
combinaisons de types en fonction des nombres d0 et d\. Si le produit obtenu
n'est pas réduit, on le multiplie par l'idéal «complémentaire» pour obtenir un
idéal réduit.

Définition 3. Soit /

§3. Idéaux symétriques

b + Vb
a,

D-b2
un idéal et c L'idéal /

4a2

est symétrique si l'on peut choisir b > 0 dans sa classe modulo 2a de façon
que a c.

Définition 4. a) Une représentation de D comme somme de deux carrés
est un couple (M,N) d'entiers > 0 tels que (M,N) l,M2 + N2 D et
M 1 (mod 2).

b) Soit D M2 + N2 une représentation de D. L'idéal symétrique
primitif
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5

TV M + VD
2

'
2

si D 1 (mod 4)

[M, TV + Vd] si D 0 (mod 4)

est dit associé à la représentation {M, TV) de D.

Proposition 3. i) Tout idéal symétrique est réduit.

ii) Les idéaux symétriques primitifs sont les idéaux associés aux
représentations de D.

Démonstration, i) On voit facilement que les relations D b2 + 4a2,

a > 0, b > 0 impliquent (1.2).

b + Vd]
ii) Soit / a, un idéal symétrique. On a donc D + 4a2,

b > 0, et / est primitif si, et seulement si, (a, b) 1.

[TV 1

Si D 1 (mod4), b est impair donc I —, où TV 2a,
2 2

M b et (TV, M) {la, b) 1. Inversement, si D M2 + TV2, (M, TV) 1 et

[TVM+1/7)1
M= 1 (mod 2), alors est un idéal symétrique et primitif.

D
Si D 0 (mod 4), b est pair, donc a impair et — M2 + TV2 avec

4

M- a 1 (mod2) TV ^ <?/ / [M,TV+ ]/5] avec (M,TV) 1.

D
Inversement si — M2 + TV2 avec {M, N) \, M 1 (mod 2) alors

4

[M, TV+ l/ö] est un idéal symétrique, et primitif car (2N,M) (TV,-M) 1.

Nous allons étudier les représentations de D dans les Lemmes 4 et 5 puis

en déduire une propriété importante des idéaux symétriques associés.

Lemme 4. a) Les discriminants D tels que Vanneau Od contienne
des idéaux symétriques primitifs sont les nombres D tels que

(3.1) D 2spsxx ...pf s a 0 ou 1 pi premier 1 (mod4)

b) Soit l le nombre des diviseurs premiers distincts de D. Le nombre
des représentations de D comme somme de deux carrés est 2l~1.

c) Le nombre des idéaux primitifs symétriques est 2/_ 1.



CLASSES AMBIGES D'IDÉAUX 275

d) Le nombre des idéaux ambiges primitifs réduits est V 1, et la norme
de tout tel idéal divise D.

Démonstration. D'après la Proposition 3 les nombres D sont les nombres

tels que D est somme de deux carrés premiers entre eux, ce qui prouve (3.1).

D'après [9], Satz 52, le nombre des décompositions de D en somme de deux

carrés premiers entre eux est 2k~u, chaque décomposition donne une

représentation si s 0 et deux représentations si s 1, ce qui prouve b), et

c) résulte de la Proposition 3, ii).
Comme D 1 (mod 4) ou D 4 (mod 16) ou D 8 (mod 32), le tableau

de la Proposition 1 montre d).

Lemme 5. Soit D un discriminant tel que D soit représentable

comme somme de deux carrés. Soit, d'une part, D M2 + N2 une
représentation de D et, d'autre part, une décomposition D DXD2 en deux

facteurs Dx> 0 et D2> 0 premiers entre eux. Alors il existe un couple

unique de représentations Dx a\ + b\tD2 a\ + b\ et un signe
0 ± 1 tels que

M | axa2 - §bxb21 N \ axb2 + Qa2bx |

Démonstration. Nous supposerons Dx impair. Soient lx et l2 le nombre
des diviseurs premiers de Dx et D2 respectivement. D'après le Lemme 4 le

nombre des représentations de Dx est 26-1 celui de D2 est Prenant un
couple de représentations Dx a\ + b], D2 a\ + b\ et un signe 0 ± 1

nous obtenons

(3.2) D | axa2 — Qbxb212 + | a2bx + Qaxb212

de 20~1 + /2-1 + 1 2!~l manières différentes.
Pour démontrer le Lemme 5 il suffit de montrer que nous obtenons ainsi

les 2l~1 représentations de D, c'est-à-dire que nous avons bien des
représentations de D au sens de la Définition 4 et qu'elles sont distinctes.

Comme ax a2 1 (mod 2) et que bx 0 (mod 2) on voit que
axa2 - Qbxb2 est impair.

D'autre part, dans l'anneau Z[i\, on a

(3.3) {ax + ibx) (a2 + i$b2) (axa2 — $bxb2) + i(a2bx + Qaxb2)

Comme ni ax + ibx, ni a2 + ib2 n'a de diviseur rationnel et que
{a] + b\,a\ + b\) 1 on voit que (axa2 -+ 1, et donc

que M | 0]Ü2 —Qb\b21, iV | a2b\ + 0 \ est une représentation de D. Il
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reste à démontrer que les 2l~l représentations ainsi obtenues sont distinctes.
Supposons donc que l'on ait

I Cl\ 0-2 - 0&1&2 | | I

>
I + Otfl£2 | | #2^1 + a'\b'2 I

>

où (a[,b\) et (a'2,b2) sont des représentations de Dx et D2 respectivement.

Ceci signifie que l'une des quatre égalités suivantes est vraie:

(ai + ib\) (a2 + iQb2) <

{a\ + ib\) {a2 + i§'b2)

- (a[ + ib[) (a2 + iü'b2)
(a[-ib\) 0a2-id'b2)
- (a[-ib\) (,a'2-iQ'b2)

Les troisième et quatrième égalités ne peuvent pas être vérifiées car les deux

membres n'ont pas les mêmes facteurs irréductibles dans Z[/]. On voit donc

que ai + ibi et a[ + ib[ sont associés et, tenant compte des parités et

des signes de ai,bu a[, b[, on a a{ + ib\ a\ + ib\ d'où a2 + idb2
± (a'2 + id'b2) ce qui, tenant compte des signes de a2, b2, a2, b2) montre

que 0 0' et a2 + iüb2 a2 + iQb'2, et achève la démonstration du

Lemme 5.

Grâce à ce Lemme 5 nous pouvons obtenir le résultat le plus profond de

ce travail:

Proposition 4. Soit D un discriminant tel que l'anneau Od

contienne des idéaux primitifs symétriques. Soit D M2 + N2 une
représentation de D et D DXD2 une décomposition de D en deux facteurs
premiers entre eux.

Soient Di a2 + b2, D2 c2 + d2 et 0 ± 1 les représentations de

Dx et D2 et le nombre 0 bien déterminés par le Lemme 5 tels que

M \ac - Qbd\,N | ad + 0£c|. Alors m | ac + §bd\9n \ ad - 0bc|
est une représentation de D, et posant

(3.4)

1 Du
Di + VD

5
N M+VD
2

'
2

S'
n m + 1/d

2
'

2

si D 1 (mod 4)

I=[Di, VD] S [M,N+ Vö]- +

si D 0 (mod 4)

on a
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(3.5) *'-(£)
où y est un nombre de Od qui vérifie

(3.6) sgnTV(Y) sgn(abD2 - cdDx)

(3.7)

m+Vd\ lm + VD\ y2
— si D 1 (mod 4)
A

(N + VD) (n + VD) — 5/ £> 0 (mod 4)
D\

Démonstration. Supposons D 1 (mod 4). Alors on voit que

i:(3 8) 4SS' I ^ + ^C' aC ~ ^+ Vt)]^ ~^C', si

[ad + be, bd- ac+ 1 D][ad-bc, ac + bd+ si

Considérant d'abord le cas où ac > bd on trouve

4 SS'< a2d2 - b2c2, (ad + bc) (ac + bd + 1|/d),
(3.9)

(ad - bc) (ac - bd + Vd), a2c2 - b2d2 >

Posons

(3.10)
DiC + oVd Did+bVD

y » y" e

On vérifie par un calcul aisé que

(3.11)

(3.12)

(3.13)

A2 2 2 ,72
47V(Y') - _ 4N(y")b2c2 — a2d2 a2d2 — b2c2

D, A

a2c2 - b2d2 + D2ac]/D 4y

A
b2d2 - a2c2 + D + 2bdVn

A

(ad + bc) (ac + bd + ]/d) ^ -A
(ad - bc) (ac - bd + ]iu) Ay'y"

D,
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si bien que l'on a

(3.14) SS'<Y',Y',Y",r"> •

Si ac < bd il suffit de changer le rôle des paires {a, c) et (b, d) et l'on trouve

(3.15) SS'<Y',Y',Y",Y"> •

Considérons maintenant l'idéal entier ambige sans diviseur rationnel
J

La définition (3.10) de y' et y" montre que tout nombre de J s'écrit

xDx + yVD
où x, y e Z avec x y (mod 2), donc tout entier rationnel de J

2

est multiple de Dx. D'autre part y' + y' cDx et y" + y" dDx
appartiennent à J et aussi Dx, donc N{J) Dx. Mais, d'après le Lemme 1, / est

le seul idéal ambige sans diviseur rationnel de norme Dx, donc J I.
On obtient (3.5) en posant y y* si ac > bd, y y" si ac < bd. Mais,

d'après (3.11), on voit que

f sgn (bc - ad) si ac - bd > 0

sgn {ad - bc) si ac - bd < 0
sgnTV(y)

ce qui signifie que

sgnN(y) sgn [{ac - bd) {bc - ad)] sgn{abD2 - cdDx)

ce qui est (3.6), et (3.7) se voit en comparant (3.8) et (3.12), ce qui achève la

démonstration quand D 1 (mod 4).

Considérons maintenant le cas où D 0 (mod 4). La démonstration de

(3.14) et (3.15) est semblable, il suffit de supprimer le facteur 4 dans (3.8), de

permuter c et d} de supprimer les facteurs 2 des dénominateurs de (3.10), et

de remplacer D par D si bien que (3.14) et (3.15) sont vraies avec

(3.16) y' Dxd + tfl/ö y" Dxc + bVö

Ici aussi il faut montrer que J <y',y",y',y"> est égal à I. On voit,
comme plus haut, que tout entier rationnel de J est multiple de Dx, et aussi

que 2cDx,2dDx et {bd-ac)Dx sont dans J, ce qui, comme {c,d)= 1,

a c 1 (mod 2) et bd 0 (mod 2) prouve que N{J) Dx, et, d'après la

Proposition 1, prouve que J I. La démonstration de (3.6) et (3.7) est la même

que celle pour le cas D 1 (mod 4) ce qui achève la démonstration de la

Proposition 4.
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§4. CLASSES AMBIGES

Définition 5. Une classe C d'idéaux de Od est ambige si elle est égale à

sa conjuguée C, c'est-à-dire si tout idéal I de C est équivalent à son

conjugué I.

Proposition 5. Les classes ambiges primitives sont les éléments

d'ordre 2 du groupe CD des classes primitives d'idéaux de Od

Démonstration. D'après [7] (Proposition 2, Définitions 3 et 4) toute
classe C du groupe CD des classes primitives vérifie CC - 1, donc C2 1 si,

et seulement si, C C, ce qu'il fallait démontrer.

Proposition 6. Une classe d'idéaux C de Od est ambige si, et
seulement si, sa période est formée de couples d'idéaux I {c, b, a} et

I {a, b,c}.

b + VB
Démonstration. Soit / a,

([7], Corollary 2) que a,
b+Vd

D-2un ideal, c — On sait
4a

Cy

b + Vd

est ambige si, et seulement si, a,
b + Vd

Donc la classe de /
b + ]/d1

c, La Proposition

6 s'obtient en considérant les idéaux réduits de C.

Proposition 7. La classe d'un idéal symétrique est ambige.

b +Démonstration. Soit S a, un idéal symétrique où b

est choisi de façon que a — c. D'après [7], Corollaire 2, on voit que
— by ]/D]

ce qui prouve la Proposition 7.a,

Théorème 1. Soit C une classe ambige primitive de Od dont la
période contient l idéaux réduits primitifs.

Si N(ed) - 1 le nombre l est impair et la période de C contient
un idéal ambige et un idéal symétrique. La numérotation des idéaux de la
période de C peut être choisie de façon que ces idéaux soient respectivement
Iq (ambige) et 7/+1 (symétrique).
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Si N(sD) 1 le nombre I est pair et la période de C contient soit
deux idéaux ambiges, soit deux idéaux symétriques. La numérotation des

idéaux de la période de C peut être choisie de façon que ces deux idéaux
soient I0 et 7/.

Démonstration. Nous considérons une classe ambige dont la période a

pour longueur /, contenant les idéaux 70 {c,b,a} et In {a,b,c). Nous

distinguons le cas a) où n est impair (n 2m + 1) et le cas ß) où n est pair
(n 2m).

a) On a I0{c,b,a}, I2m+l {a,b,c}.
Tenant compte de (1.5) et (1.6) on trouve que

Im {C,B,A},

B + 1

A, est un idéal ambige.ce qui prouve que A \ B et que Im

D'autre part

h Ia {c,b,a}

Donc, pour tout 0

h-k - {^Ô^} hm+l+k S {R, Q, Pj

Si l est impair, l'équation / — k 2m + 1 + k admet pour solution

k - --m, et on voit que l'idéal It-k - I i+\ {P,Q,P) est
9 m +Z 2

symétrique. Changeant la numérotation on voit que I0 est ambige et Il+l
2

symétrique.

Si l est pair, l'équation l - k 2m + 1 + k + 1 admet pour solution

; k =3
L - m - 1, donc I2m + k+\ I i est un idéal ambige. Donc, changeant
9 m + -

2

| la numérotation, I0 et 7/ sont des idéaux ambiges.
2

ß) On a

I0 {c,b,a}, I2m {a,b,c}.

Tenant compte de (1.5) et (1.6) on voit que Im est un idéal symétrique.



CLASSES AMBIGES D'IDÉAUX 281

En outre

IQ I,s{c,b,a},
donc, pour tout k ^ 0,

h-k {P,Q,R} > hm+k iR,Q,P) •

Si l est impair, l'équation l — k 2m + k + 1 admet pour solution

k - - m ce qui montre que l'idéal 7 /_ i est ambige.
9 m +^ 2

Changeant la numérotation on voit que 70 est ambige et 7/+i symétrique.
2

/
Si l estpair, l'équation / - k 2m + k admet pour solution k - - m,

donc l'idéal 7 / est symétrique. Donc, changeant la numérotation, on voit
m + -

2

que 70 et 7/ sont symétriques.
2

En résumé nous voyons que l'on peut choisir la numérotation dans la

période pour que:

Si / est impair, 70 est ambige, 7/+1 symétrique,
2

Si / est pair, 70 et 7/ sont ambiges, ou bien symétriques.
2

Il reste à montrer que la période de C ne contient pas d'autre idéal ambige
ou symétrique que ceux que nous venons de trouver.

Si I0 {c, ka, a} et Ix {C, KA, A } (0 <x<l) sont ambiges, on a

Ix+ Ï {A,KA, C) et, d'après (1.5) et (1.6), on a 70 I2x, donc x -
2

Si 70 {c,ka, a} est ambige et Ix {A,B,A}^(0 <x < l) est symétrique,
on voit que Ix„k 7x + yt (fc^O), donc 70 72x, donc Ix - 70 I2x et

/+ 1

70 72x _ i, donc x
2

Si I0 {A,B,A} et 7X {C,D, C) sont symétriques (0<x</), on voit
/

que 70 I2x donc x -
2

Pour achever la démonstration du Théorème 1 il suffit de remarquer que
N(eDî <-!)'.
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Corollaire 3. a) Il existe des classes ambiges ne contenant pas d'idéal
ambige si, et seulement si, N(ed) + 1 et D est somme de deux carrés

premiers entre eux.

b) Le nombre de ces classes est égal à celui des classes ambiges contenant
deux idéaux ambiges.

Démonstration. Le Corollaire 3 est une conséquence immédiate du

Théorème 1, de la Proposition 7 et du Lemme 4, c) et d).

Remarque. La méthode que nous avons utilisée pour établir le

Théorème 1 est celle que Gauss utilise pour étudier les classes ambiges de

formes quadratiques binaires ([1], § 187) et, dans le cas où D 4p, p
premier 1 (mod 4), montrer que la période de la classe principale permet de

décomposer p en somme de deux carrés car elle contient les formes symétriques

± ax1 + 2bxy + ay2 où p a2 + b2 avec a 1 (mod 2) ([1], § 165).

Le Théorème 1 lui-même, exprimé dans le langage des formes quadratiques
binaires, se trouve dans [4] (Théorème 1, p. 172).

Dans le cas où D n'a pas de diviseur carré, le Corollaire 3 a) est établi d'une
autre manière dans [5] (Corollaire 1), et est équivalent au Satz 107 du Bericht
de Hilbert ([2]).

Nous pouvons maintenant comparer modulo 4 la longueur de la période
d'une classe ambige non principale avec la longueur de la période de la classe

principale, en combinant le Théorème 1 avec les Propositions 2 et 4. Nous

commençons par le cas où N(yD) - 1.

Théorème 2. Soit D un discriminant tel que N(eD) - l,/0 la

longueur de la période la classe principale. Soit C une classe ambige

primitive non principale d'idéal ambige I de norme Dx tel que

D DXD2, et d'idéal symétrique S associé à la représentation {M, N)
de D. Soient a, b, c, d les entiers positifs et S' l'idéal symétrique

définis à partir de Du M et N comme dans la Proposition 4, et soit l la

longueur de la période de C.

Alors l'idéal S' est principal, et

(4.1) {
/ /0 (mod 4) si cdDx - abD2 > 0

/ /0 + 2 (mod 4) si cdDx - abD2 < 0

Démonstration. Comme les idéaux / et S sont équivalents, (3.5) montre

que l'idéal S' est principal.
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Plus précisément, posant S al avec 1 < a ^ sd, on v°it Que

S' |^—| D'autre part soit a0 tel que S' (a0) avec 1 < a0 ^ &D. Le

[aDj
Lemme 3 montre que, en fait,

Vd - 1 < a0 ^ Sd :

Comme l'idéal ambige / est réduit et non principal onaKDj < A
(Proposition 1), ce qui entraîne l/A < Vd - 1 si D 1 (mod 4) et 2 l/A
< ]/d - 1 si D 0 (mod4). Les définitions (3.10) et (3.15) de y montrent

que, comme A < A, on a

1 < — < l/A si D 1 (mod 4)
A

1 < — < 2l/A si D 0 (mod 4)
A

ce qui montre, comme 1 < a ^ s^, que

— < —— < VD - 1 < a0 ^ sd -

&D a Dx

y y£d
Comme a0 (modx 8^) on voit que a0 et, comme

aA a^i
N(zD) - 1,

sgn(7V(a)) - sgn (2V(a0)) sgn (N(y))

ce qui, tenant compte de (1.7), (3.6) et du Théorème 1, prouve (4.1) et achève

la démonstration du Théorème 2.

Nous considérons maintenant le cas où N(ßD +1, et nous
commençons par traiter le cas où T ^ 0 (mod 32).

Théorème 3. Soit D un discriminant tel que D ^ 0 (mod 32) et

N(8z>) + 1.

a) Soit C une classe ambige non principale primitive contenant deux
idéaux ambiges I0 et Ix de normes réduites respectives D0 et A et
soient d, d0 et dx les nombres bien déterminés tels que

A ddQ A ddx (d0,dx) 1
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Alors

(4.2)
/ /0(mod4) si d0d{ < ]/d
l /0 + 2 (mod 4) si d0d{ > ]/ö

b) Soit I l'idéal ambige réduit principal et ^ (1), de norme D\, et

D
soit D2 — Soit C une classe ambige non principale contenant les

deux idéaux symétriques S et S'. Alors S' s'obtient à partir de S

et I par (3.4). De plus

(4.3)
l Iq (mod 4) si cdD\ - abD'2 > 0

/ l0 + 2 (mod 4) si cdD\ - abD2 < 0

Démonstration.

a) Nous appliquons la Proposition 2. Comme I0 4=- I\ et I0 ~ Iu on voit
que l'idéal J est 4=- (1) et principal.

Posant J (a0) et I{ aI0, on trouve l'égalité d'idéaux:
'

(raN(I0)) si d0dx < Vö

_
(raN(I0)) l/ö si d0d\ > 1fï)

ce qui, compte tenu de ce que 7V(l/ö) — D et N(zD) + 1, prouve (4.2).

b) Posant / (a0) et N{S) la relation (3.5) implique

y - y
S clqS — a0 ß S

D[s D[s2

(a0)

— M + V D .r=
où, d'après [7] Corollary 2, ß — ouß - N + y D suivant que

2

D 1 ou D 0 (mod 4), et donc Mß) < 0. Ceci, compte tenu de ce que
N(ed) + 1 et de (3.6), prouve (4.3) et achève la démonstration du

Théorème 3.

Nous pouvons maintenant donner le résultat dont l'observation a été le

point de départ de ce travail.

Corollaire 4. Soit D $q, où q ps avec p premier
1 (mod 4) et s ^ 1. Il y a deux classes ambiges, la classe principale C0

et une autre C, et les longueurs de leurs périodes vérifient

(4.4) / Iq + 2 (mod 4)
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Démonstration. Les idéaux ambiges primitifs réduits sont (1) et [2,]/2<7]

donc, avec les notations du Théorème 1 si N{zD) - 1 et du Théorème 2 si

N(ed) + 1, on a A - 2 12 + 12 et D2 q c2 + d2 où c et d > 0 sont

bien définis par c 1 (mod 2), si bien que ici

cdDx - abD2 2cd - (c2 + d2) - (c - d)2 < 0

ce qui, tenant compte de (4.1) si N(eD) — 1 et de (4.3) si N(ed) - + 1

prouve (4.4).
Maintenant nous étudions le cas où D 0 (mod 32).

Théorème 4. Soit D un discriminant tel que D 0 (mod 32). Soit
C une classe ambige non principale primitive contenant deux idéaux ambiges
70 et Ix de normes réduites respectives D0 et Dx et soient d, d0 et dx

les nombres bien déterminés tels que

D0 dd0 Dx ddi (d0,di) 1

Alors les classes modulo 4 de l et l0 vérifient

Types de I0 et I{

(Corollaire 2)
l lo (mod 4) / /0 T 2 (mod 4)

du même type

1 et 2, 3 et 4

2 et 3, 1 et 4

1 et 3, 2 et 4

d0dx < VJ5

2'd0di<Vd

< Vd

2d<} di Vd

d0di > ]/ö
2'd(,d\>Vf)

2'~id0dl > Vd
2d0di > Vf

Démonstration. La démonstration du Théorème 4 est semblable à la
démonstration du Théorème 3, a).

Corollaire 5. Soit D 2t + 2q avec t ^ 3, q ps,p premier
impair, s ^ 1. Il y a deux classes ambiges, la classe principale C0 et une
autre C. On a

(4.5) / /o (mod 4) si q < V~2 ou si q > V

(4.6) / /0 + 2 (mod4) si V~2 < q < V

Démonstration. Le Corollaire 2 montre qu'il y a trois idéaux ambiges
primitifs réduits non principaux.
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Si V~2 < q <V le Corollaire 2 montre que ces idéaux sont [q,Vn\,

[4,2 + 1/3] et [2', 2'-1 +1/3]. Pour toute combinaison de deux de ces

idéaux on vérifie facilement que c'est la condition pour que / /0 + 2 (mod 4)

du Théorème 4 qui est vérifiée, ce qui prouve (4.6). La démonstration de (4.5)
est analogue.

Remarque. Si D 32q (t 3), (4.5) est vrai pour q > 8 et (4.6) pour
q — 3,5,7.

Exemple 1 (Corollaire 4).

D 40 - 8 x 5

D 136 8 x 17

TVfo) - 1 /0 1 / 3

Nfo) + 1 /o 4, 1 6.

Pour terminer cette section nous donnons deux exemples numériques, l'un
du Théorème 2 où AÙT^) - 1 et l'autre du Théorème 3 où N(zD) + 1.

Exemple 2 (Théorème 2).

D 12325 25 x 17 x 29 N(ED) - 1

Il y a quatre classes ambiges, C0 (principale), C,, C2 et C3 et nous
donnons pour chacune l'idéal ambige réduit, l'idéal symétrique et la longueur,
obtenus par réduction ([7], §5).

Co

C,

C2

c3

V

17,

25,

29,

m +1/3

85 + 1/3

75 + 1/3

2

87 + 1/3

1,
ni +1/3

27,

2

97 + l3>

53,:

2

33 + 1/3

39,

2

79 + l/3

la 1
•

h 5

h 7

/, 5

Nous vérifions le Théorème 2 pour la classe C2

Z>! 25 32 + 42 Z>2 17.29 132 + 182 32 + 222

On trouve que 33 4.18 — 3.13. Donc 3, 4, c 13, a? 18.

Ensuite, changeant le signe, on trouve 4.18 + 3.13 111, ce qui montre

111 + l/3l
que S' 1,- e Cq Enfin
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cdDx - abD2 13.18.25 - 3.4.17.29 - 66 < 0

donc h h + 2 (mod 4), ce qui est vrai.

Exemple 3 (Théorème 3):

D 5525 25.13.17 N(eD) + 1

Les quatre idéaux ambiges réduits se répartissent dans les deux classes Co

(principale) et Ci ainsi

Co :

Ci :

1,

13,

73 + ]/d
2

65 + ]/D

25,
25 + ]/D

17,

2

51 + Vd

/o 4.

/, 6

Vérifions le Théorème 3a) pour On a 13, D\ 17, donc

d0 13, di 17 et c?0di > 1f~D donc + 2 (mod 4), ce qui est vrai.
Vérifions le Théorème 3 b). On a

D[=2532 + 42 £>2 13.17 112 + 102 52 + 142

D412 + 622 732 + 142 712 + 222 72 + 742

et on trouve deux classes ambiges contenant les idéaux symétriques:

C2

C3 :

37,

31,

7 + VD

2

4i + Vd

7,

11,

73 + VD
2

71 + VD

h 4

h 6

On a donc a 3, b 4.

Pour la classe C2, 7 4.10 - 3.11 et 73 4.10 + 3.11, donc c 11,

d 10 et

cd£>; - 11.10.25 - 3.4.13.17 98 > 0

donc l2 h (mod 4), ce qui est vrai.
Pour la classe C3, 41=4.14-3.5, 71-4.14 + 3.5, donc c 5,

d — 14 et

cdD\ - abD'2 5.14.25 - 3.4.13.17 - 902 < 0

donc /3 l0 + 2 (mod 4), ce qui est vrai.
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§5. Troisième démonstration du Théorème 0 ([6], [3]).

Cette démonstration n'utilise pas les Propositions 2 et 4. En revanche nous

aurons besoin de la Proposition suivante, qui est une conséquence immédiate
des résultats de [7] et du Théorème 1.

Proposition 7. Soit D un discriminant tel que N{ed) -1,C une
classe ambige primitive dont l'idéal ambige réduit est I de norme Dx et

q
idont l'idéal symétrique est S R,

2

(5.1) S a1, 1 < a ^ ed

Alors

q + Vd

et soit a e Kx tel que

(5.2) Ed -J a2

Démonstration. Soit P la période de C. Nous utilisons les notations du

Théorème 1 et de [7], (5.3) à (5.5), et numérotons les idéaux de P de manière

que I - h{a-i,ôo,a0}, S Ix {ax-x,bx,ax} avec D'après
[7], (6.4) et (5.3) nous avons

(5.3) £ß <Pi... (P*-i<Px<PX+i (P/» / 2X 1

OÙ

bk + 1/~~D

(p£ — (ke Z).
2ak

Comme Ix est un idéal symétrique on a bx + k bk~k et aX- \~k ax + k

pour tout k e Z si bien que

,C AX a^-k
(5.4) (Px + Ä- — tyx-k •

a\-k-\
Utilisant (5.4) pour k — 1,...,X- 1 dans (5.3) on trouve, comme

ax ax-1,

(5.5) ed (cpi... (Px, - i) (Px
a0
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D'après [7], (5.5) et Proposition 8, a — <pi cp* vérifie (5.1), si bien
a0

o ao •
Ö + V~D

_que (5.5) s'écrit s^cpx a2— ce qui, comme axtyx et ao - D\
ax 2

prouve (5.2).
Nous considérons maintenant un discriminant D 1 (mod 4) tel que

N(zD) - 1. On sait que, suivant le cas, s4£> £d ou e3d. D'autre part il
existe un homomorphisme 0 du groupe C4D sur le groupe CD ([7], Theorem 1)

qui envoie la classe de l'idéal primitif [a, b + Vd], où ab 1 (mod 2), sur

b +Vd\
a

a, Avec ces notations nous avonsla classe de

Théorème 0 ([6], Theorem, [3], Theorem 5). Soit D 1 (mod4) un

discriminant tel que N(zD) - 1,C une classe ambige primitive de

discriminant AD. Soit l la longueur de la période de C et l' celle de

la période de 0(C). Alors

l /' (mod 4) si s4D z3D

/ /' + 2 (mod 4) si e4D zD

Démonstration. Nous considérons une classe primitive ambige C de 04D

et son image 0(C) par l'homomorphisme 0 de C4D sur CD.

La période de C contient l'idéal ambige 70 [a, 1/~D\ où, d'après la

Proposition 1, a 1 (mod 2), a | D et a < Vd. Comme I0 [a, a + Vd\ la

a + VD]
classe 0(C) contient l'idéal J0 a, qui est ambige et réduit car

2

a | D et a < Vd. L'idéal J0 est donc l'idéal ambige réduit de 0(C).
D'autre part la période de C contient l'idéal symétrique Ix [M,N + 1fî>\

où D M2 + N2 avec M 1 (mod 2) et (M, AO 1. On voit que

Ix [M, (M + AO + Vd] et, comme M + N 1 (mod 2), l'idéal

M + N + VD]
est un idéal de 0(C). Or on aJ M,

2

D-(M+A02 M2 + Af2 - (M+AO2 N
4M 4M Y '
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Donc, d'après [7], Corollary 2,

N -M-N+VD
2 '

2
J

N -M+VD
2 ' 2

N M+ VD

2 ' 2

est l'idéal symétrique <7^ de 0(C).

Mais, comme 0(C) est une classe ambige, J ~ — — donc l'idéal

NM+VD\
2

'
2 J

Posant Ix aI0 avec 1 < a ^ 84p et ß/0 avec 1 < ß ^ 8p nous

trouvons d'après (5.2)

m + Vd\

(5.6)

SpS4p

Notant que s4jD zD ou et que

M+Vd

j (N+ Vd) a2ß2

IM + VD\ ./- /M+7V+1/D\
—r+yS)" _i_

nous obtenons, en prenant la racine carrée de nombres réels positifs,

'M+N+ Vb\

a aß

Comme la norme N

IM + N + VD\

\ 2
'

|M+^
+ l/Ôj

M + N + l/5\ MTV

SI S4£> — ZD

SI 84— 8p

> 0 et N{8p) - 1 on voit que
2

77(aß) > 0, c'est-à-dire X p (mod 2), si, et seulement si, s4p Sp, ce qui
démontre le Théorème 0.

Remarque. Ce qui, dans cette démonstration, joue le rôle de la

Proposition 4 est l'égalité (5.6).
On peut démontrer de manière analogue (4.1) à partir de (3.7) et (5.2), sans

utiliser (3.5), après avoir montré que S' est principal de la manière suivante:

Nous supposons D 0 (mod 4), le cas D 1 (mod 4) est analogue. Avec
les notations de la Proposition 4 et du Théorème 2 on écrit (5.2) pour la

classe C et pour la classe principale respectivement.

ed(N + VD)



CLASSES AMBIGES D'IDÉAUX 291

et sD(n + Vd) a20

Multipliant et tenant compte de (3.7) on obtient

Y
2

(5.7) ej, — a2a^£>,

Comme tous les nombres intervenant dans (5.7) sont positifs, on a

sDy aa0D]

ce qui, au vu de (3.6), donne (4.1) en comparant les signes des normes des deux

membres.
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