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f*®c,aAX) ®-c,-a,p(X)

Applying § 2 (a) and (b) with a - c we get

f*®c,aAX) - ®-c,a,p(X) - (- l)c2<S>c,a,p(X)

By assumption <bc a P(X) # 0, so we must have

(- \y^i (_ iy
Now d 4c2 - c2 - 3(1 + pg(X)) implies that (- 1 )^X) 1, i.e. pg(X)

0 (mod 2). This proves Theorem 6.

4. Diffeomorphism groups of some algebraic surfaces

In § 1 we saw that the image of contains the group 0'k{L) • {o*,id} in

many cases. In §2 we showed that under certain conditions {± kx} is

invariant under \j/(Diff+ (X)). Finally we proved in the previous section that
for algebraic surfaces of odd geometric genus - 1 is not induced by an
orientation preserving diffeomorphism. It turns out that these facts suffice to
determine the image of \)/.

Proposition 7. Let X be a simply connected algebraic surface which

satisfies the following conditions:

(i) 0'k{L){o*,id} C \|/(Diff+(X)),

(ii) { ± kx) is invariant under \|/(Diff+(X)),

(iii) -1 $v(Diff+O0).

Then

V(Diff+(JQ) 0{G,,id}

Proof. Let g= -ot. Then g e Ok(L), but $ \|/(Diff+(X)), since

- 1 $ ti^Diff+CAO). Hence by (i), g $ 0'k(L). Therefore

Ok(L) O'fL) {g, id}

Now let h e \jt(Diff+(vY')). By (ii) either h(k) or h(k) - k. In the first

case h e Ok(L). Moreover, h e 0'k(L) since otherwise h gh0 for some

h0 e 0'k(L)which would imply g e y (Diff+(.¥)), a contradiction. In the

second case we have h' ho* e Ok{L). By the same argument as before we

see that h'e 0'k{L). Hence h ~h'o*e (a*,id}. This proves

Proposition 7.

Putting everything together we get the main result of our paper.
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Theorem 8. Let X be a simply connected algebraic surface with

Pg(X) 1 (mod 2) and kx 1 (mod 2). If X is either

(i) a complete intersection, or

(ii) a Moishezon or Salvetti surface,

then

v(Diff+(20) - 0'k{L) -{o,,id}

Example. Consider a complete intersection surface X of multidegree

(du...,dr). Using the formulas of [E4], we can translate the conditions

of Theorem 8 into numerical conditions on the degrees dt. The condition
k2x m 1 (mod 2) is equivalent to

(1) di 1 (mod 2) for i 1, r

Write di 2et + 1 (/ 1, ...,r). Then pg(X) 1 (mod 2) is equivalent to the

following two conditions

(2) £ e>ei - 1 (mod 2)
i<j

(3) either 3 | dj for some j, 1 ^ j ^ r, or 3 | X)
/ i C + 1) •

In particular there is an infinite sequence of complete intersection surfaces

satisfying the conditions of Theorem 8, e.g. the surfaces with (dx, d2)

(3,3 + Am), m e Z, m ^ 0.

We leave it to the reader to formulate similar conditions for the case (ii)
of Theorem 8.

We shall give two further applications of the results of the first three
sections.

Let X be a surface as in Theorem 1 and denote the symmetric bilinear form
corresponding to qx by < >. Define Lr : ker kx kx CI, and let
A C L' be the set of vanishing cycles of X (cf. [EO]). The pair (Z/, A) is then
a vanishing lattice in the sense of [El, Definition (2.1)]. This means the
following. If ô e A, then < ô, ô — 2 and one has an associated reflection
Sg defined by

s5(x) x + <x,S>8

for all x e L'. Let TA denote the subgroup of 0(L') generated by these
reflections s6, ô e A. Then (L\ A) satisfies the following conditions:
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(i) < 8,8 > - 2 for all Se A.

(ii) A generates U.
(iii) A is a rA-orbit.

(iv) Unless rank L' - 1, there exist 8i,82 eA with <81,82) 1.

As in Wall's paper [W] we can derive from a statement about

\l/(Diff+(A)) a statement about the possibility of representing homology
classes by embedded 2-spheres.

Theorem 9. Let X be an algebraic surface, and let x e H2(X, Z)
be a class with qx(x) - 2. If x is represented by a differentiably
embedded 2-sphere, then x e Conversely, if X is a surface as in
Theorem 1, if x e kf, and if there exists a class y e with

(x,y) 1, //ze« x can be represented by a differentiably embedded

2-sphere.

Proof. Let x e H2(X, Z) be a class with qx(x) - 2. Suppose

that x is represented by a differentiably embedded 2-sphere S. Let j: S -> X
be the embedding. The normal bundle Ns of S in X can be regarded
as a £/(l)-bundIe. Therefore the first Chern class c{ (Ns) of the normal
bundle is defined. Let Ç e H2(X, Z) be the Poincaré dual of x. Then by

[H, Theorem 4.8.1] Ci(Ns) If Tx and Ts denote the tangent bundles

of X and S respectively, then we have j*kx w2(j*Tx) w2(Ts) + w2(Ns).
This implies (kx,^) %(S) + \2 0 where %(S) denotes the Euler
characteristic of S. It follows that x e kx.

Conversely, let A" be a surface as in Theorem 1. Then (L\ A) is a complete

vanishing lattice in the sense of [El, Definition (2.2)]. This follows for

complete intersection surfaces from [B, E3], for Moishezon surfaces from [M],
and for Salvetti surfaces from [S] (see also [EO]). By [El, Proposition (2.5)]

we conclude that

A {veL' I qx(v) - 2 and (v,L') Z}

Therefore, if x e L' and if there exists a y e L' with > - 1, then x e A,

i.e. x is a vanishing cycle. But vanishing cycles are certainly represented by

spheres. This proves Theorem 9.

Remark. We have even proved more, namely that every x satisfying the

latter conditions of Theorem 9 is a vanishing cycle.

Our second application concerns a question which was posed by

E. Brieskorn. First we show:
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Proposition 10. Let X be an algebraic surface as in Theorem 1.

Let x E Hom(L, Z). If {±x} is invariant under \|/(Diff+(X)), then

x Xkx for some X e Q, unless k\ 0,kx^ 0.

Proof Let U C L'Q L' ® Q be a subspace of L'q which is invariant

under \|/(Diff+(X)). We show that either U L'Q or U is contained in

(Lq) 1 {v eLq I < u, w > 0 for all weLq}. Let ACL' be the set of
vanishing cycles. If ô e A is not orthogonal to U then there exists a y e U with
< 5,7 > ^ 0. From 55(7) 7 + <7, ô > ô e U it follows that ô e U. Since TA

acts transitively on A, we obtain AC U. But A generates L' so that we must

have Lq U.

Now let x e Hom(L, Z) be invariant up to sign under rA C v(Diff+(AQ).
If kx 0 then L 1/ and (X')1 {0}. Hence it follows from what we have

just shown that x 0. If k2x =£ 0 then we can write x + x0 where

1 e Q and x0 e Hom(L',Z) (x) Q. Now kx is invariant under rA, so we see

that { ± x0} is invariant under rA. Since (.L')L {0}, it follows that x0 0.

This proves Proposition 10.

Now (L\ Ä), where Ä {ô | ö e A}, is also a vanishing lattice. So we can
derive the following proposition by the same arguments.

Proposition 11. Let X be an algebraic surface as in Theorem 1. Write
kx nxKx for some primitive element k^e Hom(L Z) and some

non-negative integer nx. If x e Hom(L, Z) is an element with g{x) x
for all g e \|/(Diff+(A0), then xe{0,kJ}, unless k2x 0,kx^0.

Consider two simply connected algebraic surfaces X and X' with
corresponding lattices Lx and Lx>. Let h\X-*X' be an orientation preserving
homeomorphism between X and X'. Then h* : Lx -> Lx> is an isometry. For
a subgroup G C 0(LX*) we define Gh* : h*lGh*. Note that we have
k2x kXr, since kx can be expressed in terms of the rank and signature
of Lx.

Theorem 12. Let X, X' be algebraic surfaces as in Theorem 8, and
suppose that k2x kx, ^ 0. Let h\X^ X' be an orientation preserving
homeomorphism. Then \|/(Diff+(A0) and \|/(Diff+(Ar,))Ä* are conjugate
subgroups in Ö(LX) if and only if the divisibilities of kx and kx. in
integral cohomology are equal.

Proof. Suppose that v]/(Diff+(^Q) and \|/(Diff+(Ar'))Ä* are conjugate by
g e 0(LX), i.e. v(Diff+(A^) (v(Diff+(Ar'))**)i- Let v(Diff+(^')).
Then
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(hg)~lf(Kg)(kx) ± kx

since { ± kx} is invariant under \}/(Diff+(X)). Therefore

f(ihg){kx)) ± ih*g)(kx)

This holds for every f e \|/(Diff+(.W)), so that {± (h*g)(kx)} is invariant
under \j/(Diff+(JW)). We conclude from Proposition 10 that (h*g)(kx) Xkx>

for some X e Q. Now

4, k2x ((hig){kx)Y vk2x,,

hence X ± 1, and it follows that the divisibilities of kx and kXr in integral
cohomology are equal.

Conversely, let kx nxkx and kx> yix>kx> for some primitive elements

kx e H2{X, Z) and kx> e H2(X\Z) and some nonnegative integers nx and

nx> respectively, and assume that nx and nx> are equal. Let Xx and Xx> be the

Poincaré duals of and kX', and let K and K' be the one-dimensional
sublattices of Lx spanned by Xx and h*l(Xx<) respectively. Let g\K~+K'
be the homomorphism defined by g(Xx) h*\Xx>). Then (g(Xx),g(Xx))

< Xx, Xx hence g is an isometry. Now b2+ (X) ^ 3, so that by a generalization

of Witt's theorem [N, § 1.14, in particular 1.14.4, § 1.16] g can be extended

to an isometry g e 0(LX). One can easily verify that \j/(Diff+(W)) and

H/(Diff+Ar,))Ä* are conjugate by g. This proves Theorem 12.

Corollary 13. Let X be an algebraic surface as in Theorem 8. If an

element h e 0'(L) normalizes \i/(Diff+(Ar)), then h is contained in

y(Diff+(X)).

Proof. This follows from Theorem 12, because

\j/(Diff+(W)) 0'k(L) • {o*,id}

Remark. Since - 1 is not contained in \j/(Diff+(2Q) but in the normal-
izer Norm(\j/(Diff+(2Q)) of \j/(Diff+(X)) we obtain from Corollary 13:

Norm(\j/(Diff + (X)))/\j/(Diff+(2Q) Z/2 { ± id}

Example. Let X be a complete intersection in P6 of multidegree

(7,7,5,3). Let X' be the Salvetti surface y4(10,10,6,5; 5,5,3,5). Both
surfaces have k2 165375, pg 24499, but the divisibilities of the canonical
classes are 15 and 21 respectively. Therefore the surfaces are homeomorphic,
but not diffeomorphic. Both surfaces satisfy the assumptions of Theorem 8.
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We conclude from Theorem 12 that the subgroups of 0(L) corresponding to

\j/(Diff+(X)) and y (Diff+(A")) are not conjugate. This example was found

by a computer search.
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