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Let X be any simply connected algebraic surface with a big monodromy group.
If p,(X) = 0 (mod 2) then the degree of ®,(X) is odd. If p.(X) =1 (mod 2)
and k% =1 (mod 2) then the degree of @y, q r(X) is odd. So kx divides
®/(X) or @, q r(X) in these cases.

Remark. Theorem 4 and its corollary remain true for polynomials
@, o p(X) if c € HX(X,Z) is a class with ¢ # 0 such that f*(c) = ¢ for all
f e y(Diff,(X)). The question which elements of H*(X,Z) or H*(X,Z/2)
have this invariance property will be treated in §4.

3. NON-REALIZABLE ISOMETRIES

We shall show that for a simply connected algebraic surface with odd
geometric genus, — 1 is not induced by an orientation preserving diffeo-
morphism. For K3 surfaces this was shown by Donaldson in the proof of
[D, Proposition 6.2]. There he proves the nontriviality of a certain polynomial
®. o p(X) for a K3 surface X. With Zuo’s nontriviality result (Theorem 3) we
are able to generalize this as follows. ‘

THEOREM 6. If X is a simply connected algebraic surface with
p(X) =1 (mod 2) then -1 ¢ y(Diff,(X)).

Proof. Suppose that there is an orientation preserving diffeomorphism
f: X — Xsuchthat f* = — 1. Let c € H!(X, Z) be a class with ¢ # 0, and
choose a principal SO(3)-bundle P with w,(P) = ¢ such that @, , p(X) is
nontrivial. This is pdssible according to Theorem 3. Then

S*@c,q,p(X) = (= D@ o, p(X) ,

since @, , p(X) is a polynomial of degree d on L.
On the other hand, by §2(¢)

f*q)c,a,P(X) = Qf*c,f*(l,f*P(X) .

We have f*c = — cand f*a = — o because f* = — 1 and the dimension of
a is odd. Since f is orientation preserving and f* = —1 we find
S*pi(P) = py(P) and f*w,(P) = wy(P), so that the bundle S*P is
isomorphic to P. Therefore
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S 0, p(X) = D¢ o p(X) .
Applying §2(a) and (b) with @ = — ¢ we get
J¥®ca,p(X) = = Do p(X) = — (= 1D 4 p(X) .
By assumption ®, , »(X) # 0, so we must have
(=D = (=17,

Now d =4c, — ¢ — 3(1 + py(X)) implies that (—1)7«X =1, ie. p,(X)
= 0 (mod 2). This proves Theorem 6.

4. DIFFEOMORPHISM GROUPS OF SOME ALGEBRAIC SURFACES

In §1 we saw that the image of \y contains the group O((L) - {c,,id} in
many cases. In §2 we showed that under certain conditions {=+ ky} is
invariant under y (Diff, (X)). Finally we proved in the previous section that
for algebraic surfaces of odd geometric genus — 1 is not induced by an
orientation preserving diffeomorphism. It turns out that these facts suffice to
determine the image of .

PROPOSITION 7. Let X be a simply connected algebraic surface which
satisfies the following conditions:

(i) OyL) - {o,,id} C y(Diff, (X)),

() {+ kx} is invariant under y(Diff, (X)),
(i) -1 ¢ y(Diff. (X)).

Then

w(Diff (X)) = Ox(L) - {0,,id} .

, Proof. Let g = —o,. Then g e O((L), but g ¢ y(Diff, (X)), since
— 1 ¢ y(Diff . (X)). Hence by (i), g &€ O,(L). Therefore

Ok(L) = O(L) - {g 1d} .

Now let 4 € y(Diff, (X)). By (ii) either A(k) = k or h(k) = — k. In the first
case h € Oy(L). Moreover, h € O;(L) since otherwise h = ghy, for some
ho € O(L) which would imply g € v (Diff (X)), a contradiction. In the
second case we have i’ = ho, € Oy (L). By the same argument as before we
see that h’ e O(L). Hence h=h"o, € OL) " {o,,id}. This proves
- Proposition 7.

| Putting everything together we get the main result of our paper.
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