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Moishezon or Salvetti surface. (In the latter case the branch locus must be
given by real equations.)
Therefore we have:

COROLLARY 2. Let X be an algebraic surface as in Theorem 1. Then

O (L) - {o,,id} C w(Diff, (X)) .

2. INVARIANCE OF THE CANONICAL CLASS

S.K. Donaldson [D] has defined a series of invariants for certain smooth
4-manifolds. They are in particular defined for simply connected algebraic
surfaces X with p,(X) > 0. We assume from now on that X is such a surface.
There are two types of invariants according to the gauge group being SU(2)
or SO(3).

Let us first recall the SU(2)-case. Principal SU(2)-bundles over X are
classified by their second Chern class ¢,(P). For each /> [, using such a
bundle with ¢,(P) = /, Donaldson defines a polynomial

®/(X): Sym“(L) > Z

of degree d = d(l) =4l — 3(p,(X)+1), which depends only on the
underlying C>-structure of X and is invariant up to sign under y (Diff, (X ).
Donaldson shows that these invariants are nontrivial for all sufficiently
large [ [D].

We will need the slightly more complicated SO(3)-invariants. The simple
Lie group SO(3) is isomorphic to PU(2), so that one has an exact sequence

1-8t-UQ2)—SO3)—~1.

Let P be a principal SO(3)-bundle over X. Such a bundle has two characteristic
classes which determine it up to isomorphism: the second Stiefel-Whitney class
w,(P) € H?(X, Z/2) and the first Pontryagin class p,(P) € H*(X, Z).

Suppose that w,(P) is nonzero and choose an integral lifting ¢ of w,(P),
i.e. c € H¥(X,Z),c = w,(P) (here ¢ means the reduction of ¢ modulo 2).
Such a lifting exists since X is simply connected, and determines a U(2)-lifting
P of P, i.e. a U(2)-bundle P with £/S! = P and with ¢ = ¢,(P) [HH]. The
ChernAclasses of P are related to the characteristic classes of P by w,(P)
= ¢;(P) and p,(P) = cf(]s) — 402(16). In addition to this choose an element
a € Q. Donaldson shows that these choices give rise to a polynomial

(I)c,a,P(X): Symd(L) =3 &
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of degree d = — pi(P) — 3(p,(X) + 1) = 4c,(P) — 2 — 3(p,(X) + 1) with
the following properties ([D], see also [OV]):

@ . _,p(X)=— D, p(X) where — a is the subspace corresponding to
o with the opposite orientation.

(b) (I)c+2a,a,P(X) = S(a)(DC,Q,P X) where

1 if a*=0,
ela) = _
-1 if a2=+0.

(c) If f:X" — X is an orientation preserving diffeomorphism then

Doy, ¥, ¥y (X)) = [*®. o p(X) .

Donaldson’s nontriviality result for the SU(2)-invariants has been extended
to the SO(3)-case by Zuo [Z]:

THEOREM 3 (Zuo). Let X be a simply connected algebraic surface with
P.(X)>0. If ce H"'(X,Z),c +#0, and P is a principal SO(3)-bundle
corresponding to a U(2)-bundle P with Ci (13) =c and cz(IS) suffi-
ciently large, then the polynomial ®. . p(X) is nontrivial.

Now suppose that X has a big monodromy group in the sense of Friedman
and Morgan [FMM]. Then the SU(2)-invariants ®,(X) of X are complex
polynomials in the canonical class kxy and the quadratic form gy [FMM]. In
the SO(3)-case one finds the following result:

THEOREM 4. Let X be a simply connected algebraic surface with
Po(X) > 0, wo(X) # 0, and with a big monodromy group. Then, for a
principal SOQ3)-bundle P,

Dy ,,o,p(X) € Clkx,qx] .

COROLLARY 5. Let X be a simply connected algebraic surface with
pe(X) >0 and with a big monodromy group. Then {+ kx} is invariant
- under y(Diff (X)), if kx divides a nontrivial polynomial invariant.

The corollary follows from the fact that if ky divides a nontrivial poly-
' nomial invariant, then it is its only linear factor up to multiples (cf. [FMM]).
When are the assumptions of Corollary 5 satisfied? It follows from
2Theore~m 1 that the surfaces listed in this theorem have big monodromy. i
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Let X be any simply connected algebraic surface with a big monodromy group.
If p,(X) = 0 (mod 2) then the degree of ®,(X) is odd. If p.(X) =1 (mod 2)
and k% =1 (mod 2) then the degree of @y, q r(X) is odd. So kx divides
®/(X) or @, q r(X) in these cases.

Remark. Theorem 4 and its corollary remain true for polynomials
@, o p(X) if c € HX(X,Z) is a class with ¢ # 0 such that f*(c) = ¢ for all
f e y(Diff,(X)). The question which elements of H*(X,Z) or H*(X,Z/2)
have this invariance property will be treated in §4.

3. NON-REALIZABLE ISOMETRIES

We shall show that for a simply connected algebraic surface with odd
geometric genus, — 1 is not induced by an orientation preserving diffeo-
morphism. For K3 surfaces this was shown by Donaldson in the proof of
[D, Proposition 6.2]. There he proves the nontriviality of a certain polynomial
®. o p(X) for a K3 surface X. With Zuo’s nontriviality result (Theorem 3) we
are able to generalize this as follows. ‘

THEOREM 6. If X is a simply connected algebraic surface with
p(X) =1 (mod 2) then -1 ¢ y(Diff,(X)).

Proof. Suppose that there is an orientation preserving diffeomorphism
f: X — Xsuchthat f* = — 1. Let c € H!(X, Z) be a class with ¢ # 0, and
choose a principal SO(3)-bundle P with w,(P) = ¢ such that @, , p(X) is
nontrivial. This is pdssible according to Theorem 3. Then

S*@c,q,p(X) = (= D@ o, p(X) ,

since @, , p(X) is a polynomial of degree d on L.
On the other hand, by §2(¢)

f*q)c,a,P(X) = Qf*c,f*(l,f*P(X) .

We have f*c = — cand f*a = — o because f* = — 1 and the dimension of
a is odd. Since f is orientation preserving and f* = —1 we find
S*pi(P) = py(P) and f*w,(P) = wy(P), so that the bundle S*P is
isomorphic to P. Therefore
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