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1. CONSTRUCTION OF DIFFEOMORPHISMS -

Let X be a simply connected smooth compact complex algebraic surface
with quadratic intersection form gx: H,(X,Z)— Z and canonical class
ky € HX(X,Z) = Hom(H,(X, Z),Z). The second homology group H,(X, Z)
endowed with the quadratic form gy forms a lattice which we denote by L.
Let O(L) be the corresponding group of isometries.

We introduce some notation: Let b, (X) denote the dimension of any
maximal subspace of Lg = L ® R on which gy is positive definite. Note that
by (X) = 2p,(X) + 1 where p,(X) is the geometric genus of X. The set of all
oriented maximal positive definite subspaces of Lg forms an open subset €
of the Grassmannian G°(b,(X),Lg) of oriented b, (X)-dimensional
subspaces of the vector space Lg. It has two components if gy is indefinite.
We define O’(L) to be the subgroup of O(L) consisting of those auto-
morphisms which leave each component of Q invariant. (For an equiv-
alent definition of O’(L) see [E2,4.1].) Let O,(L) be the subgroup of O(L)
consisting of automorphisms preserving k = ky. Finally ~we define
O,(L):= Ox(L) n O'(L). ‘ :

An important subset of Diff, (X) is the set of classes of diffeomorphisms
obtained by monodromy transformations of a smooth family containing X
as a fibre. By a smooth family we mean a smooth (in the analytic category)
proper holomorphic mapping n: & — T of connected complex spaces &
and T; m is the projection of a locally trivial differentiable fibre bundle,
so that for a point #, € T with X = n ~1(#,) there is a monodromy represen-
tation p: (T, t,) = Diff, (X). The image I" of yop in O(L) is called the
monodromy group of the smooth family. The monodromy group preserves
kx. It also preserves the components of Q: to see this consider a loop 7
representing an element in m,(7,4) and let g:X,, = X— X, be the
diffeomorphisms corresponding to ¢ e t. The mapping ¢~ (g;)(0)
e G° (b, (X), Lg) is continuous for every a € Q, hence I' C O}(L).

For certain algebraic surfaces there exist smooth families whose
monodromy group is the whole group O;(L). This is summarized in the
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following theorem. Among these surfaces there are certain iterated
ramified coverings of P! x P! or P2 which were studied by Moishezon [M]
and Salvetti [S]: Let (n,,...,n) be a sequence of positive integers. For
Moishezon’s construction, let X, = P! X P! and let C C P! x P! be the
divisor {pt} x P! + P! x {pt}. Construct a sequence B;: X; = X;_; of cyclic
coverings B; of degree 3 with nonsingular branch locus linearly equivalent to
Bi—10...0B8)*(B3n;C). Let X, = X, (ny,...,n,). We call a surface X,(n,,...,n,)
with n; > 2 for some i,1 <i<r (cf. [M, §4, Remark 3]) a Moishezon
surface. For Salvetti’s construction we need in addition to (n;,...,n,) a
sequence (dy, ...,d,) of positive integers satisfying d;|n; for all i = 1, ..., r.
Let Y, = P2, and choose smooth curves C; C P2 of degree n;,i = 1, ..., r, so
that C:= C; u ... U C, has only normal crossings. Construct a sequence
B;i:Y;— Y,y of cyclic coverings PB; of degree d; ramified over
Bi—19...09B)*C). A Salvetti surface is a surface Y, = Y,(n,,...,n,;d;,...,d,),
if at least one n; > 5 with the corresponding d; > 3 (cf. [S, Corollary to
Proposition 2]).

THEOREM 1. Let X be a simply connected algebraic surface with
P.(X) > 0, and suppose that X is either

(1) a complete intersection, or
(i) a Moishezon or Salvetti surface.

Then there is a smooth family w: & —> T with 7n=1(t)) =X for some
to e T with monodromy group

T =04L).

For complete intersection surfaces this is proved in [B,E2,E3], for
Moishezon surfaces see [M], and for Salvetti surfaces see [S], together with
[EO, Theorem 2.5 and §1].

Next we construct an orientation preserving diffeomorphism o: X — X
with o*(ky) = — kx. Suppose X is embedded in a complex projective space
P/ so that X is the zero locus of a finite set { fi,..., fur} of homogeneous
polynomials in the coordinates zg, ...,zy of PV,

Denote by o: C — C complex conjugation, and let X° C P¥ be the zero
locus of { f7,..., f3;}, where f7 is obtained from f; by applying ¢ to all the
coefficients. Then o:P~ — PV induces a diffeomorphism X — X°, also
denoted by o, which satisfies o*(kys) = — kx. If X is given by real
equations fi,..., fu, then o: X = X° = X is a self-diffeomorphism of X.
Such equations can be found if X is a complete intersection and if X is a
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Moishezon or Salvetti surface. (In the latter case the branch locus must be
given by real equations.)
Therefore we have:

COROLLARY 2. Let X be an algebraic surface as in Theorem 1. Then

O (L) - {o,,id} C w(Diff, (X)) .

2. INVARIANCE OF THE CANONICAL CLASS

S.K. Donaldson [D] has defined a series of invariants for certain smooth
4-manifolds. They are in particular defined for simply connected algebraic
surfaces X with p,(X) > 0. We assume from now on that X is such a surface.
There are two types of invariants according to the gauge group being SU(2)
or SO(3).

Let us first recall the SU(2)-case. Principal SU(2)-bundles over X are
classified by their second Chern class ¢,(P). For each /> [, using such a
bundle with ¢,(P) = /, Donaldson defines a polynomial

®/(X): Sym“(L) > Z

of degree d = d(l) =4l — 3(p,(X)+1), which depends only on the
underlying C>-structure of X and is invariant up to sign under y (Diff, (X ).
Donaldson shows that these invariants are nontrivial for all sufficiently
large [ [D].

We will need the slightly more complicated SO(3)-invariants. The simple
Lie group SO(3) is isomorphic to PU(2), so that one has an exact sequence

1-8t-UQ2)—SO3)—~1.

Let P be a principal SO(3)-bundle over X. Such a bundle has two characteristic
classes which determine it up to isomorphism: the second Stiefel-Whitney class
w,(P) € H?(X, Z/2) and the first Pontryagin class p,(P) € H*(X, Z).

Suppose that w,(P) is nonzero and choose an integral lifting ¢ of w,(P),
i.e. c € H¥(X,Z),c = w,(P) (here ¢ means the reduction of ¢ modulo 2).
Such a lifting exists since X is simply connected, and determines a U(2)-lifting
P of P, i.e. a U(2)-bundle P with £/S! = P and with ¢ = ¢,(P) [HH]. The
ChernAclasses of P are related to the characteristic classes of P by w,(P)
= ¢;(P) and p,(P) = cf(]s) — 402(16). In addition to this choose an element
a € Q. Donaldson shows that these choices give rise to a polynomial

(I)c,a,P(X): Symd(L) =3 &
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